Annals of Mathematics Studies Number 195 Asymptotic Differential Algebra and Model Theory of Transseries Matthias Aschenbrenner Lou van den Dries Joris van der Hoeven PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD 2017 Copyright©2017byPrincetonUniversityPress PublishedbyPrincetonUniversityPress,41WilliamStreet, Princeton,NewJersey08540 IntheUnitedKingdom: PrincetonUniversityPress,6OxfordStreet, Woodstock,OxfordshireOX201TR press.princeton.edu AllRightsReserved LibraryofCongressCataloging-in-PublicationData Names: Aschenbrenner, Matthias, 1972– | van den Dries, Lou | Hoeven, J. van der (Joris) Title: Asymptoticdifferentialalgebraandmodeltheoryoftransseries/ MatthiasAschenbrenner,LouvandenDries,JorisvanderHoeven. Description: Princeton: PrincetonUniversityPress,2017. |Series: Annalsofmathe- maticsstudies;number195|Includesbibliographicalreferencesandindex. Identifiers: LCCN2017005899|ISBN9780691175423(hardcover: alk.paper)| ISBN9780691175430(pbk. : alk.paper) Subjects: LCSH: Series, Arithmetic. | Divergent series. | Asymptotic expansions. | Differentialalgebra. Classification: LCC QA295 .A87 2017 | DDC 512/.56–dc23 LC record available at https://lccn.loc.gov/2017005899 BritishLibraryCataloging-in-PublicationDataisavailable Thepublisherwouldliketoacknowledgetheauthorsofthisvolumeforprovidingthe camera-readycopyfromwhichthisbookwasprinted. ThisbookhasbeencomposedinLATEX. Printedonacid-freepaper. ∞ 10987654321 Had the apparatus [of transseries and analyzable functions] been introducedforthesolepurposeofsolvingDulac’s“conjecture,”one might legitimately question the wisdom and cost-effectiveness of such massive investment in new machinery. However, [these no- tions] have many more applications, actual or potential, especially inthestudyofanalyticsingularities. Buttheirchiefattractionisper- hapsthatofgivingconcrete,ifpartial,shapetoG.H.Hardy’sdream of an all-inclusive, maximally stable algebra of “totally formalizable functions.” —JeanÉcalle,SixLecturesonTransseries,AnalysableFunctionsandthe ConstructiveProofofDulac’sConjecture. The virtue of model theory is its ability to organize succinctly the sortoftiresomealgebraicdetailsassociatedwitheliminationtheory. —GeraldSacks,TheDifferentialClosureofaDifferentialField. Les analystes p-adiques se fichent tout autant que les géomètres algébristes ..., des gammes à plus soif sur les valuations com- posées,lesgroupesordonnésbaroques,sous-groupespleinsdes- ditsetquesais-je. Cesgammesméritenttoutauplusd’enrichirles exercicesdeBourbaki,tantquepersonnenes’ensert. —AlexanderGrothendieck,lettertoSerredatedOctober31,1961. I don’t like either writing or reading two-hundred page papers. It’s notmyideaoffun. —JohnH.Conway, quotedinGeniusatPlay: TheCuriousMindofJohn HortonConway bySiobhanRoberts. Contents Preface xiii ConventionsandNotations xv Leitfaden xvii DramatisPersonæ xix IntroductionandOverview 1 ADifferentialFieldwithNoEscape 1 StrategyandMainResults 10 Organization 21 TheNextVolume 24 FutureChallenges 25 AHistoricalNoteonTransseries 26 1 SomeCommutativeAlgebra 29 1.1 TheZariskiTopologyandNoetherianity 29 1.2 RingsandModulesofFiniteLength 36 1.3 IntegralExtensionsandIntegrallyClosedDomains 39 1.4 LocalRings 43 1.5 Krull’sPrincipalIdealTheorem 50 1.6 RegularLocalRings 52 1.7 ModulesandDerivations 55 1.8 Differentials 59 1.9 DerivationsonFieldExtensions 67 2 ValuedAbelianGroups 70 2.1 OrderedSets 70 2.2 ValuedAbelianGroups 73 2.3 ValuedVectorSpaces 89 2.4 OrderedAbelianGroups 98 viii CONTENTS 3 ValuedFields 110 3.1 ValuationsonFields 110 3.2 PseudoconvergenceinValuedFields 126 3.3 HenselianValuedFields 136 3.4 DecomposingValuations 157 3.5 ValuedOrderedFields 171 3.6 SomeModelTheoryofValuedFields 179 3.7 TheNewtonTreeofaPolynomialoveraValuedField 186 4 DifferentialPolynomials 199 4.1 DifferentialFieldsandDifferentialPolynomials 199 4.2 DecompositionsofDifferentialPolynomials 209 4.3 OperationsonDifferentialPolynomials 214 4.4 ValuedDifferentialFieldsandContinuity 221 4.5 TheGaussianValuation 227 4.6 DifferentialRings 231 4.7 DifferentiallyClosedFields 237 5 LinearDifferentialPolynomials 241 5.1 LinearDifferentialOperators 241 5.2 Second-OrderLinearDifferentialOperators 258 5.3 DiagonalizationofMatrices 264 5.4 SystemsofLinearDifferentialEquations 270 5.5 DifferentialModules 276 5.6 LinearDifferentialOperatorsinthePresenceofaValuation 285 5.7 CompositionalConjugation 290 5.8 TheRiccatiTransform 298 5.9 Johnson’sTheorem 303 6 ValuedDifferentialFields 310 6.1 AsymptoticBehaviorofv 311 P 6.2 AlgebraicExtensions 314 6.3 ResidueExtensions 316 6.4 TheValuationInducedontheValueGroup 320 6.5 AsymptoticCouples 322 6.6 DominantPart 325 6.7 TheEqualizerTheorem 329 6.8 EvaluationatPseudocauchySequences 334 6.9 ConstructingCanonicalImmediateExtensions 335 7 Differential-HenselianFields 340 7.1 PreliminariesonDifferential-Henselianity 341 7.2 MaximalityandDifferential-Henselianity 345 7.3 Differential-HenselConfigurations 351 7.4 MaximalImmediateExtensionsintheMonotoneCase 353 CONTENTS ix 7.5 TheCaseofFewConstants 356 7.6 Differential-HenselianityinSeveralVariables 359 8 Differential-HenselianFieldswithManyConstants 365 8.1 AngularComponents 367 8.2 EquivalenceoverSubstructures 369 8.3 RelativeQuantifierElimination 374 8.4 AModelCompanion 377 9 AsymptoticFieldsandAsymptoticCouples 378 9.1 AsymptoticFieldsandTheirAsymptoticCouples 379 9.2 H-AsymptoticCouples 387 9.3 ApplicationtoDifferentialPolynomials 398 9.4 BasicFactsaboutAsymptoticFields 402 9.5 AlgebraicExtensionsofAsymptoticFields 409 9.6 ImmediateExtensionsofAsymptoticFields 413 9.7 DifferentialPolynomialsofOrderOne 416 9.8 ExtendingH-AsymptoticCouples 421 9.9 ClosedH-AsymptoticCouples 425 10 H-Fields 433 10.1 Pre-Differential-ValuedFields 433 10.2 AdjoiningIntegrals 439 10.3 TheDifferential-ValuedHull 443 10.4 AdjoiningExponentialIntegrals 445 10.5 H-FieldsandPre-H-Fields 451 10.6 LiouvilleClosedH-Fields 460 10.7 MiscellaneousFactsaboutAsymptoticFields 468 11 EventualQuantities,ImmediateExtensions,andSpecialCuts 474 11.1 EventualBehavior 474 11.2 NewtonDegreeandNewtonMultiplicity 482 11.3 UsingNewtonMultiplicityandNewtonWeight 487 11.4 ConstructingImmediateExtensions 492 11.5 SpecialCutsinH-AsymptoticFields 499 11.6 ThePropertyofλ-Freeness 505 11.7 BehavioroftheFunctionω 511 11.8 SomeSpecialDefinableSets 519 12 TriangularAutomorphisms 532 12.1 FilteredModulesandAlgebras 532 12.2 TriangularLinearMaps 541 12.3 TheLieAlgebraofanAlgebraicUnitriangularGroup 545 12.4 DerivationsontheRingofColumn-FiniteMatrices 548 12.5 IterationMatrices 552