ASYMPTOTICALLY PERIODIC L2 MINIMIZERS IN STRONGLY SEGREGATING DIBLOCK COPOLYMERS 9 0 ADAMCHMAJ 0 2 Abstract. Using the delta correction to the standard free energy [4] in the n elasticsettingwithaquadraticfoundationtermandsomeparameters,wein- a troduce aonedimensiononlymodelforstrongsegregationindiblockcopoly- J mers,whosesharpinterfaceperiodicmicrostructureisconsistentwithexperi- 7 ment inlow temperatures. The Green’s function pattern formingnonlocality isthesameasintheOhta-Kawasakimodel. Thuswecompletethestatement ] in[31,p. 349]∗: “Thedetailedanalysisofthismodelwillbegivenelsewhere. M Our preliminary results indicate that the new model exhibits periodic mini- mizerswithsharpinterfaces.” Westressthattheresultisunexpected, as the G functional is not well posed, moreover the instabilities in L2 typically occur . onlyalongcontinuous nondifferentiable“hairs”. h We alsoimprovethederivation donebyvan derWaals and useitand the t a above to show the existence of a phase transition with Maxwell’s equal area m rule. However,thismodeldoesnotpredicttheuniversalcriticalsurfacetension exponent, conjectured to be 11/9. Actually, the range (1.2,1.36) has been [ reportedinexperiments[21,p. 360]. Bysimplytakingaconstantkernel,this 1 exponent is2. This isthe experimentally (±0.1) verifiedtricritical exponent, v found e.g., at the consolute 0.9 K point in mixtures of 3He and 4He. Thus 8 thereisathirdunseenphaseatthephasetransitionpoint. 9 8 0 Keytosomerecentdevelopmentsinmodernmicroelectronicshasbeentheability . 1 to create high-quality atomically abrupt interfaces between different semiconduc- 0 tors, which can produce new quantum states and uncover unexpected phenomena 9 (see http://en.wikipedia.org/wiki/Nanotechnology). Several experiments contra- 0 : dictingcommonknowledgeaboutbulkmaterialshavingonlydiffuseinterfaceshave v been reported, see the References, especially [7], where a new experimental tech- i X nique is explained. r It is remarkablethat chemically diverse diblock copolymers and microemulsions a admit very similar characteristic structures, e.g., the bicontinuous ordered double diamond[27]. Atheoryformallypredicting the phase transitionbetweenweakand strongsegregationwasderivedin[4]. Hereweshowhowtouseelasticityandchoose parametersintheVasersteinpseudoassociationpotentialtogetlocalL2 minimizers resembling the square wave [38]. As a by-product we get a rigorous proof of the gas to liquid phase transition. To make this note self-consistent, we review the history of this modeling. The ideal gas law RT (0.1) P = , V ∗ A preliminary version of this result was announced at the “Defects and their dynamics” workshop(09.08-16.08.2003), BanffInternational ResearchStation, Alberta,Canada. 1 2 ADAMCHMAJ where P is the internal pressure, V the volume per mole, T the absolute tempera- ture,Rthegasconstant,doesnotpredictaphase transitionbetween gas and liquid, definedaccordingtoexperimentas twodensities coexistingatthesamepressure(see e.g., the isotherms for carbon dioxide in [36]). Van der Waals formulated the modified equation of state as RT a (0.2) P = − , V −b V2 whereaistheattractionparameterwhicharisesfrompolarizationofmoleculesinto dipoles and b is the volume enclosed within a particle (the repulsion parameter). Below the critical temperature isotherms for (0.2) have a wiggle [36], which is unphysical. Maxwell’s construction in which the fluid is taken around a reversible cycle of states from a logicalpoint of view is worthless [36], as states on the wiggle have no meaning. However, such soft reasoning can give other interesting results [22, 36]. Foruniformsystems,theHelmholtzfreeenergyisdefinedasΨ=U−TS,where U isthe internalenergyandS the entropy. The firstlawofthermodynamicsstates dU = δQ−PdV, where δQ is heat change, the second law for reversible systems states δQ = TdS. Thus dΨ = dU − TdS − SdT = δQ − PdV − TdS −SdT, so P = −∂Ψ and Ψ = − PdV. Since the isothermal compressibility β satisfies ∂V β ≡−1 ∂V ≥0, we get ∂2RΨ ≥0. From (0.2) we get V ∂P ∂V2 a (0.3) Ψunif =− PdV =−RTln(V −b)− , Z V and the convex envelope of (0.3) gives Maxwell’s equal area rule for the isotherms of (0.2). However, this and related statistical mechanics arguments lack a proof of phase transition as defined above. To be more precise, suppose that Maxwell’s envelope is on the line segment [V ,V ]. Why does the system take on only V and 1 2 1 V , but not other values inside the segment? In other words, the implicit meaning 2 ofarguingthis wayisthatassuming there is a phase transition, it is determined by the equal area rule. As is often the case in mathematics, we can get a proofof phase transition with Maxwell’s equal area rule by studying a related larger structure. This was done in [20,p. 40]. Inarelatedwork,the authoralsoobtained4/3as the criticalexponent [21, p. 360]. Other methods have reported 3/2 (van der Waals), 1.38 [28] and (1.21,1.32)[42]. We now improve the derivation of van der Waals. Let ρ = 1 denote the density. The free energy of a nonuniform state ρ(x) of a V nonreversible process is a functional of the Helmholtz form I(ρ) = U(ρ)−TS(ρ). The cumulative free energy 1ρΨunif(ρ)dx is: 0 R 1 1 (0.4) Ψnonunif(ρ)= ρΨunif(ρ)= [−RTρln(ρ−1−b)−aρ2]. Z Z 0 0 1 1 1 U(ρ) cannot be only (C − aρ)ρ, but rather − J(x − y)ρ(x)ρ(y)dxdy ≃ 0 0 0 1ρ(C −aρ− c2ρ′′)dxR. Since the term 1Cρ canRbeRneglected due to the mass 0 2 0 cRonstraint, one can conclude that R 1 c 1 (0.5) I(ρ)=Ψnonunif(ρ)= − 2ρ′′ρ+ [−RTρln(ρ−1−b)−aρ2] Z 2 Z 0 0 PERIODIC MICROSTRUCTURE 3 Note that −aρ2−RTρ(ln(ρ−1−b)) is concave(double-well) for ρ and T satisfying RT ≥(<)2aρ(1−ρb)2. However,notethatthenonlocalandthe− 1aρ2termsap- 0 pearedquiteseparately,thereforeitmaynotbeentirelyconvincingtRhatoneisanex- tensionofthe other. Also,if− 1aρ2 isreplacedby− 1 1J(x−y)ρ(x)ρ(y)dxdy, 0 0 0 the solutions of the EL equatioRn are always continuousR, sRo we have no phase tran- sition as defined above. InhisNobellecture,vanderWaalsexpressedhisabsoluteconvictionthatmolecules associate in complexes not of chemical origin. He called them pseudoassociations. Thus the derivation can be improved by adding the nonlocal term to (0.4): 1 1 1 (0.6) Imod(ρ)=− J(x−y)ρ(x)ρ(y)dxdy+ [−RTρln(ρ−1−b)−aρ2]. Z Z Z 0 0 0 The mass constraint makes possible an addition of a linear term, which we choose so that −RTρln(ρ−1 −b)−aρ2 has equal depth wells. Also, on a bounded in- terval boundary effects may come into play, so J is not necessarily translationally invariant: J =J(x,y). Now (0.6) is qualitatively the same as derived in [4] 1 1 1 1 (0.7) I(u)= J(x,y)(u(x)−u(y))2dxdy+ W(u(x))dx, 4Z Z Z 0 0 0 where W is the double-well function 1 1 (0.8) W(u)=− ju2− u2+kT[(1+u)ln(1+u)+(1−u)ln(1−u)], 2 2 1 with j(x)= J(x,y)dy and k the Boltzmann’s constant. For some works on this 0 and related Rmodels see the References, especially the collective diffusion kinetics of the phase transition in polymer gels, what the authors in [24] consider one of the most exciting problems in currentcondensedmatter physics, and a nonlocalin time evolution discussed in [37]. Let G(u) = −1u2+kT[(1+u)ln(1+u)+(1−u)ln(1−u)], G∗ be the convex 2 envelope of G and 1 1 1 (0.9) I∗(u)=− J[u](x)u(x)dx+ G∗(u(x))dx. 2Z Z 0 0 Let g∗ = G∗′, [u,u] be the interval on which g∗ is constant and v∗ = g∗(u) = g∗(u). We define g∗−1(v), v 6=v∗, g∗−1(v), v 6=v∗, s(v)= s(v)= (cid:26) u, v =v∗, (cid:26) u, v =v∗. Let u be a local minimizer of (0.7). Let v = g(u) and x be such that v(x )= v∗. 0 0 We now show that under some conditions v′(x )6=0, which implies that the set of 0 discontinuities of u is finite. Let δ >0 be such that J(x,y)> 1J(x,x) for all (x,y) such that |x−y|<2δ . 0 2 0 Let δ ∈(0,δ ) and I =[x −δ,x +δ]. We define 0 δ 0 0 v+ =δ2+max{v(x)|x∈I }, v− =min{v(x)|x∈I }−δ2. δ δ Let 1 (0.10) φ=(u−s(v−))χ − (u−s(v−) χ . Iδ 1−2δ Z [0,1]\Iδ (cid:0) Iδ (cid:1) 4 ADAMCHMAJ 1 Since φ=0, we have I(u)≤I(u−φ), or 0 R 1 1 0≥ G∗(u)−G∗(u−φ)−φJ[u]+ φJ[φ] . Z 2 0 (cid:8) (cid:9) On I we have δ G∗(u)−G∗(u−φ)−vφ≥(g∗(u−φ)−v)φ≥(v−−v+)φ and 1 φJ[φ]≥ J(x0,x0) φ 2− maxx∈Iδj(x) φ 2 2Z 4 Z 2(1−2δ) Z Iδ (cid:0) Iδ (cid:1) (cid:0) Iδ (cid:1) On [0,1]\I we have δ −1 G∗(u)−G∗(u−φ)−vφ≥(g∗(u−φ)−g∗(u)) φ 1−2δ Z Iδ −g′(u) 2 3 ≥ φ +O φ (1−2δ)2(cid:0)ZIδ (cid:1) (cid:16)(cid:0)ZIδ (cid:1) (cid:17) and 1 φJ[φ]≥−maxx∈Iδj(x) φ 2+ [0,1]\Iδ [0,1]\IδJ φ 2 2Z 2(1−2δ) Z R 2(1−R2δ)2 Z [0,1]\Iδ (cid:0) Iδ (cid:1) (cid:0) Iδ (cid:1) Taking into account these inequalities we obtain 0≥ J(x0,x0) + [0,1]\Iδ [0,1]\IδJ − maxx∈Iδj(x) − [0,1]\Iδg′(u) φ 2 n 4 R 2(1−R2δ)2 1−2δ R(1−2δ)2 o(cid:0)ZIδ (cid:1) +(v−−v+) φ+O φ 3 . ZIδ (cid:16)(cid:0)ZIδ (cid:1) (cid:17) Denote the expression in the curly brackets by C(J,g,δ). After dividing by φ Iδ we get R v+−v− ≥C(J,g,δ) (u−s(v−))+O(δ2). Z Iδ In a similar manner, we take 1 φ=(u−s(v+))χ − (u−s(v+) χ Iδ 1−2δ Z [0,1]\Iδ (cid:0) Iδ (cid:1) and obtain v+−v− ≥C(J,g,δ) (s(v+)−u)+O(δ2). Z Iδ Adding these two inequalities and dividing by 2δ we get v+−v− C(J,g,δ) ≥ (s(v+)−s(v−))+O(δ). 2δ 2 Letting δ →0 we get C(J,g) |v′(x )|≥ (u−u), 0 2 where J(x ,x ) 1 1J 1 C(J,g)= 0 0 + 0 0 −j(x )− g′(u). 4 R R2 0 Z 0 Thus v′(x ) 6= 0 if C(J,g) > 0. For now this shows that any local minimizer does 0 not take values in (u,u) and proves the existence of phase transition. PERIODIC MICROSTRUCTURE 5 The well-balanced scaling 1 x−y (0.11) J (x,y)= Js −ǫJl(x,y), ǫ ǫ ǫ (cid:16) (cid:17) proposed in [31], where Js ≥ 0 and |x|Js(x)dx < ∞, can be justified as repre- R senting an interplay of attractive (JsR) and repulsive (Jl) chemical forces. This is consistent with an established view in physical chemistry, e.g., “But the establish- mentofawell-definedperiodicitybetweenthelamellae,ortherods,dependsonthe existenceoflong-rangeforcesbetweenthem: attractive(vanderWaals)orrepulsive (electrostatic, steric, plus the short-range Marcelja repulsion)” [12, p.2296]. Its qualitative shape of that of the “mexican hat”, a notion that comes from mathematical biology, where such kernels are also often used. However, it is in- teresting to observe that since we assume only |x|Js(x)dx < ∞, J can be R ǫ nonnegative. It is then its shape, not sign, that givRes pattern formation. The construction of periodic minimizers with discontinuous interfaces now fol- lows from a sequence of lemmas. Let I denote I with J given by (0.11). Then ǫ ǫ ǫ−1I Γ-converges as ǫ→0 to a singular limit defined on L2(0,1) by ǫ c ||Du||(0,1) − 1 1 1Jl(x,y)(u(x)−u(y))2dxdy u∈BV((0,1),{−1,1}), I (u)≡ 0 2 4 0 0 0 (cid:26) ∞ R R otherwise, wherec ≡inf Js(x−y)(u(x)−u(y))2dxdy+ W(u(x))dx and 0 {u:u(±∞)=±1} R R R ||Du|| is the variation measuRreRof u [1]. Here Γ-convergence is deRfined as 1. For every {u }⊂L2(0,1) with lim u =u, liminf ǫ−1I (u )≥I (u); ǫ ǫ→0 ǫ ǫ→0 ǫ ǫ 0 2. For every u∈L2(0,1)∩BV((0,1),{−1,1}), there exists a family {u }⊂L2(0,1) such that lim u =u, and limsup ǫ−1I (u )≤I (u). ǫ ǫ→0 ǫ ǫ→0 ǫ ǫ 0 These two inequalities often go together the compactness property 3. Let ǫ be a sequence of positive numbers converging to 0, and {u } a n n sequence in L2(0,1). If ǫ−1I (u ) is bounded above in n, then {u } n en n n is relatively compact in L2(0,1) and its cluster points belong to BV((0,1),{−1,1}). Afurtherrelatedpropertyisthatastrictlocalminimumu ofI perturbstoalocal 0 0 minimum u of ǫ−1I . This was shown and used in [23] to obtain local minimizers ǫ ǫ on dumbbell domains. In the proof, by a standard argument, a minimizer u of ǫ ǫ−1I is first constructed in a small closed ball around u . Then using properties ǫ 0 1−3itis shownthat forsmallenoughǫ>0,u lies in the interiorofthe ball,thus ǫ is a local minimizer of ǫ−1I in L2. ǫ When G is nonconvex this argument goes through a convexification and the calculation above. It is shown that a local minimum of I∗ in a subspace of 0 BV((0,1),{−1,1}) having a fixed number of jumps is also a local minimum of I∗ in L2(0,1). This observation reduces the problem of determining local minima 0 of I∗ to a finite dimensional one. Since 1(||Du||(0,1)) is equal to the number of 0 2 jumps of u, it is enough to investigate only the second term of I∗. In general, its 0 critical points are determined from a system of nonlinear algebraic equations and this is not an easy, or indeed, pleasant task. The Ohta-Kawasaki functional follows from [2], though it has been shown in [27]thatitis notsophisticatedenoughtopredictthecomplicatedphaseseparation morphologies. However, to confirm that pseudoassociations exist and to calculate the critical point exponent, we make a study in one dimension. 6 ADAMCHMAJ The robust functional 1 1 (0.12) I(w)= [ ǫ2w′′(x)2+W(w′(x))+w2(x)]dx, Z 2 0 canmodele.g.,thetwinnedmartensitephaseinNitinol[25]. Theelasticfoundation third term in (0.12) is nonlocal. Namely, let us consider (0.12) with the boundary conditions w(0)=w(1)=0. Let w =v′, v =(−D2)−1(u−m), where 1 1 −D2 :{v∈W2,2 :v′(0)=v′(1)=0, v =0}→{w∈L2 : w =0}. Z Z 0 0 Then w′ =v′′ =m−u, w′′ =−u′ and 1 1 1 1 1 w2 = v′2 =− v′′v = (u−m)(−D2)−1(u−m)= u(−D2)−1u Z Z Z Z Z 0 0 0 0 0 and (0.12) becomes 1 1 1 1 I(u)= [ ǫ2u′(x)2+W(m−u(x))]dx+ G(x,y)u(x)u(y)dxdy, Z 2 Z Z 0 0 0 with G as in [32]. Using the improved van der Waals derivation, we obtain (0.7) with J = J - the strong separation diblock copolymer functional. With G and ǫ small ǫ - asymptotically periodic local minimizers with sharp interfaces. References [1] G.AlbertiandG.Bellettini,Anon-localanisotropicmodelforphasetransitions: asymp- toticbehaviour ofrescaledenergies,EuropeanJ.Appl.Math.9(1998), 261-284. [2] S. Alexander and J. McTague,Shouldallcrystals bebcc? Landau theory ofsolidication andcrystalnucleation,Phys.Rev.Lett.41(1978), 702. [3] J. M. Ball and C. Mora-Corral, A variational model allowing both smooth and sharp phaseboundariesinsolids,Commun.PureAppl.Anal.,inpress. [4] P. W. Bates and A. Chmaj,Anintegrodifferential model forphase transitions: stationary solutionsinhigherspacedimensions,J.Statist.Phys.95(1999), 1119-1139. [5] P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model forphasetransitions,Arch.Ration.Mech.Anal.138(1997), 105-136. [6] F. Bethuel, G. Orlandi and D. Smets, Convergence of the parabolic Ginzburg-Landau equationtomotionbymeancurvature, Ann.ofMath.(2) 163(2006), 37-163. [7] M. Bode, Spin-polarized scanning tunneling microscopy, Rep. Prog. Phys. 66 (2003), 523- 582. [8] D.BrandonandR.C.Rogers,Thecoercivityparadoxandnonlocalferromagnetism,Con- tin.Mech.Thermodyn.4(1992), 1-21. [9] J. Carr and R. Pego, Invariant manifolds for metastable patterns in ut = ǫ2uxx−f(u), Proc.Roy.Soc.EdinburghSect.A116(1990), 133-160. [10] X. Chen and Y. Oshita, An application of the modular function in nonlocal variational problems,Arch.RationalMech.Anal.186(2007), 109-132. [11] R.ChoksiandP.Sternberg,Onthefirstandsecondvariationsofanonlocalisoperimetric problem,J.ReineAngew.Math.611(2007), 75-108. [12] P.G.DeGennesandC.Taupin,Microemulsionsandtheflexibilityofoil/waterinterfaces, J.Phys.Chem.86(1982), 2294-2304. [13] J.delaFiguera,F.Leonard,N.C.Bartelt,R.StumpfandK.F.McCarty,Nanoscale periodicityinstripe-formingsystemsathightemperature: Au/W(110),Phys.Rev.Lett.100, 186102(2008). [14] M.delPino, M.Kowalczyk andJ.Wei,OnDeGiorgiconjectureindimensionN ≥9. [15] H. F. Ding, W. Wulfhekel and J. Kirschner, Ultra sharp domain walls in the closure domainpatternofCo(0001), Europhys.Lett.57(2002), 100-106. [16] Y.-F.Duan,H.-P.Liu,L.Yi,AtomicallysharpdomainwallsofRb2Cd2(SO4)3langbeinites: 4delectroneffects, PhysicsLettersA350(2006), 278-282. PERIODIC MICROSTRUCTURE 7 [17] J.L.Ericksen,Equilibriumofbars,J.Elasticity5(1975), 191-201. [18] R.L.FosdickandD.E.Mason,Onamodelofnonlocalcontinuummechanics.II.Structure, asymptotics,andcomputations, J.Elasticity48(1997), 51-100. [19] G.FuscoandJ.K.Hale,Slow-motionmanifolds,dormantinstability,andsingularpertur- bations,J.Dynam.DifferentialEquations 1(1989), 75-94. [20] S.Janeczko,Anoteonsingularsubmanifolds,J.Geom.Phys.2(1985), 33-59. [21] S. Janeczko, T. Mostowski and J. Komorowski, Phase transitions in ferromagnets and singularities,Rep.Math.Phys.,21(1985), 357-381. [22] G.D.Kahl,GeneralizationoftheMaxwellcriterionforvanderWaalsequation,Phys.Rev. 155(1967), 78. [23] R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc.EdinburghSect.A111(1989), 69-84. [24] E.S.MatsuoandT.Tanaka,Kineticsofdiscontinuousvolume-phasetransitionofgels,J. Chem.Phys.89(1988), 1695. [25] S.Mu¨ller,Singularperturbationsasaselectioncriterionforperiodicminimizingsequences, Calc.Var.PartialDifferentialEquations1(1993), 169-204. [26] K. Nakamura, Y. Takeda, T. Akiyama and T. Ito, A. J. Freeman, Atomically sharp magneticsdomainwallinthinfilmFe(110): afirstprinciplesnoncollinearmagnetismstudy, Phys.Rev.Lett.93,057202(2004), [27] P.D.OlmstedandS.T.Milner,Strong-segregationtheoryofbicontinuousphasesinblock copolymers,Phys.Rev.Lett. 72(1994), 936. [28] A. Parola and L. Reatto, Hierarchical reference theory of fluids and the critical point, Phys.Rev.A31,(1985), 3309. [29] G. B. Partridge, Wenhui Li, Y. A. Liao and R. G. Hulet, M. Haque and H. T. C. Stoof,Deformationofatrappedfermigaswithunequal spinpopulations,Phys.Rev.Lett. 97,190407(2006). [30] M. Pratzer and H. J. Elmers, M. Bode, O. Pietzsch, A. Kubetzka and R. Wiesen- danger,Atomic-scalemagneticdomainwallsinquasi-one-dimensionalFeNanostripes,Phys. Rev.Lett.,127201 87(2001). [31] X.Ren andL.Truskinovsky,Finescalemicrostructuresin1-Delasticity,JournalofElas- ticity59(2000), 319-355. [32] X.RenandJ.Wei,Wriggledlamellarsolutionsandtheirstabilityinthediblockcopolymer problem,SIAMJ.Math.Anal.37,455-489. [33] P. Rosenau, Free-energy functionals at the high-gradient limit, Phys. Rev. A 41 (1990), 2227. [34] O.Savin,Regularityofflatlevelsetsinphasetransitions,Ann.ofMath.169(2009). [35] S. Serfatyand I. Tice, Lorentz space estimates forthe Ginzburg-Landau energy, J. Func. Anal.254(2008), 773-825. [36] J.Serrin,Thearearuleforsimplefluidphasetransitions,J.Elasticity90(2008), 129-159. [37] L. Truskinovsky and A. Vainchtein, Quasicontinuum models of dynamics phase transi- tions,Contin.Mech.Thermodyn.18(2006), 1-21. [38] M.S.Turner,M.RubinsteinandC.M.Marques,Surface-inducedlamellarorderingina hexagonal phaseofdiblockcopolymers,Macromolecules27(1994), 4986-4992. [39] R. van Gastel, N. C. Bartelt, P. J. Feibelman, F. L´eonard and G. L. Kellogg, Re- lationshipbetween domain-boundaryfreeenergyandthetemperature dependence ofstress- domainpatternsofPbonCu(111), Phys.Rev.B70,245413(2004). [40] G. M. Whitesides and M. Boncheva,Beyond molecules: Self-assemblyof mesoscopic and macroscopiccomponents, Proc.Natl.Acad.Sci,USA99(2002), 4769-4774. [41] W.Windl,T.Liang,S.LopatinandG.Duscher,Modelingandcharacterizationofatom- ically sharp “perfect” Ge/SiO2 interfaces. Materials Science and Engineering B 114-115 (2004), 156-161. [42] R. A. Young, Theory of quantum-mechanical effects on the thermodynamic properties of Lennard-Jonesfluids,Phys.Rev.A23(1981), 1498. Division of Integral Equations, Faculty of Mathematics and Information Science, Warsaw University of Technology,Pl. Politechniki 1,00-661Warsaw, Poland E-mail address: [email protected]