ebook img

Asymptotically Almost Periodic Solutions of Differential Equations PDF

203 Pages·2009·1.94 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Asymptotically Almost Periodic Solutions of Differential Equations

Asymptotically Almost Periodic Solutions of Differential Equations David N. Cheban Asymptotically Almost Periodic Solutions of Differential Equations Asymptotically Almost Periodic Solutions of Differential Equations DavidN.Cheban HindawiPublishingCorporation http://www.hindawi.com HindawiPublishingCorporation 410ParkAvenue,15thFloor,#287pmb,NewYork,NY10022,USA NasrCityFreeZone,Cairo11816,Egypt Fax:+1-866-HINDAWI(USAToll-Free) ©2009HindawiPublishingCorporation Allrightsreserved.Nopartofthematerialprotectedbythiscopyrightnoticemaybereproducedor utilizedinanyformorbyanymeans,electronicormechanical,includingphotocopying,recording, oranyinformationstorageandretrievalsystem,withoutwrittenpermissionfromthepublisher. ISBN978-977-454-099-8 Dedication DedicatedtoMyTeacher B.A.Shcherbakov Contents Dedication v Preface iii Notation vii 1. AsymptoticallyAlmostPeriodicMotions 1 1.1. SomeNotionsandDenotations 1 1.2. PoissonAsymptoticallyStableMotions 4 1.3. CriterionofAsymptoticalAlmostPeriodicity 6 1.4. AsymptoticallyPeriodicMotions 10 1.5. AsymptoticallyAlmostPeriodicFunctions 13 1.6. AsymptoticallySpAlmostPeriodicFunctions 22 2. AsymptoticallyAlmostPeriodicSolutionsofOperatorEquations 27 2.1. ComparabilityofMotionsbytheCharacterofRecurrence 27 2.2. ComparabilityinLimitofAsymptoticallyPoissonStableMotions 30 2.3. AsymptoticallyPoissonStableSolutions 31 2.4. AsymptoticallyPeriodicSolutions 36 2.5. HomoclinicandHeteroclinicMotions 37 2.6. AsymptoticallyAlmostPeriodicSystemswithConvergence 40 2.7. SomeTestsofConvergence 44 3. AsymptoticallyAlmostPeriodicSolutionsofOrdinaryDifferentialEquations 49 3.1. SomeNonautonomousDynamicalSystems 49 3.2. CompatibleinLimitSolutions 51 3.3. LinearDifferentialEquations 54 3.4. SemilinearDifferentialEquations 92 3.5. AveragingPrincipleonSemiaxisforAsymptotically AlmostPeriodicEquations 96 3.6. NonlinearDifferentialEquations 98 3.7. BilaterallyAsymptoticallyAlmostPeriodicSolutions 102 3.8. AsymptoticallyAlmostPeriodicEquationswithConvergence 110 4. AsymptoticallyAlmostPeriodicDistributionsandSolutionsofDifferential Equations 117 4.1. BoundedonSemiaxisDistributions 117 4.2. AsymptoticallyAlmostPeriodicDistributions 120 4.3. AsymptoticallyAlmostPeriodicSolutionsofLinearDifferential EquationswithDistributionPerturbations 123 4.4. AsymptoticallyAlmostPeriodicDistributions 125 viii Contents 4.5. SolvabilityoftheEquationx(cid:2) =A(t)x+f(t)intheClassofAsymptotically AlmostPeriodicDistributionsAP(cid:2)m(R ) 127 + 4.6. DynamicalSystemsofShiftsintheSpacesofDistributionsand AsymptoticallyAlmostPeriodicFunctionsintheSobolevSpaces 131 4.7. WeaklyAsymptoticallyAlmostPeriodicFunctions 136 4.8. LinearandSemilinearDifferentialEquationswithWeakly Asymptotically AlmostPeriodicCoefficients 142 5. AsymptoticallyAlmostPeriodicSolutionsofFunctionallyDifferential,Integral, andEvolutionaryEquations 147 5.1. FunctionalDifferentialEquations(FDEs)andDynamicalSystems 147 5.2. AsymptoticallyAlmostPeriodicSolutionsofFDEs 150 5.3. LinearFDEs 151 5.4. SemilinearFDEs 153 5.5. IntegralEquationsofVolterraandGeneratedbytheNonautonomous DynamicalSystems 156 5.6. Asymptotically Almost Periodic Solutions for Integral Equations of Volterra 159 5.7. ConvergenceofSomeEvolutionEquations 162 Bibliography 175 Index 183 Preface Nonlocalproblemsconcerningtheconditionsoftheexistenceofdifferentclassesofsolu- tions play an important role in the qualitative theory of differential equations. Here belongtheproblemofboundedness,periodicity,almostperiodicity,stabilityinthesense ofPoisson,andtheproblemoftheexistenceoflimitregimesofdifferenttypes,conver- gence,dissipativity,andsoon.Thepresentworkbelongstothisdirectionandisdedicated tothestudyofasymptoticallystableinthesenseofPoisson(inparticular,asymptotically almostperiodic)motionsofdynamicalsystemsandsolutionsofdifferentialequations. Thereisseriesofworksofknownauthorsdedicatedtotheproblemofasymptotically stabilityinthesenseofPoisson. Firstthenotionofasymptoticallyalmostperiodicityoffunctionsitwasintroduced andstudiedintheworksofFre´chet[1,2].Latertheseresultsweregeneralizedforasymp- totically almost periodic sequences in the works of Fan [3] and Precupanu [4] and for abstractasymptoticallyalmostperiodicfunctionsintheworksofArarktsyan[5]andPre- cupanu[4]andalsoKhaled[6],Cioranescu[7],Dontvi[8,9],MambrianiandManfredi [10],andManfredi[11,12],Marchi[13,14],RuessandSummers[15–18],Seifert[19], Vesentini[20]andseealsothebibliographytherein. OtherseriesofworksAntonishin[21],ArendtandBatty[22],Barac[23],Barbalat [24], Khaled [6], Bogdanowicz [25], Bus¸e [26], Casarino [27], Chen and Matano [28], ChepyzhovandVishik[29],Coppel[30],Corduneanu[31],Dontvi[8,9,32],Draghichi [33],Fink[34],Gerko[35],Gheorghiu[36],Grimmer[37],Guryanov[38],Nacer[39], Henriquez [40], Hino, Murakami and Yoshizawa [41], Hino and Murakami [42, 43], JordanandWheeler[44],Jordan,MadychandWheeler[45],Yao,Zhang,andWu[46], Lovicar [47], Manfredi [48–51], Miller [52, 53], Muntean [54, 55], Puljaev and Caljuk [56, 57], Risito [58], Ruess and Phong [59], Sandberg and Zyl [60], Seifert [19, 61– 63], Staffans [64], Shen and Yi [65], Taam [66], Tudor [67], Utz and Waltman [68], Vuillermot[69],Yamaguchi[70],YamaguchiandNishihara[71],Yuan[72],Yoshizawa [73],Zaidman[74,75],Zhang[76](seealsothebibliographytherein)isdedicatedtothe problemofasymptoticallyalmostperiodicityofsolutionsofdifferential(bothODEsand PDEs),functional-differentialandintegralequations. Atlast,intheworksofKhaled[6],Bhatia[77],BhatiaandChow[78],Bronshteyn and Cˇernii [79], Gerko [35, 80], Hino and Murakami [42], Millionshchikov [81, 82], Nemytskii [83, 84], Ruess and Summers [85], Seifert [19, 63], Sibirskii [86] and oth- ers they are studied motions of dynamical systems that are close by their properties to asymptoticallyalmostperiodicones. Fromtheabovesaiditfollowsthattheproblemofasymptoticallystabilityinthesense of Poisson was studied earlier mainly for asymptotically periodicity and asymptotically almost periodicity of motions of dynamical systems and solutions of differential and integral equations. In this domain there were obtained important results, however the problemwasnotstudiedthoroughly.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.