ebook img

Asymptotic analysis of the Krawtchouk polynomials by the WKB method PDF

0.37 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Asymptotic analysis of the Krawtchouk polynomials by the WKB method

Asymptotic analysis of the Krawtchouk polynomials by 5 the WKB method 0 0 2 n Diego Dominici ∗ a J Department of Mathematics 4 State University of New York at New Paltz ] 75 S. Manheim Blvd. Suite 9 A C New Paltz, NY 12561-2443 h. USA t a m February 1, 2008 [ 2 v 2 Abstract 4 0 1 We analyze the Krawtchouk polynomials Kn(x,N,p,q) asymptotically. We use 0 singular perturbation methods to analyze them for N , with appropriate scalings 5 → ∞ ofthetwovariablesxandn. Inparticular,theWKBmethodandasymptoticmatching 0 / are used. We obtain asymptotic approximations valid in the whole domain [0,N] h × t [0,N], involving some special functions. We give numerical examples showing the a accuracy of our formulas. m : v i 1 Introduction X r a Definition 1 Let n,N 0 be integers. The Krawtchouk polynomials K (x) are defined by n ≥ [36], n x N x K (x) = − qk( p)n−k (1) n k n k − k=0(cid:18) (cid:19)(cid:18) − (cid:19) X where 0 < p,q < 1 p+q = 1. (2) The binary Krawtchouk polynomials are the special case with p = 1/2 = q [15], [18]. ∗ e-mail: [email protected] 1 The Krawtchouk polynomials [27] are one of the families of classical orthogonal polyno- mials of a discrete variable [14]. They satisfy the orthogonality relation N N K (k)K (k)̺(k)= (pq)jδ , i,j = 0,...,N i j ij j k=0 (cid:18) (cid:19) X with weight function N ̺(x) = pxqN−x. x (cid:18) (cid:19) Writing the Krawtchouk polynomials in the extended form K (x) = K (x,N,p,q), we n n have the the symmetry formula K (x,N,p,q) = ( 1)nK (N x,N,q,p). (3) n n − − They also satisfy the three-term recurrence (n+1)Kn+1(x)+pq(N n+1)Kn−1(x)+[p(N n)+nq x]Kn(x) = 0 − − − which is the main object of our analysis. The Krawtchouk polynomials are important in the study of the Hamming scheme of classical coding theory [17], [21], [25], [29], [33], [34]. Lloyd’s theorem [23] states that if a perfect code exists in the Hamming metric, then the Krawtchouk polynomial must have integral zeros [3], [5], [20]. Not surprisingly, these zeros have been the subject of extensive research [4], [7] [9], [10], [11], [16], [35]. The Krawtchouk polynomials also have applications in probability theory [8], queueing models [6], stochastic processes [31], quantum mechanics [2], [24] [39] and biology [13]. The asymptotic behavior of the Krawtchouk polynomials as N was studied by → ∞ Sharapudinov for x Np and n = O N1/3 in [32]. He derived an approximation in ≈ terms of the Hermite polynomials (see also [36] for a similar formula). The general case (cid:0) (cid:1) with x,n = O(N) was investigated by Ismail and Simeonov [12] and a uniform asymptotic expansion was derived by Li and Wong [22], both using the saddle point method. The purpose of this paper is to take a different approach, based on the recurrence formula that the Krawtchouk polynomials satisfy and using singular perturbation techniques [26], [37] to analyze it. We scale x = yN, n = zN and obtain asymptotic approximations to K (x) for (y,z) [0,1] [0,1]. Our results agree and extend those obtained in [12], [22] and n ∈ × [30]. InSection 2we review thebasicproperties ofthe Krawtchouk polynomials. InSections 3- 10 we obtain asymptotic expansions from the recurrence formula by using the WKB method. Wemustconsidertwelve relevantregionsofthetwo-dimensionalstatespace. InSection11we summarize our results and numerically compare our approximations with the exact formula. 2 2 The WKB approximation To analyze the recurrence (n+1)Kn+1(x)+pq(N n+1)Kn−1(x)+[p(N n)+nq x]Kn(x) = 0 (4) − − − subject to the boundary conditions K (x) = 1 (5) 0 x K (x) = (6) N+1 N +1 (cid:18) (cid:19) N K (0) = ( p)n (7) n n − (cid:18) (cid:19) N K (N) = qn (8) n n (cid:18) (cid:19) for large N, we introduce the scaled variables y,z defined by x = yN, n = zN, 0 < y,z < 1. (9) We define the function F(y,z) and the small parameter ε by 1 ε = , K (x) = F(εx,εn) = F(y,z) (10) n N and observe that Kn±1(x) = F(y,z ε). ± Substituting (9)-(10) in (4) we get (z +ε)F(y,z+ε)+pq(1 z +ε)F(y,z ε)+[p(1 z)+zq y]F(y,z) = 0. (11) − − − − To find F(y,z) for ε small, we shall use the WKB method [28]. Thus, we consider solutions which have the asymptotic form F(y,z) ενexp ε−1ψ(y,z) L(y,z). (12) ∼ Using (12) in (11), with (cid:2) (cid:3) 1 ε−1ψ(y,z ε) = ε−1ψ(y,z) ψ (y,z)+ ψ (y,z)ε+O ε2 , z zz ± ± 2 dividing by exp[ε−1ψ(y,z)] and expanding in powers of ε we obtain the(cid:0)eik(cid:1)onal equation zU2 +[p y +z(q p)]U +pq(1 z) = 0 (13) − − − and the transport equation 1 zU2 pq(1 z) L + zU2 +pq(1 z) ψ +U2 +pq L = 0 (14) z zz − − 2 − (cid:26) (cid:27) (cid:2) (cid:3) (cid:2) (cid:3) with U(y,z) = exp[ψ (y,z)]. (15) z 3 2.1 The functions ψ and L From (15) we have U U dz z z ψ(y,z) = ln[U(y,z)]dz = zln(U) z dz = zln(U) z dU − U − U dU Z Z Z and using (13) we get U dz (y p)U pq 1 y 1 y z z dU = − − dU = + − dU. U dU (U +q)(U p) U U − U +q Z Z − Z (cid:20) (cid:21) Hence, ψ(y,z) = ln Uz−1(U p)1−y(U +q)y +A(y) (16) − where the function A(y) is still unk(cid:2)nown. (cid:3) From (14) we have 1 [zU2 +pq(1 z)]ψ +U2 +pq L(y,z) = B(y)exp 2 − zz dz − zU2 pq(1 z) (cid:20) Z − − (cid:21) and from (15) ψ = U /U. After changing variables from z to U, we obtain zz z 1 1 (p y)U +pq L(y,z) = B(y)exp + − dU . 2U U +q − (p y)U2 +2pqU +pq(q y) (cid:26)Z (cid:20) − − (cid:21) (cid:27) Thus, U L(y,z) = B(y)(U +q) (17) (p y)U2 +2pqU +pq(q y) s − − where B(y) is to be determined. 2.2 The function U Rewriting (13) as p y U2 + − +q p U +(U )2 = 0 0 z − (cid:18) (cid:19) and solving for U we get 2 1 p y 1 p y U±(y,z) = − +q p − +q p 4(U )2 (18) 0 −2 z − ± 2s z − − (cid:18) (cid:19) (cid:18) (cid:19) where pq(1 z) U (z) = − . (19) 0 z r 4 The discriminant in (18) vanishes if p−y +q p = 2U , which is equivalent to y = Y±, z − ± 0 with ± Y (z) = p+(q p)z 2zU . (20) 0 − ± Rewriting the equation p−y +q p 2 4(U )2 = 0 as z − − 0 2 2 1 (cid:0) 1 (cid:1) 1 1 y + z +2(p q) y z pq = 0 (21) − 2 − 2 − − 2 − 2 − (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) we can see that (y,z) [0,1] [0,1] : y = Y±(z) = E (22) ∈ × where E is an ellipse centered at 1, 1 (see Figure 1). After rotation by π and translation E (cid:8) 2 2 (cid:9) ±4 to the origin, reduces to one of the canonical forms (cid:0) (cid:1) y2 z2 + = 1, p < q q/2 p/2 1 1 y2 +z2 = , p = = q 4 2 y2 z2 + = 1, p > q. p/2 q/2 The ellipse E is contained in the square [0,1] [0,1] and intersects the y and z axis at the × points (0,p),(1,q),(p,0) and (q,1). Its left side between the points (q,1) and (p,0) coincides with the curve Y−(z) and its right side with the curve Y+(z). Forpoints(y,z)locatedoutsideE,U±(y,z)arerealandforpoints(y,z)insideEU±(y,z) ± ± are complex conjugates. When y = Y the two values U coalesce and we have U+(Y+,z) = U = U−(Y+,z), U+(Y−,z) = U = U−(Y−,z). (23) 0 0 − Writing the function L(y,z) in terms of U we have from (17) 0 (U p)(U +q) L(y,z) = B(y) − . (24) s z(U2 U2) − 0 In the rest of this paper we shall use the following notation ± ± z−1 ± 1−y ± y ψ (y,z) = ln U U p U +q (25) − h i and (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (U± p)(U± +q) ± L (y,z) = − . (26) s z (U±)2 U2 − 0 Hence, we write (cid:2) (cid:3) K (x) ενB−(y)exp ε−1ψ−(y,z)+ε−1A−(y) L−(y,z) (27) n ∼ +ενB+(y)exp ε−1ψ+(y,z)+ε−1A+(y) L+(y,z) (cid:2) (cid:3) ± ± ± where B (y) and A (y) are functions to be determined. From (26) we see that L (y,z) are (cid:2) (cid:3) ± ± singular when U = U , i.e., for y = Y , and also for z = 0. Therefore, we need to find 0 asymptotic solutions valid in those regions. 5 (q,1) 1 0.8 + Y (z) (0,p) 0.6 0.4 z - (1,q) Y (z) 0.2 0 0.2 0.4 0.6 (p,0) 0.8 1 y Figure 1: A sketch of the ellipse E and the curves Y±(z). 6 3 The boundary n = 0 (Region I) For n = O(1) we have from (1) that K (x) = O(Nn) as N . Thus, we introduce the n → ∞ (1) function R (y) and consider solutions of (4) which have the asymptotic form n x K (x) = NnR(1) . (28) n n N (cid:16) (cid:17) Using (28) in (4) and expanding in powers of N gives, to leading order (n+1)R(1) +(p y)R(1) = 0. n+1 − n Solving the recursion above with the initial condition (5) we get (y p)n R(1)(y) = − n n! and hence (y p)n K (x) K(1)(y) = Nn − , n = O(1). (29) n ∼ n n! 3.1 The corner layer at (p,0) (Region II) We shall now find an asymptotic solution in the neighborhood of the point (p,0). We intro- (2) duce the stretched variable η and the function R (η) defined by n y = p+η 2pqε η = O(1), (30) K (x) = ε−n/2ppq n/2R(2) εx−p . n n! 2 n √2pqε (cid:18) (cid:19) (cid:16) (cid:17) Using (30) in (4) yields, to leading order, the equation R(2) 2ηR(2) +2nR(2) = 0 n+1 − n n−1 which we recognize as the recurrence relation for the Hermite polynomials. Thus, ε−n/2 pq n/2 K (x) K(2)(η) = H (η) (31) n ∼ n n! 2 n (cid:16) (cid:17) for n = O(1) and y p = O ε1/2 , where H (η) is the Hermite polynomial of degree n. n − (cid:0) (cid:1) 4 The lower corners (Regions III and IV) Setting n = z/ε in (29) and letting ε 0 we obtain → 1 K(1)(y) ε1/2 exp ε−1[1 ln(z)+ln(y p)]z (32) n ∼ √2πz − − (cid:8) (cid:9) 7 where we have used Stirling’s formula [1] 2π Γ(x) xxe−x, x . (33) ∼ x → ∞ r From (25)-(26) we have as z 0 → [1 ln(z)+ln(y p)]z, y < p ψ−(y,z) − − (34) ∼ (1 y)ln 1−y +yln y +ln pq z, y > p ( − q p y−p (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) z−1/2 +O(z), y < p − L (y,z) = √(y−1)y (35) ( y−p +O(z), y > p (1 y)ln 1−y +yln y +ln pq z, y < p ψ+(y,z) − q p y−p (36) ∼ ( [1(cid:16) ln(cid:17)(z)+ln((cid:16)y (cid:17)p)]z,(cid:16) y >(cid:17) p − − and √(y−1)y +O(z), y < p L+(y,z) = p−y . (37) ( z−1/2 +O(z), y > p Matching (34)-(37) and (32) we conclude that − − K (y,z), 0 < y < Y (z) K (x) (38) n ∼ K+(y,z), Y+(z) < y < 1 (cid:26) with 1 K−(y,z) = ε1/2 exp ε−1ψ−(y,z) L−(y,z) (39) √2π (cid:2) (cid:3) 1 K+(y,z) = ε1/2 exp ε−1ψ+(y,z) L+(y,z). (40) √2π (cid:2) (cid:3) Remark 2 In the remainderof the paper, we will find asymptotic formulas only in the region 0 y Y+(z), 0 z 1. The corresponding results for Y+(z) y 1 can be obtained ≤ ≤ ≤ ≤ ≤ ≤ by using the symmetry formula (3) and noting that under the transformations y 1 y, → − p q, K ( 1)nK , we obtain n n ↔ → − U− U+ → ψ− ψ+ +zπi, L− L+ → → K− K+. → 8 5 The boundary x = 0 We shall now consider the case x = O(1). Lemma 3 Let x = m, with m an integer, m N. ≪ 1. m N n K (m) = ( p)n 1 N−1 , m = 0,1. (41) n − n − p (cid:18) (cid:19)(cid:18) (cid:19) 2. If n = O(N), then m N n K (m) ( p)n 1 N−1 , N , m 2. (42) n ∼ − n − p → ∞ ≥ (cid:18) (cid:19)(cid:18) (cid:19) Proof. From (1) we have for x = m integer m m N m K (m) = − qk( p)n−k (43) n k n k − k=0(cid:18) (cid:19)(cid:18) − (cid:19) X m N−m k N m q = ( p)n n−k − n k N −p (cid:18) (cid:19)k=0(cid:18) (cid:19)(cid:0) n (cid:1) (cid:18) (cid:19) X (cid:0) (cid:1) and (41) follows for m = 0,1. Setting n = zN and using (33) we get N−m k z Nz−k (1 z)m , N . N ∼ − 1 z → ∞ (cid:0) Nz (cid:1) (cid:18) − (cid:19) Using the above in (43) we(cid:0)ha(cid:1)ve m k N m z q K (m) ( p)n (1 z)m n ∼ − n − k −1 zp (cid:18) (cid:19) k=0(cid:18) (cid:19)(cid:18) − (cid:19) X m N p z = ( p)n (1 z)m − − n − p(1 z) (cid:18) (cid:19) (cid:20) − (cid:21) and (42) follows. Using (33) we have, as N → ∞ N ε1/2 ( p)n exp ε−1φ (z) (44) 0 − n ∼ √2π z(1 z) (cid:18) (cid:19) − (cid:2) (cid:3) where p φ (z) = (z 1)ln(1 z) zln(z)+zln( p). (45) 0 − − − − 9 From (39) we get, as y 0 → − ε1/2 φ0(z)+ln p−pz y K (y,z) exp , 0 < z < p. (46) ∼ √2π z(1 z)  ε (cid:16) (cid:17)  − p   − Hence, as y 0, K (y,z) satisfies the boundary condition (7) for 0 < z < p. → 5.1 The boundary layer at x = 0, p < z < 1 (Region V) (5) Taking (42) into account, we define the function R (x) by n N K (x) = ( p)nR(5)(x). (47) n n − n (cid:18) (cid:19) Using (47) in (4) yields p(n N)R(5) +[pN +(q p)n x]R(5) nqR(5) = 0. (48) − n+1 − − n − n−1 Writing (48) in terms of z,ε and the function G(5)(x,z) defined by R(5)(x) = G(5)(x,εn) (49) n we have p(1 z)G(5)(x,z +ε)+[z(p q)+xε p]G(5)(x,z)+zqG(5)(x,z ε) = 0. (50) − − − − Using the WKB anszat 1 G(5)(x,z) ετ exp φ(x,z) W(x,z) (51) ∼ ε (cid:20) (cid:21) in (50), we obtain the equations [exp(φ ) 1][p(z 1)exp(φ )+zq]W = 0 (52) z z − − and [zq +p(z 1)exp(2φ )]W (53) z z − 1 + [p(z 1)exp(2φ ) zq]φ xexp(φ ) W = 0. z zz z 2 − − − (cid:26) (cid:27) Solving (52)-(53) we get G(5)(x,z) ετ1A(5)(x)exp ε−1ϕ (x) (z p)x (54) 1 ∼ − +ετ2B(5)(x)exp ε−1φ2(x,z) ((cid:2)z p)−x−(cid:3)1 z(1 z) − − (cid:2) (cid:3) p 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.