ebook img

Asymptotic estimates of entire functions of bounded $\mathbf{L}$-index in joint variables PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Asymptotic estimates of entire functions of bounded $\mathbf{L}$-index in joint variables

1 ASYMPTOTIC ESTIMATES OF ENTIRE FUNCTIONS OF BOUNDED -INDEX IN JOINT VARIABLES L A. I. BANDURA, O. B. SKASKIV 7 1 Abstract 0 2 A. I. Bandura, O. B. Skaskiv, Asymptotic estimates of entire functions of bounded L-index n a in joint variables J 8 In this paper, there are obtained growth estimates of entire in Cn function of bounded L- 2 indexinjointvariables. Theydescribethebehaviourofmaximum modulusof entirefunction ] V on a skeleton in a polydisc by behaviour of the function L(z) = (l (z),...,l (z)), where for 1 n C every j ∈ {1,...,n} l : Cn → R is a continuous function. We generalised known results j + . h of W. K. Hayman, M. M. Sheremeta, A. D. Kuzyk, M. T. Borduyak, T. O. Banakh and V. t a O. Kushnir for a wider class of functions L. One of our estimates is sharper even for entire m [ in C functions of bounded l-index than Sheremeta’s estimate. 1 v 6 7 1 Introduction 2 8 0 . Let l : C → R be a fixed positive continuous function, where R = (0,+∞). An entire 1 + + 0 function f is said to be of bounded l−index [1] if there exists an integer m, independent of z, 7 1 such that for all p and all z ∈ C |f(p)(z)| ≤ max{|f(s)(z)|: 0 ≤ s ≤ m}. The least such integer m is : lp(z)p! ls(z)s! v called the l−index of f(z) and is denoted by N(f,l). If l(z) ≡ 1 then we obtain the definition of i X function of bounded index [2] and in this case we denote N(f) := N(f,1). r a In 1970 W. J. Pugh and S. M. Shah [3] posed some questions about properties of entire functions of bounded index. One of those questions is following: I. What are the growth properties of functions of bounded index: (c) is it possible to derive the boundedness (or the unboundedness) of the index from the asymptotic properties of the logarithm of the maximum modulus of f(z), i.e., lnM(r,f)? W. K. Hayman [4] proved that entire function of bounded index has exponential type which isnotgreaterthanN(f)+1.LaterA.D.Kuzyk andM.M. Sheremeta [1]obtainedgrowthestimate of entire function of bounded l−index. M. M. Sheremeta [5], T. O. Banakh and V. O. Kushnir [6] deduced analogical inequalities for analytic in a unit disc and in arbitrary complex domain function of bounded l-index, respectively. Clearly, the question of Shah and Pugh can be formulated for entire in Cn function: What are the growth properties of functions of bounded L-index in joint variables? Is it possible to derive 2 the boundedness (or the unboundedness) of the L-index in joint variables from the asymptotic properties of the logarithm of the maximum modulus of F(z) on a skeleton in a polydisc? M. T. Bordulyak and M. M. Sheremeta [7] gave an answer to the question if L(z) = (l (|z |),...,l (|z |)), and for every j ∈ {1,...,n} the function l : R → R is continuous. 1 1 n n j + + In this paper we extend their results for L(z) = (l (z),...,l (z)), where l : Cn → R is a contin- 1 n j + uous function for every j ∈ {1,...,n}. In some sense our results are new even in one-dimensional case (see below Corollaries 2 and 3). 2 Notations and definitions We need some standard notations. Let R = [0,+∞). Denote + 0 = (0,...,0) ∈ Rn, 1 = (1,...,1) ∈ Rn, 2 = (2,...,2) ∈ Rn, + + + e = (0,...,0, 1 ,0,...,0) ∈ Rn, [0,2π]n = [0,2π]×···×[0,2π]. j + j−th place n−thtimes For R = (r1,...,rn) ∈ Rn+, Θ|={z(}θ1,...,θn) ∈ [0,2π]n and K = (|k1,...,kn{)z∈ Zn+ let}us to denote kRk = r + ···+ r , ReiΘ = (r eiθ1,...,r eiθn), K! = k ! · ... · k !. For A = (a ,...,a ) ∈ Cn, 1 n 1 n 1 n 1 n B = (b ,...,b ) ∈ Cn, we will use formal notations without violation of the existence of these 1 n expressions |A| = (|a |,...,|a |), A±B = (a ±b ,...,a ±b ), AB = (a b ,··· ,a b ), 1 n 1 1 n n 1 1 n n argA = (arga ,...,arga ),A/B = (a /b ,...,a /b ), AB = ab1ab2 ·...abn, 1 n 1 1 n n 1 2 n and a notation A < B means that a < b for all j ∈ {1,...,n}; similarly, the relation A ≤ B is j j defined. The polydisc {z ∈ Cn : |z −z0| < r , j = 1,...,n} is denoted by Dn(z0,R), its skeleton j j j {z ∈ Cn : |z − z0| = r , j = 1,...,n} is denoted by Tn(z0,R), and the closed polydisc j j j {z ∈ Cn : |z −z0| ≤ r , j = 1,...,n} is denoted by Dn[z0,R]. For a partial derivative of entire j j j function F(z) = F(z ,...,z ) we will use the notation 1 n ∂kKkF ∂k1+···+knf F(K)(z) = = , where K = (k ,...,k ) ∈ Zn. ∂zK ∂zk1 ...∂zkn 1 n + 1 n Let L(z) = (l (z),...,l (z)),where l (z) arepositive continuous functionsofvariablez ∈ Cn, 1 n j j ∈ {1,2,...,n}. An entire function F(z) is called a function of bounded L-index in joint variables, [9, 10] if there exists a number m ∈ Z such that for all z ∈ Cn and J = (j ,j ,...,j ) ∈ Zn + 1 2 n + |F(J)(z)| |F(K)(z)| ≤ max : K ∈ Zn, kKk ≤ m . (1) J!LJ(z) K!LK(z) + (cid:26) (cid:27) 3 If l = l (|z |) then we obtain a concept of entire functions of bounded L-index in sense of j j j definition in the papers [7, 8]. If l (z ) ≡ 1, j ∈ {1,2,...,n}, then the entire function is called a j j function of bounded index in joint variables [11, 12, 13]. The least integer m for which inequality holds is called L-index in joint variables of the function F and is denoted by N(F,L). For R ∈ Rn, j ∈ {1,...,n} and L(z) = (l (z),...,l (z)) we define + 1 n l (z) R λ (z ,R) = inf j : z ∈ Dn z0, , λ (R) = inf λ (z ,R), 1,j 0 (cid:26)lj(z0) (cid:20) L(z0)(cid:21)(cid:27) 1,j z0∈Cn 2,j 0 l (z) R λ (z ,R) = sup j : z ∈ Dn z0, , λ (R) = sup λ (z ,R), 2,j 0 l (z0) L(z0) 2,j 2,j 0 (cid:26) j (cid:20) (cid:21)(cid:27) z0∈Cn Λ (R) = (λ (R),...,λ (R)), Λ (R) = (λ (R),...,λ (R)). 1 1,j 1,n 2 2,1 2,n By Qn we denote a class of functions L(z) which for every R ∈ Rn and j ∈ {1,...,n} satisfy + the condition 0 < λ (R) ≤ λ (R) < +∞. (2) 1,j 2,j 3 Auxiliary propositions Proposition 1. Let L(z) = (l (z),...,l (z)), l : Cn → C and ∂lj be continuous functions in Cn 1 n j ∂zm for all j, m ∈ {1,2,...,n}. If there exist numbers P > 0 and c > 0 such that for all z ∈ Cn and every j,m ∈ {1,2,...,n} 1 ∂l (z) j ≤ P (3) c+|l (z)| ∂z j (cid:12) m (cid:12) (cid:12) (cid:12) then L∗ ∈ Qn, where L∗(z) = (c+|l (z)|,...,c+(cid:12) |l (z)(cid:12)|). 1 n (cid:12) (cid:12) Proof. Clearly, the function L∗(z) is positive and continuous. For given z ∈ Cn, z0 ∈ Cn we define an analytic curve ϕ : [0,1] → Cn ϕ (τ) = z0 +τ(z −z0), j ∈ {1,2,...,n}, j j j j where τ ∈ [0,1]. It is known that for every continuously differentiable function g of real variable τ the inequality d|g(τ)| ≤ |g′(τ)| holds except the points where g′(τ) = 0. Using restrictions of this dt lemma, we establish the upper estimate of λ (z ,R) : 2,j 0 c+|l (z)| R λ (z ,R) = sup j : z ∈ Dn z0, = 2,j 0 c+|l (z0)| L (z0) (cid:26) j (cid:20) 1 (cid:21)(cid:27) = sup exp ln(c+|l (z)|)−ln(c+|l (z0)|) = j j z∈Dn z0, R h L1(z0)i(cid:8) (cid:8) (cid:9)(cid:9) 1 d(c+|l (ϕ(τ))|) R =sup exp j : z ∈ Dn z0, ≤ c+|l (ϕ(τ))| L (z0) (cid:26) (cid:26)Z0 j (cid:27) (cid:20) 1 (cid:21)(cid:27) 4 1 n |ϕ′ (τ)| ∂l (ϕ(τ)) ≤ sup exp m j dτ ≤ c+|l (ϕ(τ))| ∂z z∈Dnhz0,L1R(z0)i( (Z0 mX=1 j (cid:12)(cid:12) m (cid:12)(cid:12) )) (cid:12) (cid:12) 1 n (cid:12) (cid:12) ≤ sup exp P|z −z0 |dτ ≤ m m z∈Dnhz0,L1R(z0)i( (Z0 mX=1 )) n n Pr P j ≤ sup exp ≤ exp r . j c+|l (z0)| c z∈Dnhz0,L1R(z0)i( (mX=1 m )) mX=1 ! n Hence, for all R ≥ 0 λ (R) = sup λ (z0,η) ≤ exp P r < ∞. Using d|g(t)| ≥ −|g′(t)| 2,j 2,j c j dt z0∈Cn (cid:18) m=1 (cid:19) Pn it can be proved that for every η ≥ 0 λ (R) ≥ exp −P r > 0. Therefore, L∗ ∈ Qn. 1,j c j (cid:18) m=1 (cid:19) P For estimate of growth of entire functions of bounded L-index in joint variables we will use the following theorem which describes local behaviour of these entire functions. Theorem 1 ([9, 10]). Let L ∈ Qn. An entire function F is of bounded L-index in joint variables if and only if there exist numbers R′, R′′, 0 < R′ < e < R′′, and p = p (R′,R′′) ≥ 1 such that for 1 1 every z0 ∈ Cn R′′ R′ max |F(z)|: z ∈ Tn z0, ≤ p max |F(z)|: z ∈ Tn z0, . (4) L(z0) 1 L(z0) (cid:26) (cid:18) (cid:19)(cid:27) (cid:26) (cid:18) (cid:19)(cid:27) At first we prove the following lemma. Lemma 1. If L ∈ Qn, then for every j ∈ {1,...,n} and for every fixed z∗ ∈ Cn |z |l (z∗+z e ) → j j j j ∞ as |z | → ∞. j (m) Proof. On the contrary, if there exist a number C > 0 and a sequence z → ∞ such that j |z(m)|l (z∗ +z(m)e ) = k ≤ C, i. e. |z(m)| = km . Then j j j j m j lj(z∗+zj(m)ej) 1 l z∗ +z(m)e − kmeiargzj(m)ej = |zj(m)|l (z∗) → +∞, j → +∞, lj(z∗ +zj(m)ej) j j j lj(z∗ +zj(m)ej)! km j that is λ (Ce ) = +∞ and L ∈/ Qn. 2,j j 4 Estimates of growth of entire functions By Kn we denote a class of positive continuous functions L(z) for which there exists c > 0 such that for every R ∈ Rn and j ∈ {1,...,n} + l (ReiΘ2) j max ≤ c. Θ1,Θ2∈[0,2π]n lj(ReiΘ1) 5 If L(z) = (l (|z |,...,|z |),...,l (|z |,...,|z |)) then L ∈ Kn. It is easy to prove that |ez|+1 ∈ 1 1 n n 1 n Q1 \K1, but ee|z| ∈ K1 \Q1, z ∈ C. Besides, if L ,L ∈ Kn then L +L ∈ Kn and L L ∈ Kn. 1 2 1 2 1 2 For simplicity, let us to write K ≡ K1 and M(F,R) = max{|F(z)|: z ∈ Tn(0,R)}. Theorem 2. Let L ∈ Qn ∩Kn. If an entire function F has bounded L-index in joint variables, then n rj lnM(F,R) = O min min l (R(j,σ ,t)eiΘ)dt as kRk → ∞, (5) j n σn∈SnΘ∈[0,2π]n j=1 Z0 ! X r0, if σ (k) < j, k n where σ is a permutation of {1,...,n}, R(j,σ ,t) = (r′,...,r′), r′ = t, if k = j, n n 1 n k     r , if σ (k) > j, k n k ∈ {1,...,n}, R0 = (r10,...,rn0) is sufficiently large radius, Sn is a set ofall permutations of  {1,...,n}. Proof. Let R > 0, Θ ∈ [0,2π]n and a point z∗ ∈ Tn(0,R+ 2 ) be a such that L(ReiΘ) 2 |F(z∗)| = max |F(z)| : z ∈ Tn 0,R+ . L(ReiΘ) (cid:26) (cid:18) (cid:19)(cid:27) Denote z0 = z∗R . Then R+2/L(ReiΘ) z∗R z∗2/L(ReiΘ) 2 |z0 −z∗| = −z∗ = = and R+2/L(ReiΘ) R+2/L(ReiΘ) L(ReiΘ) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) z∗R ((cid:12)R+(cid:12)2/L(ReiΘ))eiarg(cid:12)z∗R L(z0) = L (cid:12) = L (cid:12) (cid:12) (cid:12) = L(Reiargz∗). (cid:12) (cid:12) (cid:12) (cid:12) R+2/L(ReiΘ) R+2/L(ReiΘ) (cid:18) (cid:19) (cid:18) (cid:19) Since L ∈ Kn we havethat cL(z0) = cL(Reiargz∗) ≥ L(ReiΘ) ≥ 1L(z0).Weconsider two skeletons c Tn(z0, 1 ) and Tn(z0, 2 ). By Theorem 1 there exists p = p (1,c2) ≥ 1 such that (4) holds L(z0) L(z0) 1 1 c with R′ = 1, R′′ = c2, i.e. c 2 2 max |F(z)|: z∈Tn 0,R+ =|F(z∗)|≤max |F(z)|: z∈Tn z0, ≤ L(ReiΘ) L(ReiΘ) (cid:26) (cid:18) (cid:19)(cid:27) (cid:26) (cid:18) (cid:19)(cid:27) c2 1 ≤ max |F(z)|: z ∈ Tn z0, ≤ p max |F(z)|: z ∈ Tn z0, ≤ L(z0) 1 cL(z0) (cid:26) (cid:18) (cid:19)(cid:27) (cid:26) (cid:18) (cid:19)(cid:27) e ≤ p max |F(z)| : z ∈ Tn 0,R+ (6) 1 L(ReiΘ) (cid:26) (cid:18) (cid:19)(cid:27) A function ln+max{|F(z)|: z ∈ Tn(0,R)} is a convex function of the variables lnr , ..., lnr 1 n (see [14], p. 138 in Russian edition or p. 84 in English translation). Hence, the function admits a representation ln+max{|F(z)|: z ∈ Tn(0,R)}−ln+max{|F(z)|: z ∈ Tn(0,R+(r0 −r )e )} = j j j 6 rj A (r ,...,r ,t,r ,...,r ) j 1 j−1 j+1 n = dt (7) t Zrj0 for arbitrary 0 < r0 ≤ r < +∞, where the function A (r ,...,r ,t,r ,...,r ) is a positive j j j 1 j−1 j+1 n non-decreasing in variable t ∈ (0;+∞), j ∈ {1,...,n}. Using (6) we deduce 2 lnp ≥ lnmax |F(z)|: z ∈ Tn 0,R+ − 1 L(ReiΘ) (cid:26) (cid:18) (cid:19)(cid:27) e −lnmax |F(z)| : z ∈ Tn 0,R+ = L(ReiΘ) (cid:26) (cid:18) (cid:19)(cid:27) n 1+ n e = lnmax |F(z)|: z ∈ Tn 0,R+ k=j k − L(ReiΘ) ( P !) j=1 X 1+ n e −lnmax |F(z)|: z ∈ Tn 0,R+ k=j+1 k = L(ReiΘ) ( P !) n rj+2/lj(ReiΘ) 1 1 1 2 = A r + ,...,r + ,t,r + ,..., t j 1 l (ReiΘ) j−1 l (ReiΘ) j+1 l (ReiΘ) j=1 Zrj+1/lj(ReiΘ) (cid:18) 1 j−1 1 X n 2 1 1 1 r + dt≥ ln 1+ A r + ,...,r + ,r , n l (ReiΘ) r l (ReiΘ)+1 j 1 l (ReiΘ) j−1 l (ReiΘ) j n (cid:19) j=1 (cid:18) j j (cid:19) (cid:18) 1 j−1 X 2 2 r + ,...,r + (8) j+1 l (ReiΘ) n l (ReiΘ) 1 n (cid:19) By Lemma 1 the function r l (ReiΘ) → +∞ (r → +∞). Hence, for j ∈ {1,...,n} and r ≥ r0 j j j i i 1 1 1 ln 1+ ∼ ≥ . r l (ReiΘ)+1 r l (ReiΘ)+1 2r l (ReiΘ) (cid:18) j i (cid:19) j j j j Thus, for every j ∈ {1,...,n} inequality (8) implies that 1 1 2 2 A r + ,...,r + ,r ,r + ,...,r + ≤ j 1 l (ReiΘ) i−1 l (ReiΘ) j j+1 l (ReiΘ) n l (ReiΘ) (cid:18) 1 j−1 i+1 n (cid:19) ≤ 2lnp r l (ReiΘ). 1 j j Let R0 = (r0,...,r0), where every r0 is above chosen. Applying (7) n-th times consequently we 1 n j obtain lnmax{|F(z)|: z ∈ Tn(0,R)} = lnmax{|F(z)|: z ∈ Tn(0,R+(r0 −r )e )}+ 1 1 1 r1 A (t,r ,...,r ) + 1 2 n dt = lnmax{|F(z)|: z ∈ Tn(0,R+(r0 −r )e +(r0 −r )e )}+ t 1 1 1 2 2 2 Zr10 r1 A (t,r ,...,r ) r2 A (r0,t,r ...,r ) + 1 2 n dt+ 2 1 3 n dt = lnmax{|F(z)|: z ∈ Tn(0,R0)}+ t t Zr10 Zr20 n rj A (r0,...,r0 ,t,r ,...,r ) + j 1 j−1 j+1 n dt ≤ lnmax{|F(z)|: z ∈ Tn(0,R0)}+ t j=1 Zrj0 X 7 n rj +2lnp l (r0eiθ1,...,r0 eiθj−1,teiθj,r eiθj+1,...,r eiθn)dt ≤ 1 j 1 j−1 j+1 n j=1 Zrj0 X ≤ lnmax{|F(z)|: z ∈ Tn(0,R0)}+ n rj +2lnp l (r0eiθ1,...,r0 eiθj−1,teiθj,r eiθj+1,...,r eiθn)dt ≤ 1 j 1 j−1 j+1 n j=1 Z0 X n rj ≤ (1+o(1))2lnp l (r0eiθ1,...,r0 eiθj−1,teiθj,r eiθj+1,...,r eiθn)dt. 1 j 1 j−1 j+1 n j=1 Z0 X The function lnmax{|F(z)|: z ∈ Tn(0,R)} is independent of Θ. Thus, the following estimate holds lnmax{|F(z)|: z ∈ Tn(0,R)} = n rj =O min l (r0eiθ1,...,r0 eiθj−1,teiθj,r eiθj+1,...,r eiθn)dt , as kRk → +∞. j 1 j−1 j+1 n Θ∈[0,2π]n j=1 Z0 ! X Itisobviouslythatsimilarequalitycanbeprovedforarbitrarypermutationσ oftheset{1,2,...,n}. n Thus, estimate (5) holds. Theorem 2 is proved. Corollary 1. If L ∈ Qn ∩ Kn, min l (ReiΘ) is non-decreasing in each variable r , k ∈ j k Θ∈[0,2π]n {1,...,n}, entire function F has bounded L-index in joint variables then n rj lnmax{|F(z)|: z ∈ Tn(0,R)} = O min l (R(j)eiΘ)dt as kRk → ∞, j Θ∈[0,2π]n j=1 Z0 ! X where R(j) = (r ,...,r ,t,r ,...,r ). 1 j−1 j+1 n Note that Theorem 2 is new too for n = 1 because we replace the condition l = l(|z|) by the condition l ∈ K, i.e. there exists c > 0 such that for every r > 0 max l(reiθ2) ≤ c. Particularly, θ1,θ2∈[0,2π] l(reiθ1) the following proposition is valid. Corollary 2. If l ∈ Q∩K and an entire in C function f has bounded l-index then r lnmax{|f(z)|: |z| = r} = O min l(teiΘ)dt as r → ∞. (cid:18)θ∈[0,2π]Z0 (cid:19) W. K. Hayman, A. D. Kuzyk, M M. Sheremeta, V. O. Kushnir and T. O. Banakh [4, 1, 6] improved an estimate (5) by other conditions on the function l for a case n = 1. M. T. Bordulyak and M. M. Sheremeta [7] deduced similar results for entire functions of bounded L-index in joint variables, if l = l (|z |), j ∈ {1,...,n}. Using their method we will generalise the estimate for j j j l : Cn → R . j + Let us to denote a+ = max{a,0}, u (t) = u (t,R,Θ) = l (tReiΘ), where a ∈ R, t ∈ R , j j j rm + j ∈ {1,...,n}, r 6= 0. m 8 Theorem 3. Let L(ReiΘ) be a positive continuously differentiable function in each variable r ∈ k [0,+∞), k ∈ {1,...,n}, Θ ∈ [0,2π]n. If an entire function F has bounded L-index N = N(F,L) in joint variables then for every Θ ∈ [0,2π]n and for every R ∈ Rn (r 6= 0) and S ∈ Zn + m + |F(K)(ReiΘ)| |F(K)(0)| lnmax : kKk ≤ N ≤ lnmax : kKk ≤ N + K!LK(ReiΘ) K!LK(0) (cid:26) (cid:27) (cid:26) (cid:27) rm n r τ n k (−u′(τ))+ + max j (k +1)l ReiΘ + max j j dτ, (9) j j Z0 kKk≤N(Xj=1 rm (cid:18)rm (cid:19)) kKk≤NXj=1 lj rτmReiΘ   (cid:16) (cid:17)  If, in addition, there exists C > 0 such that the function Lsatisfies inequalities (−(u (t,R,Θ))′)+ sup max max max j t ≤ C, (10) R∈Rn+t∈[0,rm]Θ∈[0,2π]n1≤j≤n rrmj lj2(rmt ReiΘ) rm n r τ max j l ReiΘ dτ → +∞ as kRk → +∞ (11) j Θ∈[0,2π]nZ0 j=1 rm (cid:18)rm (cid:19) X then lnmax{|F(z): z ∈ Tn(0,R)} lim ≤ (C +1)N +1. (12) kRk→+∞ max rm n rj l τ ReiΘ dτ Θ∈[0,2π]n 0 j=1 rm j rm (cid:16) (cid:17) R P And if r (−(u (t,R,Θ))′)+/(r l2( t ReiΘ)) → 0 and (11) holds as kRk → +∞ uniformly m j t j j rm for all Θ ∈ [0,2π]n, j ∈ {1,...,n}, t ∈ [0,r ] then m lnmax{|F(z): z ∈ Tn(0,R)} lim ≤ N +1. (13) kRk→+∞ max rm n rj l τ ReiΘ dτ Θ∈[0,2π]n 0 j=1 rm j rm (cid:16) (cid:17) R P Proof. Let R ∈ R \ {(cid:3)}, Θ ∈ [0,2π]n. Then there exists at least one r 6= 0. Denote α = rj , m j rm j ∈ {1,...,n} and A = (α ,...,α ). We consider a function 1 n |F(K)(AteiΘ)| g(t) = max : kKk ≤ N , (14) K!LK(AteiΘ) (cid:26) (cid:27) where At = (α t,...,α t), AteiΘ = (α teiθ1,...,α teiθn). 1 n 1 n Since the function |F(K)(AteiΘ)| is continuously differentiable by real t ∈ [0,+∞), outside the K!LK(AteiΘ) zero set of function |F(K)(AteiΘ)|, the function g(t) is a continuously differentiable function on [0,+∞), except, perhaps, for a countable set of points. Therefore, using the inequality d |g(r)| ≤ |g′(r)| which holds except for the points r = t such dr that g(t) = 0, we deduce d |F(K)(AteiΘ)| 1 d d 1 = |F(K)(AteiΘ)|+|F(K)(AteiΘ)| ≤ dt K!LK(AteiΘ) K!LK(AteiΘ)dt dtK!LK(AteiΘ) (cid:18) (cid:19) 1 n |F(K)(AteiΘ)| n k u′(t) ≤ F(K+ej)(AteiΘ)α eiθj − j j ≤ K!LK(AteiΘ) j K!LK(AteiΘ) l (AteiΘ) (cid:12) (cid:12) j (cid:12)Xj=1 (cid:12) Xj=1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 9 ≤ n |F(K+ej)(AteiΘ)| α (k +1)l (AteiΘ)+ |F(K)(AteiΘ)| n kj(−u′j(t))+ (15) (K +ej)!LK+ej(AteiΘ) j j j K!LK(AteiΘ) lj(AteiΘ) j=1 j=1 X X For absolutely continuous functions h , h , ..., h and h(x) := max{h (z) : 1 ≤ j ≤ k}, h′(x) ≤ 1 2 k j max{h′(x) : 1 ≤ j ≤ k}, x ∈ [a,b] (see [5, Lemma 4.1, p. 81]). The function g is absolutely j continuous, therefore, from (15) it follows that d |F(K)(AteiΘ)| g′(t) ≤ max : kKk ≤ N ≤ dt K!LK(AteiΘ) (cid:26) (cid:18) (cid:19) (cid:27) n αj(kj +1)lj(AteiΘ)|F(K+ej)(AteiΘ)| |F(K)(AteiΘ)| n kj(−u′j(t))+ ≤ max + ≤ kKk≤N( (K +ej)!LK+ej(AteiΘ) K!LK(AteiΘ) lj(AteiΘ) ) j=1 j=1 X X n n k (−u′(t))+ ≤ g(t) max α (k +1)l (AteiΘ) + max j j = j j j kKk≤N( ) kKk≤N( lj(AteiΘ) )! j=1 j=1 X X = g(t)(β(t)+γ(t)), whereβ(t) = max n α (k +1)l (AteiΘ) ,γ(t) = max n kj(−u′j(t))+ .Thus, kKk≤N j=1 j j j kKk≤N j=1 lj(AteiΘ) d lng(t) ≤ β(t)+γ(t) annd o n o dt P P t g(t) ≤ g(0)exp (β(τ)+γ(τ))dτ, (16) Z0 because g(0) 6= 0. But r A = R. Substituting t = r in (16) and taking into account (14), we m m deduce |F(K)(ReiΘ)| |F(K)(0)| lnmax : kKk ≤ N ≤ lnmax : kKk ≤ N + K!LK(ReiΘ) K!LK(0) (cid:26) (cid:27) (cid:26) (cid:27) rm n n k (−u′(τ))+ + max α (k +1)l (AτeiΘ) + max j j dτ, Z0 kKk≤N(j=1 j j j ) kKk≤N(j=1 lj(AτeiΘ) )! X X i.e. (9) is proved. Denote β(t) = n α l (AteiΘ). If, in addition, (10)-(11) hold then for some j=1 j j K∗, kK∗k ≤ N and K, kKk ≤ N, P e γ(t) = e nj=e1 kj∗lj(−(Aut′je(itΘ)))+ ≤ n k∗ (−u′j(t))+ ≤ n k∗ ·C ≤ NC and β(t) Pnj=1αjlj(AteiΘ) j=1 jαjlj2(AteiΘ) j=1 j X X β(t) n Pα (k˜ +1)l (AteiΘ) n α k˜ l (AteiΘ) n =e j=1 j j j = 1+ j=1 j j j ≤ 1+ k˜ ≤ 1+N. β(t) P nj=1αjlj(AteiΘ) P nj=1αjlj(AteiΘ) j=1 j X P P Buet |F(AteiΘ)| ≤ g(t) ≤ g(0)exp t(β(τ)+γ(τ))dτ and r A = R. Then we put t = r and 0 m m obtain R lnmax{|F(z): z ∈ Tn(0,R)} = ln max |F(ReiΘ)| ≤ ln max g(r ) ≤ m Θ∈[0,2π]n Θ∈[0,2π]n rm ≤ lng(0)+ max (β(τ)+γ(τ))dτ ≤ Θ∈[0,2π]nZ0 10 rm ≤ lng(0)+(NC +N +1) max β(τ)dτ = Θ∈[0,2π]nZ0 rm n e = lng(0)+(NC +N +1) max α l (AτeiΘ)dτ = j j Θ∈[0,2π]nZ0 j=1 X rm n r τ = lng(0)+(NC +N +1) max j l ReiΘ dτ. j Θ∈[0,2π]nZ0 j=1 rm (cid:18)rm (cid:19) X Thus, we conclude that (12) holds. Estimate (13) can be deduced by analogy. Theorem 3 is proved. We will write u(r,θ) = l(reiθ). Theorem 3 implies the following proposition for n = 1. Corollary 3. Let l(reiθ) be a positive continuously differentiable function in variable r ∈ [0,+∞) for every θ ∈ [0,2π]. If an entire function f has bounded l-index N = N(f,l) and there exists C > 0 such that lim max (−u′r(r,θ))+ = C then l2(reiΘ) r→+∞θ∈[0,2π] lnmax{|f(z): |z| = r} lim ≤ (C +1)N +1. r r→+∞ max l(τeiθ)dτ 0 θ∈[0,2π] R Remark 1. Our result is sharper than known result of Sheremeta which is obtained in a case n = 1, C 6= 0 and l = l(|z|). Indeed, corresponding theorem [5, p. 83] claims that lnmax{|f(z): |z| = r} lim ≤ (C +1)(N +1). r r→+∞ l(τ)dτ 0 Obviously, that NC +N +1 < (C +1R)(N +1) for C 6= 0 and N 6= 0. Estimate (13) is sharp. It is easy to check for function F(z ,z ) = exp(z z ), l (z ,z ) = 1 2 1 2 1 1 2 |z |+1, l (z ,z ) = |z |+1. Then N(F,L) = 0 and lnmax{|F(z)|: z ∈ T2(0,R)} = r r . 2 2 1 2 1 1 2 References [1] A. D. Kuzyk, M. M. Sheremeta, Entire functions of bounded l-distribution of values, Math. Notes, 39 (1986) (1), 3–8. [2] B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Proc. Sympos. Pure Math., Amer. Math. Soc.: Providence, Rhode Island, 2 (1968), 298–307. [3] W. J. Pugh and S. M. Shah, On the growth of entire functions of bounded index, Pacific J. Math. 33 (1970) (1), 191–201. [4] W. K. Hayman, Differential inequalities and local valency, Pacific J. Math. 44 (1973) (1), 117–137.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.