ebook img

Asymptotic Independence of Bivariate Order Statistics PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Asymptotic Independence of Bivariate Order Statistics

ASYMPTOTIC INDEPENDENCE OF BIVARIATE ORDER STATISTICS 7 1 MICHAELFALKANDFLORIANWISHECKEL 0 2 Abstract. Itiswellknownthatanextremeorderstatisticandacentralorder n statistic(os)aswellasanintermediateosandacentralosfromasampleofiid a J univariaterandomvariablesgetasymptoticallyindependentasthesamplesize 1 increases.Weextendthisresulttobivariaterandomvariables,wheretheosare 3 takencomponentwise.Anexplicitrepresentationoftheconditionaldistribution ] ofbivariateosturnsouttobeapowerfultool. T S . h t 1. Introduction a m LetU ,...,U beindependentcopiesofaunivariaterandomvariable(rv)U and 1 n [ denote by U U U the pertaining order statistics (os). It follows 1 1:n ≤ 2:n ≤ ··· ≤ n:n from Theorem 1.3 in Falk and Reiss (1988) that there exists a universal constant v 8 such that for 1 r n k+1 n and n N 0 ≤ ≤ − ≤ ∈ 1 (1) sup P(U x,U y) P(U x)P(U y) 9 x,y R| r:n ≤ n−k+1:n ≤ − r:n ≤ n−k+1:n ≤ | 0 ∈ . rk 1/2 1 const . 0 ≤ n(n r k+1) (cid:18) − − (cid:19) 7 1 This upper bound converges to 0 if we consider a sequence r = r(n) that satisfies v: r/n n λ (0,1) together with k = k(n) n , k/n n 0. Then → →∞ ∈ → →∞ ∞ → →∞ Xi (Ur:n)isa sequenceofcentralos,(Un k+1:n)asequenceofintermediateosandthe − r limiting0showsthattheybecomeasymptoticallyindependent.Thesameholdsfor a an intermediate sequence r =r(n) together with fixed k, i.e., extreme os. Starting with the workby Gumbel (1946) onextremes,the asymptotic indepen- dence of order statistics has been investigated in quite a few articles. For detailed references we refer to Galambos (1987, p. 150) and to Falk and Kohne (1986). Bythequantiletransformationtheorem(see,e.g.Reiss(1989,Lemma1.2.4))we canassume withoutloss ofgeneralityin the precedingresult(1) thatU followsthe uniform distribution on (0,1). 2010 Mathematics Subject Classification. Primary62G30, secondary60E05,62H10. Key words and phrases. Multivariate order statistics, intermediate order statistics, copula, asymptoticindependence. 1 2 MICHAELFALKANDFLORIANWISHECKEL Let (U ,V ),...,(U ,V ) be independent copies of the bivariate rv (U,V) that 1 1 n n follows a copula, C say, i.e., U and V are both uniformly distributed on (0,1). Choose r,k 1,...,n and consider the vector (U ,V ) of componentwise os, r:n k:n ∈ { } called bivariate os. In this paper we investigate the problem, whether asymptotic independence also holds for (U ,V ) with proper sequences r =r(n), k =k(n). r:n k:n Note that, for example, U and U with r fixed get by inequality (1) r:n n r+1:n − asymptotically independent, but U and V might not. Consider (U,V):= r:n n r+1:n − (U,1 U). Then the joint distribution of(U,V) is a copula as wellbut V = n r+1:n − − 1 U . r:n − For r = k = n, the asymptotic joint distribution of (U ,V ) is provided r:n k:n by multivariate extreme value theory. Precisely, if n(U 1,V 1) has a non r:n k:n − − degenerate limit distribution G, say, then this limit has the representation G(x,y)=exp( (x,y) ), x,y 0, −k kD ≤ where is a particular norm on R2, called D-norm, see, e.g., Falk et al. (2011, k·kD Section 4.4). Current articles include Aulbach et al. (2014), Aulbach et al. (2015) and Falk (2015). The limit distribution of n(U 1,V 1) with fixed i,j was es- n i+1:n n j+1:n − − − − tablished by Galambos (1975). The set of limiting distributions in the interme- diate case (U ,V ) with k = k(n), r = r(n) both converging to infinity n k:n n r:n − − as n increases, but (k + r)/n 0, was identified by Cheng et al. (1997). n → →∞ If in particular n(U 1,V 1) converges in distribution to G as above, n:n n:n − − then (n/√k)(U (n k)/(n+1),V (n k)/(n+1)) follows asymp- n k:n n k:n − − − − − − toticallythe bivariate normaldistributionwithmeanvector0 R2 andcovariance ∈ 1 2 (1,1) matrix −k kD asshownbyFalk and Wisheckel(2016).Asymptotic 2 (1,1) 1 −k kD normali(cid:16)ty of (U ,V ) in th(cid:17)e central case, where r/n λ , k/n λ , r:n k:n n 1 n 2 → →∞ → →∞ 0<λ ,λ <1, is established in Reiss (1989). 1 2 In this paper we establish sup P(U x,V y) P(U x)P(V y) 0, r:n k:n r:n k:n n x,y R| ≤ ≤ − ≤ ≤ |→ →∞ ∈ for various choices of r = r(n) and k = k(n). It turns out that for such sequences asymptotic independence holds with no further assumptions on the copula C. The main tool will be Lemma 2.2, in which the conditional distribution function (df) P(U x V =y) is derived for arbitrary r,k 1,...,n . This powerful tool r:n k:n ≤ | ∈{ } should be of interest of its own. INDEPENDENCE OF BIVARIATE ORDER STATISTICS 3 2. Conditional Expectation of Bivariate OS In this section we compute as a major tool P(U x V = y) for arbi- m:n k:n ≤ | trary m,k 1,...,n . For the formulation of Lemma 2.2 and its proof it is quite ∈{ } convenient to explicitly quote Theorem 2.2.7 in Nelsen (2006). Theorem 2.1 (Nelsen (2006)). Let C be an arbitrary bivariate copula. For any x [0,1], the partial derivative ∂ C(x,y) exists for almost all y, and for such x ∈ ∂y and y ∂ (2) 0 C(x,y) 1. ≤ ∂y ≤ Furthermore, the function x ∂ C(x,y) is defined and nondecreasing almost ev- 7→ ∂y erywhere on [0,1]. Now we are ready to state our major tool: we show that the conditional dis- tribution P(U x V = y) is the linear combination of two probabilities m:n k:n ≤ | concerningsumsofindependentBernoullirv.Weset,asusual,U =V =0and 0:n 0:n U =V =1 n+1:n n+1:n Lemma2.2. Let(U ,V ),...,(U ,V ),n N,beindependentcopiesofarv(U,V) 1 1 n n ∈ that follows a copula C. Then we obtain for 1 k,m n and for almost every ≤ ≤ x,y [0,1] ∈ P(U x V =y) m:n k:n ≤ | k 1 n k =P − 1 U(1) + − 1 U(2) m [0,x] i [0,x] i ≥ ! Xi=1 (cid:16) (cid:17) Xi=1 (cid:16) (cid:17) k 1 n k (3) + ∂ C(x,y)P − 1 U(1) + − 1 U(2) =m 1 ∂y [0,x] i [0,x] i − ! Xi=1 (cid:16) (cid:17) Xi=1 (cid:16) (cid:17) where U(1),...,U(1),U(2),...,U(2) are independent rv with 1 k 1 n k − C(u,y) P U(1) u =P(U u V y)= i ≤ ≤ | ≤ y (cid:16) (cid:17) and u C(u,y) P U(2) u =P(U u V >y)= − , 0 u 1. i ≤ ≤ | 1 y ≤ ≤ (cid:16) (cid:17) − If we choose, for example, m=k =n, then we obtain from the preceding result the representation n 1 P(U x V =y)= ∂ C(x,y)P − 1 U(1) =n 1 n:n ≤ | n:n ∂y [0,x] i − ! Xi=1 (cid:16) (cid:17) ∂ C(x,y)n 1 − = C(x,y) . ∂y yn 1 − 4 MICHAELFALKANDFLORIANWISHECKEL Proof of Lemma 2.2. We have P(U x V =y) m:n k:n ≤ | P(U x, V [y,y+ε]) m:n k:n =lim ≤ ∈ ε 0 P(Vk:n [y,y+ε]) ↓ ∈ P(U x, V y+ε) P(U x, V y) ε m:n k:n m:n k:n =lim ≤ ≤ − ≤ ≤ , ε 0 ε P(Vk:n [y,y+ε]) ↓ ∈ wherethesecondtermontherighthandsideaboveconvergesto1/g (y)asε 0, k,n ↓ whereg ()istheLebesgue-densityofV ,see,e.g.,Reiss(1989,Theorem1.3.2). k,n k:n · Inthenextstepwewillbreaktheset U x, V y intodisjointsubsets. m:n k:n { ≤ ≤ } By T, S we denote in what follows arbitrary subsets of 1,...,n and by T , S { } | | | | their cardinalities, i.e., the numbers of their elements. Precisely, we have P(U x, V y) m:n k:n ≤ ≤ n n =P 1 (U ) m, 1 (V ) k [0,x] i [0,y] i ≥ ≥ ! i=1 i=1 X X ∁ =P U x,i T; U >x,i T i i ≤ ∈ ∈ (cid:16)|TX|≥mn o(cid:17) ∁ V y,i S; V >y,i S i i ∩ ≤ ∈ ∈ ! (cid:16)|SX|≥kn o(cid:17) ∁ = P U x,i T; U >x,i T i i ≤ ∈ ∈ |TX|≥m|SX|≥k n o ∁ V y,i S; V >y,i S i i ∩ ≤ ∈ ∈ ! n o ∁ = P(U x,V y, i T S)P U x,V >y, i T S i i i i ≤ ≤ ∈ ∩ ≤ ∈ ∩ |TX|≥m|SX|≥k (cid:16) (cid:17) ∁ ∁ ∁ P U >x,V y, i T S P U >x,V >y, i T S i i i i × ≤ ∈ ∩ ∈ ∩ = P(U(cid:16) x,V y)|T∩S|P(U x,(cid:17)V >(cid:16)y)|T∩S∁| (cid:17) ≤ ≤ ≤ |TX|≥m|SX|≥k P(U >x,V y)|T∁∩S|P(U >x,V >y)|T∁∩S∁|. × ≤ As a consequence and by writing x=exp(log(x)) for x 0 we obtain ≥ P(U x, V y+ε) P(U x, V y) m:n k:n m:n k:n ≤ ≤ − ≤ ≤ = exp T S log(P(U x,V y+ε)) ( | ∩ | ≤ ≤ |TX|≥m|SX|≥k ∁ + T S log(P(U x,V >y+ε)) ∩ ≤ (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) INDEPENDENCE OF BIVARIATE ORDER STATISTICS 5 ∁ + T S log(P(U >x,V y+ε)) ∩ ≤ (cid:12) (cid:12) (cid:12) (cid:12) +(cid:12)T∁ S(cid:12)∁ log(P(U >x,V >y+ε)) ∩ ! (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) exp T S log(P(U x,V y) − | ∩ | ≤ ≤ ∁ + T S log(P(U x,V >y)) ∩ ≤ (cid:12) (cid:12) +(cid:12)T∁ S(cid:12)log(P(U >x,V y)) (cid:12) ∩ (cid:12) ≤ (cid:12) (cid:12) (cid:12) (cid:12) +(cid:12)T∁ S(cid:12)∁ log(P(U >x,V >y)) ∩ ) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) P(cid:12)(U x,V y+ε) P(U x,V y) = exp T S log 1+ ≤ ≤ − ≤ ≤ ( | ∩ | P(U x,V y) |TX|≥m|SX|≥k (cid:16) ≤ ≤ (cid:17) P(U x,V >y+ε) P(U x,V >y) ∁ + T S log 1+ ≤ − ≤ ∩ P(U x,V >y) (cid:12) (cid:12) (cid:16) ≤ (cid:17) (cid:12) (cid:12) P(U >x,V y+ε) P(U >x,V y) +(cid:12)T∁ S(cid:12)log 1+ ≤ − ≤ ∩ P(U >x,V y) (cid:12) (cid:12) (cid:16) ≤ (cid:17) (cid:12) (cid:12) (cid:12) ∁ ∁(cid:12) P(U >x,V >y+ε) P(U >x,V >y) + T S log 1+ − ∩ P(U >x,V >y) ! (cid:12) (cid:12) (cid:16) (cid:17) (cid:12) (cid:12) (cid:12) (cid:12) 1 − ) P(U x,V y)|T∩S|P(U x,V >y)|T∩S∁| × ≤ ≤ ≤ P(U >x,V y)|T∁∩S|P(U >x,V >y)|T∁∩S∁| × ≤ We have for ε 0 the expansions ↓ ∂ P(U x,V y+ε) P(U x,V y)= C(x,y)ε+o(ε), ≤ ≤ − ≤ ≤ ∂y ∂ P(U x,V >y+ε) P(U x,V >y)= C(x,y)ε+o(ε), ≤ − ≤ −∂y ∂ P(U >x,V y+ε) P(U >x,V y)= 1 C(x,y) ε+o(ε), ≤ − ≤ − ∂y (cid:18) (cid:19) ∂ P(U >x,V >y+ε) P(U >x,V >y)= C(x,y) 1 ε+o(ε). − ∂y − (cid:18) (cid:19) From the Taylor expansions log(1+x)=x+o(x) and exp(x) 1=x+o(x) as − x 0 we, thus, obtain from the preceding equations → P(U x,V y+ε) P(U x,V y) m:n k:n m:n k:n ≤ ≤ − ≤ ≤ ε 6 MICHAELFALKANDFLORIANWISHECKEL ∂ C(x,y) T S ∂y ε 0 → ↓ (| ∩ | p1 |TX|≥m|SX|≥k ∂ C(x,y) T S∁ ∂y − ∩ p 2 (cid:12) (cid:12) (cid:12) (cid:12)1 ∂ C(x,y) +(cid:12)T∁ S(cid:12) − ∂y ∩ p 3 (cid:12) (cid:12) (cid:12) (cid:12) ∂ C(x,y) 1 +(cid:12)T∁ S∁(cid:12) ∂y − ∩ p4 ) (cid:12) (cid:12) ×(cid:12)(cid:12)p|1T∩S|p2|T(cid:12)(cid:12)∩S∁|p|3T∁∩S|p4|T∁∩S∁| =:f(x,y) with p :=P((U,V) A ):=P(U x,V y), p :=P((U,V) A ):=P(U x,V >y), 1 1 2 2 ∈ ≤ ≤ ∈ ≤ p :=P((U,V) A ):=P(U >x,V y), p :=P((U,V) A ):=P(U >x,V >y). 3 3 4 4 ∈ ≤ ∈ Note that p +p +p +p =1. Set 1 2 3 4 n n := 1 (U ,V ), 1 j 4. j Aj i i ≤ ≤ i=1 X Then we obtain ∂ C(x,y) ∂ C(x,y) f(x,y)=E ∂y n ∂y n 1 2 ( p1 − p2 1 ∂ C(x,y) ∂ C(x,y) 1 + − ∂y n + ∂y − n 3 4 p p 3 4 ) 1(n +n m,n +n k) . 1 2 1 3 × ≥ ≥ ! Put, for notational convenience, ξ :=(U ,V ), 1 j n. We have j j j ≤ ≤ E(n 1(n +n m,n +n k)) 1 1 2 1 3 ≥ ≥ n n n = P ξ A 1 (ξ ) m, 1 (ξ ) k { j ∈ 1}∩( A1∪A2 i ≥ A1∪A3 i ≥ )! j=1 i=1 i=1 X X X n 1 n 1 − − =np P 1 (ξ ) m 1, 1 (ξ ) k 1 1 A1∪A2 i ≥ − A1∪A3 i ≥ − ! i=1 i=1 X X n 1 n 1 − − =np P 1 (U ) m 1, 1 (V ) k 1 , 1 [0,x] i [0,y] i ≥ − ≥ − ! i=1 i=1 X X INDEPENDENCE OF BIVARIATE ORDER STATISTICS 7 as well as E(n 1(n +n m,n +n k)) 2 1 2 1 3 ≥ ≥ n 1 n 1 − − =np P 1 (ξ ) m 1, 1 (ξ ) k 2 A1∪A2 i ≥ − A1∪A3 i ≥ ! i=1 i=1 X X n 1 n 1 − − =np P 1 (U ) m 1, 1 (V ) k , 2 [0,x] i [0,y] i ≥ − ≥ ! i=1 i=1 X X E(n 1(n +n m,n +n k)) 3 1 2 1 3 ≥ ≥ n 1 n 1 − − =np P 1 (ξ ) m, 1 (ξ ) k 1 3 A1∪A2 i ≥ A1∪A3 i ≥ − ! i=1 i=1 X X n 1 n 1 − − =np P 1 (U ) m, 1 (V ) k 1 , 3 [0,x] i [0,y] i ≥ ≥ − ! i=1 i=1 X X and, finally, E(n 1(n +n m,n +n k)) 4 1 2 1 3 ≥ ≥ n 1 n 1 − − =np P 1 (ξ ) m, 1 (ξ ) k 4 A1∪A2 i ≥ A1∪A3 i ≥ ! i=1 i=1 X X n 1 n 1 − − =np P 1 (U ) m, 1 (V ) k . 4 [0,x] i [0,y] i ≥ ≥ ! i=1 i=1 X X Altogether we obtain from the preceding equations ∂ f(x,y)=n C(x,y)P(U x,V y) m 1:n 1 k 1:n 1 ∂y − − ≤ − − ≤ ∂ n C(x,y)P(U x,V y) m 1:n 1 k:n 1 − ∂y − − ≤ − ≤ ∂ +n 1 C(x,y) P(U x,V y) m:n 1 k 1:n 1 − ∂y − ≤ − − ≤ (cid:18) (cid:19) ∂ n 1 C(x,y) P(U x,V y) m:n 1 k:n 1 − − ∂y − ≤ − ≤ (cid:18) (cid:19) ∂ =n C(x,y) P(U x, V y) m 1:n 1 k 1:n 1 ∂y − − ≤ − − ≤ (cid:16) P(U x, V y) m 1:n 1 k:n 1 − − − ≤ − ≤ (cid:17) ∂ +n 1 C(x,y) P(U x, V y) m:n 1 k 1:n 1 − ∂y − ≤ − − ≤ (cid:18) (cid:19)(cid:16) P(U x, V y) , m:n 1 k:n 1 − − ≤ − ≤ (cid:17) 8 MICHAELFALKANDFLORIANWISHECKEL We, thus, have established so far P(U x V =y) m:n k:n ≤ | n 1 n ∂ − = C(x,y)P U x, 1 (V )=k 1 gk,n(y)(∂y m−1:n−1 ≤ (0,y] i − ! i=1 X n 1 ∂ − + 1 C(x,y) P U x, 1 (V )=k 1 (cid:18) − ∂y (cid:19) m:n−1 ≤ i=1 (0,y] i − !) X n 1 n 1 n − − = P 1 (U ) m, 1 (V )=k 1 gk,n(y)( [0,x] i ≥ (0,y] i − ! i=1 i=1 X X n 1 n 1 ∂ − − + C(x,y)P 1 (U )=m 1, 1 (V )=k 1 . ∂y [0,x] i − (0,y] i − !) i=1 i=1 X X From the fact that n 1 − gk,n(y) P 1 (V )=k 1 = [0,y] i − ! n i=1 X we, thus, obtain the representation P(U x V =y) m:n k:n ≤ | n 1 n 1 − − =P 1 (U ) m 1 (V )=k 1 [0,x] i [0,y] i ≥ − ! Xi=1 (cid:12) Xi=1 (cid:12) ∂ n−(cid:12)1 n−1 + C(x,y)P 1 (U )=m 1 1 (V )=k 1 . ∂y [0,x] i − [0,y] i − ! Xi=1 (cid:12) Xi=1 (cid:12) We know from the theory of point processes (see,(cid:12)e.g. Reiss (1993, E.18)) that n 1 n 1 − − P 1 (U ) m 1 (V )=k 1 [0,x] i [0,y] i ≥ − ! Xi=1 (cid:12) Xi=1 (cid:12) n−1 (cid:12) n−1 n−1 =P 1 (U ) m 1 (V )=k 1, 1 (V )=n k [0,x] i [0,y] i (y,1] i ≥ − − ! Xi=1 (cid:12) Xi=1 Xi=1 (cid:12) k 1 (cid:12)n k =P − 1 U(1) + − 1 U(2) m , [0,x] i [0,x] i ≥ ! Xi=1 (cid:16) (cid:17) Xi=1 (cid:16) (cid:17) where U(1),...,U(1) ,U(2),...,U(2) are independent rv with 1 k 1 1 n k − − C(u,y) P U(1) u =P(U u V y)= i ≤ ≤ | ≤ y (cid:16) (cid:17) and u C(u,y) P U(2) u =P(U u V >y)= − , 0 u 1, i ≤ ≤ | 1 y ≤ ≤ which comp(cid:16)letes the(cid:17)proof of Lemma 2.2. − (cid:3) INDEPENDENCE OF BIVARIATE ORDER STATISTICS 9 3. Asymptotic Independence of Order Statistics Throughout this section, (U ,V ) denotes a rv of componentwise taken os r:n k:n pertainingtoindependentcopies(U ,V ),...,(U ,V )ofarv(U,V),whichfollows 1 1 n n a copula C. By X,Y,η we denote independent rv, where X and Y are standard j normaldistributedandηj has df Gj(x)=exp(x) ji=−01(−x)i/i!, x≤0.The follow- ing main result establishes asymptotic independence of U and V for various P r:n k:n sequences r =r(n), k =k(n), n N. ∈ Theorem 3.1. Let k =k(n), j =j(n) 1,...,n , n N. ∈{ } ∈ (i) If k satisfies k , k/n 0, then, for fixed j N, n n → →∞ ∞ → →∞ ∈ n n k+1 U − ,n(V 1) (X,η ). n k+1:n n j+1:n D j √k − − n+1 − − → (cid:18) (cid:18) (cid:19) (cid:19) (ii) With k and j as in (i), n k U ,n(V 1) (X,η ). k:n n j+1:n D j √k − n+1 − − → (cid:18) (cid:18) (cid:19) (cid:19) (iii) If k satisfies k/n λ (0,1) and j N is fixed, then n → →∞ ∈ ∈ k √n U ,n(V 1) (λ(1 λ))1/2X,η . k:n n j+1:n D j − n+1 − − → − (cid:18) (cid:18) (cid:19) (cid:19) (cid:16) (cid:17) (iv) With k is chosen as in (iii) and j , j/n 0 n n → →∞ ∞ → →∞ k n n j+1 √n U , V − k:n n j+1:n − n+1 √j − − n+1 (cid:18) (cid:18) (cid:19) (cid:18) (cid:19)(cid:19) (λ(1 λ))1/2X,Y . D → − (cid:16) (cid:17) (v) With k as chosen in (i), j chosen as in (iv) and, in addition, j/√k 0, n → →∞ n n k+1 n n j+1 U − , V − (X,Y). n k+1:n n j+1:n D √k − − n+1 √j − − n+1 → (cid:18) (cid:18) (cid:19) (cid:18) (cid:19)(cid:19) More results can immediately be deduced from the preceding result by noting that (1 U ,1 V )= U¯ ,V¯ , which are os pertaining to the iid r:n k:n n r+1:n n k+1:n − − − − sequence (U¯ ,V¯ ),...,(U¯ ,V¯ )=(1 U ,1 V ),...,(1 U ,1 V ) with copula 1 1 n (cid:0)n 1 (cid:1)1 n n − − − − C¯(u,v)=P(1 U u,1 V v). − ≤ − ≤ Proof. We proveonly assertion(i). The remaining parts can be shown in complete analogy. By P X we denote in what follows the distribution of a rv X, i.e., ∗ (P X)(B) = P(X B) for any B in the Borel-σ-field of R. We have with µ := n ∗ ∈ (n k+1)/(n+1) and x R, y <0 by (3) the representation − ∈ n P (U µ ) x,n(V 1) y n k+1:n n n j+1:n √k − − ≤ − − ≤ (cid:18) (cid:19) y n = P (U µ ) x n(V 1)=z n k+1:n n n j+1:n Z−n (cid:18)√k − − ≤ | − − (cid:19) 10 MICHAELFALKANDFLORIANWISHECKEL (P n(V 1))(dz) n j+1:n ∗ − − y √k z = P U x+µ V =1+ n k+1:n n n j+1:n Z−n − ≤ n | − n! (P n(V 1))(dz) n j+1:n ∗ − − y n j j 1 = P − 1 U(1) + − 1 U(2) n k+1 Z−n Xi=1 h0,√nkx+µni(cid:16) i (cid:17) Xi=1 h0,√nkx+µni(cid:16) i (cid:17)≥ − ! ∂ z + C(x,1+ ) ∂y n n j j 1 P − 1 U(1) + − 1 U(2) =n k × h0,√nkx+µni i h0,√nkx+µni i − ! Xi=1 (cid:16) (cid:17) Xi=1 (cid:16) (cid:17) (4) (P n(V 1))(dz). n j+1:n ∗ − − Itiswellknownthatn(V 1) G ,see,e.g.equation(5.1.28)inReiss n j+1:n D j − − → (1989). We claim that n j j 1 P − 1 U(1) + − 1 U(2) n k+1 Φ(x), h0,√nkx+µni i h0,√nkx+µni i ≥ − !→n→∞ Xi=1 (cid:16) (cid:17) Xi=1 (cid:16) (cid:17) where Φ() denotes the df of the standard normal distribution. · Note that p :=P U(1) √kx+µ = C √nkx+µn,1+ nz 1 n i ≤ n n! (cid:16) 1+ nz (cid:17) →n→∞ and 1+ z C √kx+µ ,1+ z n − n n n 1 p = − n (cid:16)1+ z (cid:17) n 1+ z √kx µ + √kx+µ C √kx+µ ,1+ z n − n − n n n− n n n = (cid:16) 1+ z (cid:16) (cid:17)(cid:17) n z √kx+ k + 1 ∂ C √kx+µ ,v dv n − n n+1 1+z/n ∂v n n = R 1+ z (cid:16) (cid:17) n √kx+ k +O z = − n n+1 n 1+ z n (cid:0) (cid:1)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.