ebook img

Asymmetric transformations involving 1,2-diarbonyl compounds as pronucleophiles PDF

14 Pages·2017·1.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Asymmetric transformations involving 1,2-diarbonyl compounds as pronucleophiles

Asymmetric transformations involving 1,2-diarbonyl compounds as pronucleophiles Wilfried Raimondi, Damien Bonne, Jean Rodriguez To cite this version: Wilfried Raimondi, Damien Bonne, Jean Rodriguez. Asymmetric transformations involving 1,2- diarbonyl compounds as pronucleophiles. Chemical Communications, 2012, 48, pp.6763-6775. ￿10.1039/C2CC30691C￿. ￿hal-00736692￿ HAL Id: hal-00736692 https://hal.archives-ouvertes.fr/hal-00736692 Submitted on 28 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. View Online / Journal Homepage / Table of Contents for this issue ChemComm Dynamic Article Links Citethis:Chem.Commun.,2012,48,6763–6775 FEATURE ARTICLE www.rsc.org/chemcomm Asymmetric transformations involving 1,2-dicarbonyl compounds as pronucleophiles Wilfried Raimondi, Damien Bonne* and Jean Rodriguez* 2 1 0 2 Received31stJanuary2012,Accepted24thApril2012 mber 1C DOI: 10.1039/c2cc30691c pte069 e3 8 SCC Thisarticleconcentratesontheversatilenucleophilicreactivityof1,2-dicarbonylcompounds 22 n C invariousasymmetrictransformations.Althoughunderexploitedincomparisontotheir e o39/ 1,3-dicarbonylhomologues,thepresenceofadjacentmultiplereactivecentresallowsthe e0 n1 Mediterrag | doi:10. spleeraloedncitnuiogclnetooopfvhasiprleieosc.uifiTschoeapyctitccivaaalnltyiboaencitmnivvoeodltevaserdgfoeitrnsesinnehletahcnteicviaencgyfoctlrhimceaarteniaodcntciyovciftliyCc–osCfert,iheCes–sieOncimlourpdoCinr–tgNanthtbroaemen-dbtsiodent e la c.or seven-memberedringsystems.Recentcontributionsinthefieldofbiochemical,organometallic niversite dp://pubs.rs aastnreedredooisrccghuaesnmsiecidccaaflrtioasmlsyuteiscsy.ntrtahnetsifcoramndatmioencshaasniwsteilclpasoisnotmoefrveielewvsanhtigshtoliigchhtiionmgestormiceapimprpooarctahnest bliotheque de L'uApril 2012 on htt IPhnaystrruboveidecnuacuctisideo,dnoanseaonfutchleeospimhiplelefsotr1t,h2o-duiscaanrdboyneyalrscobmypNoautnudres1, Racahs1eect,m2he-neodytsilceyral,eerac1bct,oi2tven-edkyealetmcoffioicmadiceepindloitsgulyanwtdwieorianetshss.ah4hdoTy2wdhsrneyonaxtoptyhlpbaoamenrepi(nnFaetrilgtydi.ces1urim)il5vaparrletlyeimvuueasssieenffeooudrfl nloaded by Biblished on 25 biaatrnrseaeltnafei-nikngeel-tyctohcaorebacbocoiinndojsupywgonalayttshheesy.sad2icsrcoIooxnmfylpspailtaaiesrldhiacelaldea-lkn,bedtytohuealBocesifidrorzsnsetiflcoiuusasyncndiidtnhisne1swvi8seh3ri5tcoe.h3-f utthrnaeUknirnsnfoctoihwlrimnrnaauoltnwhioty,indlsurtahtwizeloaispsnaietomisonobnesyetrloEynfnolid1mne,-2ridts-eidridineccatttorhbuetoshneneiyonlifesntacieir-nsekae(savteoisddyeemesitlmneefcrerstatrr)oai.cs- wu DoP philicketonereactivitybythepresenceofanadjacentcarbonyl Aix-MarseilleUniversite´,UMRCNRS7313iSm2, group.Infact,1,2-dicarbonylcompoundsaresometimesused CentreSaintJe´roˆme,service531,13397Marseille,France. allowing the extension of reaction scope that was limited to E-mail:[email protected],[email protected]; aldehydes.6Nowadays,theelaborationofnewmethodologies Fax:+33491289187;Tel:+33491289187 WilfriedRaimondiwasbornin Damien Bonne was born in Orsay(France)inJune1986. Epinal (France) in 1979. In 2006, he joined the Ecole After studying chemistry at Nationale Supe´rieure de the Ecole Supe´rieure de Chimie de Clermont Ferrand Chimie de Lyon (CPE Lyon, (ENSCCF) where he was France), he completed his awarded both his MSc and PhD in 2006 under the super- BSc in chemistry. He is now vision of Prof. Jieping Zhu pursuing his PhD under the working on isocyanide-based supervision of Prof. Jean multicomponent reactions. He Rodriguez and Dr Damien then moved to the University Bonne at Aix-Marseille of Bristol (UK) to join the Universite´. His research group of Prof. Varinder A. focuses on the development of Aggarwal as a post-doctoral WilfriedRaimondi new organocatalysed metho- DamienBonne associate. Since 2007 he has dologies and their application been working as an assistant intotalsynthesis. professorwithProf.JeanRodriguezatAix-MarseilleUniversite´ (France).Hisresearchinterestsincludethedevelopmentofnew asymmetric organocatalysed methodologies and their applica- tioninstereoselectivesynthesis. Thisjournalis c TheRoyalSocietyofChemistry2012 Chem.Commun., 2012,48, 6763–6775 6763 View Online Biochemical transformations Inbiosynthesis,pyruvicacidisusedasakeyC2andC3donor unit. For example, its direct irreversible carboxylation to oxaloacetic acid (Wood–Werkman reaction)7 by pyruvate carboxylases is a key step in the essential Krebs citric acid Fig.1 1,2-Dicarbonyld2synthon. cycle.8 Alternatively, the pyruvate- and phosphenolpyruvate- dependent aldolases are a specific group of enzymes that involving 1,2-dicarbonyl compounds as efficient pronucleo- catalysethestereoselectiveadditionofpyruvicacidtovarious philesisincreasingrapidlyformainlytworeasons: aldehyde acceptors.9 In bacterial systems, sialic acids are – First, these reactive species became very popular and biosynthesised by the enzyme N-acetylneuraminic acid 2 particularlyattractivesyntheticscaffoldsthankstotheirdense (NeuAc) aldolase (Scheme 2). The enzyme uses a mannose 1 0 2 number of reactive centres coupled with their ambident derivative 1 as a substrate, inserting three carbons from ber C reactivity that can be exploited in sequential reactions or in pyruvate 2 into the resulting sialic acid structure 3.10 The m1 pte069 cascadetransformationstoformhetero-orcarbocycles. enzyme is a type I aldolase and forms an enamine with a SeC3 –Asecondreasoncouldbetheimportantprogressthathas lysine residue and the pyruvate which then reacts with the 8 C n 2C2 beendoneinthedevelopmentofnewsuitableselectiveactiva- N-acetyl-D-mannosamine in a reversible manner. The imid- e o39/ tion modes for enhancing the nucleophilic potential of azolegroupofahistidineresidueispresumedtoprotonateand ne10 1,2-dicarbonyls towards cross-condensation instead of their activatethealdehydegroupoftheacceptorsubstrate. e la Mediterrac.org | doi:10. ccaoonmnIdndpcetyenhctisilstiacitvfie1eoa,2ntru-.edraiecctaairvrbtiitocylneya,lswsepeloewscsitlerlostspryehxitcloeespdtleieomandoainnllsygtruatosteefutushleaslteysnastchyseectlliifcc- pcspoyemMrcumiavfinaectyrietcyisatalufsloydriteahspveyarriedlugaovabanrltedoeirnNaghesuabvaAioeccdaboatenladeolnoyrslaescsduaebrarbslitdeerdcoaaltueorseueaatncodtufiosiiinttnsssghhwtiiigghthhhe Bibliotheque de L'universite d5 April 2012 on http://pubs.rs feimeitahpteuorrretasbnaiotn-sd,tohmiocewhtiaotlhm-eeyotrhriacovtrergabanenseofno-ceramxtpaalltoyiiosttnesdsa(tSoscgnheutehcmleeerop1w)h.iitlhesusosimnge raNaatuoencnnaelcUddueucerstpAcndauiaotlincaionsknclaresebcsas,cecftlmdoehaiaronranocelrchasoabiltdiussveeeeeadvalpslieerd.nedidc1eorg2titfiswlyvoappiisrltoteaemhynfsyo,,eta1suod3cNtscaaieeeensnxpu,dbtatAeohrqnctoreuhssaxei.aevdo1orl1edseueTfoptssoolrh,saroleoeesatsr,elemeuacttantbhiiinpcoioeoeopnncsseatuamafeottgrraesraenltroyhetsasocuo,elhtdddrmieoneamalhodlolyinudpgcdocoHayee-ll. nloaded by blished on 2 cothouentcfiaogcmcuerepaottoifortnhaealdtceaCht3ayldsyeusec(dhScraheseam4c,teitoh3ne)s.1cd4aerIpbneonandcycsleogpnrtooturhspewsrteirtauhcctttshuferreo(Som)f wu theSifacetoformanewstereogeniccentrewith(S)configu- oP D ration and an axial orientation in the final product 5. These Scheme1 Nucleophilicpotentialof1,2-dicarbonyls. reactions are presumably under kinetic control. On the other hand, substrates such as 6 with the opposite configuration at C3sufferanucleophilicadditionofthepyruvatefromtheRe face,givingthe(R)configurationinproduct7.Inthesecases, Jean Rodriguez was born in Cieza (Spain) in 1958 and in 1959 his family emigrated to France. After studying chem- istryatAix-MarseilleUniver- site´ (France), he completed hisPhDasaCNRSresearcher with Prof. Bernard Waegell and Prof. Pierre Brun in 1987. He completed his Habilitation in 1992, also at Marseille, where he is cur- rently the Professor and Director of the UMR-CNRS- JeanRodriguez 7313-iSm2. His research interests include the develop- mentofdominoandmulticomponentreactions,andtheirappli- cation in stereoselective synthesis. In 1998 he was awarded the ACROS prize in Organic Chemistry, and in 2009 he was awarded the prize of the Division of Organic Chemistry from theFrenchChemicalSociety. Scheme2 AldolcondensationmediatedinvivobyNeuAcaldolase. 6764 Chem.Commun., 2012,48, 6763–6775 Thisjournalis c TheRoyalSocietyofChemistry2012 View Online hugeinterestandmoregeneralbiomimeticmetallo-ororgano- catalysedapproacheshaveemergedduringthelastdecade. Metallocatalysed transformations Thefirstexampleofthedirectuseofa1,2-dicarbonylcompound asapronucleophileinastereoselectivechemicaltransformation wasreportedbyJørgensenwhoshowedthatchiralLewisacids could efficiently catalyse the homo-aldol reaction of ethyl pyruvate (12).17 They used a chiral copper(II)–bisoxazoline complex 13 providing diethyl-2-hydroxy-2-methyl-4-oxoglutarate 2 1 (14)inapromising80%yieldand96%ee(Scheme6).Infact, 0 2 ber C thistransformationwasatthetimeofitsdiscoveryverysignifi- m1 cant since it mimics the pyruvate- and phosphenolpyruvate- pte069 Scheme3 NeuAc aldolase-catalysed aldol reaction: stereochemical dependentaldolases.9ThechiralLewiscatalystpromotesboth 8 SeCC3 outcome. the formation and the stabilisation of the enol-pyruvate and 22 n C controlsthestereochemistryofthereaction. e o39/ Short after, the same group proposed a related copper- e0 Mediterrang | doi:10.1 caTa-hktiaesltyomseeedtshtedoridsaos1tl5oergweyoit-ghiavanensdNseim-ntaopnslyteilo-aasce-clieemscsitnivtooeeaMs-taearmn1nin6ico(hSacrcheiadecmtdieeor7ni)v.oa18-f e la c.or tives 17 that are precursors of highly functionalised optically niversite dp://pubs.rs pNu-Hrtoeolluwaecentvoeesnruelsfto1hn8isyblysgeslmeyloeinxctayillviectrrieamdniusncfeotsiromnaanotdfiotnthheisw4-adosrxaowlimbmaoictieketdyw.taos bliotheque de L'uApril 2012 on htt AaTkdehthdeoeryetaesdnrseoeivdlbiediomleonseplyt1ead9slleiwavceildrtahainrletvyhcaeatraniaroussuymlasmtaNemrry-ebtlthoyrixioScidphMehib/elaaintnsheaniskuuicimlhafonarndreyyacllcooitx-miwoidinoner/eokpsfey2r1bs0,o.2a1x9-. Bi5 nloaded by blished on 2 tchoentfroorlSmsciahnetcimeoenth4eofnNetewhuelAy(cfRoa)rldmpoerlaodsdesutpecrrteespoaicrseantuitonrndeeoisrfiatnzhateshruemgeaoqrdsu.yantaomriaicl wu oP position. D Azasugars have been also prepared with NeuAc aldolase (Scheme 4).15 The biocatalysed addition of pyruvate 2 to mannosaminederivative8isfollowedbyreductiveamination to give the pyrrolidines 9, which was further converted into Scheme6 ChiralLewisacidcatalysedhomo-aldolreaction. 3-(hydroxymethyl)-6-epicastanospermine10. Otherpyruvate-andphosphoenolpyruvate-dependentaldolases have been isolated, purified and exploited in synthesis. For example, 2-keto-3-deoxy-6-phospholuconate (KDPG) aldolase was shown to efficiently catalyse the aldol reaction between 2-pyridinecarboxaldehyde11andpyruvate2withanextremely highlevelofenantioselectivity(Scheme5).16 Although of particular relevant importance in Nature the specificity of the enzymatic systems involved for the selective functionalisationofpyruvicacidhasencounteredonlylimited applicationinsyntheticorganicchemistry.However,thehigh syntheticpotentialofsuchasimplecondensationhasraiseda Scheme7 Asymmetric direct Mannich reaction of 1,2-keto esters Scheme5 KDPGaldolase-catalysedenantioselectivealdolreaction. witha-iminoesters. Thisjournalis c TheRoyalSocietyofChemistry2012 Chem.Commun., 2012,48, 6763–6775 6765 View Online 2 1 0 2 ber C m1 pte069 e3 SC 8 C 22 n C e o39/ e0 n1 Mediterrag | doi:10. e la c.or niversite dp://pubs.rs Sa-ckheetmoea8nilidDeisr.ect syn-selective asymmetric Mannich reaction of bliotheque de L'uApril 2012 on htt gStscheo-tlaiemelmlc,pptiitrlnvehooexedr2uaue1cmdstepuidriconoetfismolaon2olw2itopeefhdirnatthtyhgiecieoekolsNdeydt-nota-yhnMniieeodlampdnshsoenelaiineecncethydts-iutvosyliffetpoyl2een.2crytHeulivasiiicigmtnthyigiolny(nKeS,scdBahiaffHaeffsom4otreegrdrdaie8nevo)dge-. Sa-ckheetmoea9nilidDeisr.ect anti-selective asymmetric Mannich reaction of nloaded by Biblished on 25 tsthhteeeOrebno-ceagolyemkneyapilcrl-egcam-efatnemetnrritetnahsoriyw-saii-tmahhnpyatdoin-rrsoteaaxlnneyttciat/rismevypeinodrerdtes,li2arteh3ticeowtsniatschmhaitetpha.trleyeatemiccodneetnsicgarnuibotieuods- wu oP selective Mannich-type reaction of a-keto anilide donors 19 D with N-o-nitrophenyl sulfonyl imine 20b (Scheme 9).20 The homodinuclear nickel complex 24 promoted the reaction to affordtheproduct25inupto99%yieldwithananti/synratio of more than 50:1 and up to 95% ee. The products of the reactioncould be stereoselectively reduced withK-Selectrides to give the a-hydroxy b-alkyl g-amino amides 26 with three stereogenic centres with an anti/anti relative configuration. These products could also be easily converted to the optically activeazetidine-2-amides27withasyn/anticonfiguration. Thefirstexampleofadiastereo-andenantioselectiveconju- gate addition of 1,2-keto esters to nitroalkenes was reported by Sodeoka and co-workers in 2010.21,22 They used a mono- nuclear nickel complex with a chiral 1,2-trans-cyclohexane Scheme10 AsymmetricMichaeladditionof1,2-ketoesterstonitro- diamineligandandtheanti-Michaeladducts28wereisolated alkeneswithmononuclearNicatalyst. ingoodtoexcellentyieldandselectivities(Scheme10).Oneof the main advantages of the method over the previous use of showed that 1,2-keto esters could efficiently participate in an 1,2-dicarbonyl as nucleophiles in metal catalysed stereo- elegant asymmetric Michael–Michael–Henry sequence with selectivetransformationsistherelativelylowcatalystloading nitroalkenes as electrophiles catalysed by a new copper(II) required(1mol%).Thesyntheticusefulnessofthismethodo- complex incorporating a rigid chiral diamine (Scheme 11).23 logy was proven by its application to the synthesis of the The counter anion played an important role and the copper kainic acid analogue 29 in only eight steps from the Michael salt containing the acetate anion proved to be the most adduct28ainapromising42%overallyield. efficient one for achieving high reactivity and selectivities in Michael adducts 28 can further react in successive domino theformationofhighlyfunctionalisedcyclohexanes30.Using reactionasshownveryrecentlybyHuangandco-workerswho triethylamine as an additive (5 mol%), the catalyst loading 6766 Chem.Commun., 2012,48, 6763–6775 Thisjournalis c TheRoyalSocietyofChemistry2012 View Online 2 1 0 2 ber C m1 pte069 e3 SC 8 C 22 n C e o39/ e0 n1 Mediterrag | doi:10. e la c.or niversite dp://pubs.rs Scheme11 Asymmetricsynthesisoffunctionalizedcyclohexanesvia bliotheque de L'uApril 2012 on htt Mcdaomeiuscichlddraeiebsble–eadMsdiescucthasraiernetalig–sneHgdbemintforuayn0tdec.1rotiimamolinsnoaol(l%vsiedo.qerTugiehanninfcsreoas.ce)a.qtuaelynscieswaansdpr1ev,2io-kuestloy sSbecelheeBcenetmisvseiedu1eac3sc-aemCsCsi–fnhuCairltaliyolbnboaionscofdtxi1va,fa2zoo-tkrelimednteoa–ttoeciosotpfneoprssre,.mr(1II,)C2c-–odNmicpablreobxnocdnatsyallsiynsehdaavesnetaenaretlisooo-- nloaded by Biblished on 25 TansihcySekmhepimlbraoecstodramuikccipt’1ssle,g4x3r-1ao2duw4dpeitretieomonopcbloaottfayaienaldye-skdteheteionapgarceonovoimliioddpueltsseolmy1eed9xnecttveaoelrlleyonnpittesrydyoniade-llsikdneesluenccweltseii.vta2her4 swecenahltaeoancltytiaivsoreesedemlueabncnytdinvoeeaur.bAdtcehindrierleycaatlrplyabio-irsnaeomepxeoiranrsztaobtilniyionnJetøh–ricosgofepfinpes1ele,dr2n(,-IakId)neetdoacclosome-wswptieolterhrxsketr31hs35e, owPu also good selectivities (Scheme 12). As seen previously, the (Scheme 13).25 Products were formed smoothly but their D Michaeladducts31couldeasilybeconvertedtothecorresponding purification (flash chromatography) partially erodes the tri-substitutedpyrrolidines32withasyn/antirelationship,which enantioselectivity.Inconsequence,reactionproductswerefirst nicelycomplementsthereportofSodeoka(Scheme10). reduced with L-Selectrides to the hydroxy esters 34 and cyclised to the N-amino oxazolidinone 35. An important application of this reaction is the facile access to the corre- sponding syn-b-amino-a-hydroxy esters 36. Hence reductive cleavage of both carboxybenzyl groups and the N–N bond by hydrogen and Raneys-Ni, respectively, and subsequent protection of the amino group afforded 36 in good yield withoutracemisationofthestereogeniccentres. Finally, the first example of catalytic asymmetric mono- fluorination of a-keto esters was described very recently by Sodeoka and co-workers using N-fluorobenzenesulfonimide (NFSI) as the fluoronating agent and a chiral palladium m-hydroxocomplex37(Scheme14).26Thedesiredb-fluorinated- a-keto esters 38 were obtained in good yields and excellent enantioselectivity and the ketone moiety could be reduced to the corresponding syn b-fluoro-a-hydroxy esters with moderate diastereoselectivity. Anti b-fluoro-a-hydroxy esters couldalsobeobtainedusingenzymaticreduction(dr>30:1). A chiral square-planar bidentate Pd-enolate structure 39 was invokedto explaintheenantioselection of thereactionwhere Scheme12 AsymmetricMichaeladditionof1,2-ketoesterstonitro- oneoftheenolatefacesisshieldedbyanequatorialarylgroup alkeneswithbinuclearNicatalyst. oftheligandandthetert-butylestermoiety. Thisjournalis c TheRoyalSocietyofChemistry2012 Chem.Commun., 2012,48, 6763–6775 6767 View Online 2 Scheme16 Asymmetrichomo-aldolreactionofethylpyruvate. 1 0 2 ber C m1 pte069 e3 SC 8 C 22 n C e o39/ e0 n1 Mediterrag | doi:10. SchCelmeaer1ly4, oCragtaanlyotimcaestyamllimcectraitcamlyosniso-oflffuoerrisnavteiornsaotiflea-ktoetoolsestaenrsd. e la c.or provides complementary activation modes of 1,2-dicarbonyls. niversite dp://pubs.rs EapnoffidssciibeCnl–etNbstyerbseoiomncdposlnytarconhldainsgsotibnergseeotrhvdeeivdneiarngtuethnreetfofofurntmhceatitomionenatlaoislfacbtaioottanhlsyCsta–.rCe bliotheque de L'uApril 2012 on htt IeOnstreg2rs0a0nc4oo,uclYadtaabmleyamsspeoedtcoitfircaaannlldysfcaoocrtwmivoaartkteiedorsnusss2ihn7ogwoerdgatnhiactc1a,t2a-lkysettso. Scheme17 Enantioselectivecross-aldolisation–lactonisationsequence. nloaded by Biblished on 25 ccTaahshytleoamylryamsldtee(ts4r4ci01cr)ibcaversiodasissseto-enandaledmobsilyninergewlaaeaccttteeiiorvxana(tmSioocpfnhleeewmthoietyfhl1aap5ny).pr2our8orvglaTiatnheneeo-(tc1eca2tatr)taaalzayloyntslidect msaeldoqTeruheheiynsgdcedeensoemrb4ae7iltnweowneiaeptnnhrtoiaocaes-seboslexencowztcaiiavmsrebiedcoxraxtozeysonlslid-ecaeldpdaroctoilhdilsirsnaeeeti-4ody6neer–ailarvasnecddtloatnoveirrasgaratitooniouonas- owPu presumably activates the ethyl pyruvate by formation of the catalyst 48 by Landais and co-workers for the synthesis of D corresponding enamine 42 while the tetrazole moiety proto- various isotetronic derivatives 49 (Scheme 17).30 To explain nates theacceptor enhancing itsreactivity to give the b-aldol the stereochemistry obtained, the authors postulated for a 43in55%yieldand86%ee. rigidchair-liketransitionstatewherethebenzimidazoleringis Exploiting the well-known ambident reactivity of pyruvates, protonated by the carboxylic acid and the aldehyde is Dondoni et al. disclosed in 2005 an interesting enantioselective activated through hydrogen-bonding with the N–H bond of organocatalyticdominoreactioninitiatedbyahomo-aldolreac- thecatalystasshownintransitionstate50. tion.29 This provided for the first time an efficient access to In2010,wehavedescribedthefirstorganocatalyticenantio- enantiomericallyenrichedisotetronicacid45fromethylpyruvate anddiastereoselectiveconjugateadditionofa-ketoanilides19 (12) catalysed by (S)-(+)-1-(2-pyrrodinylmethyl)pyrrolidines tonitroalkenesusingthebifunctionalaminothioureacatalyst (44)incombinationwithTFAasco-catalyst(Scheme16). 51(Scheme18).31Inthisnewapproach,wehavedemonstrated the crucial role of the amide proton in the formation of the anti-Michael adducts 53 in high yields and high stereo- selectivities providing a nice complement to Shibasaki’s syn-selective organometallic activation.24 The proposed tran- sitionstateinvolveselectrophilicactivationofthenitroalkene via a bidentateH-bonding interaction with both thethiourea and the amide moieties. Concomitant soft-enolisation of the 1,2-ketoamidewiththecatalyst’stertiaryaminewouldresult inarigidmultipleH-bondedtransitionstatewheretheSiface of the (Z)-enolate 52 would preferentially react with the Re faceofthenitroalkene. The versatile reactivity of these chiral 1,2-dicarbonyls was illustrated by a pseudo three-component domino Michael– Scheme15 Organocatalysedasymmetriccross-aldolreaction. Michael–Henryreactionwithsimpleketoamide19(R1=Me) 6768 Chem.Commun., 2012,48, 6763–6775 Thisjournalis c TheRoyalSocietyofChemistry2012 View Online 2 1 0 2 ber C m1 pte069 e3 SC 8 C 22 n C e o39/ e0 n1 Scheme18 Enantioselectiveconjugateadditionwitha-ketoanilides. Mediterrag | doi:10. e la c.or niversite dp://pubs.rs Scheme20 Enantioselectiveconjugateadditionwith1,2-ketoesters. bliotheque de L'uApril 2012 on htt anSdch4e-mfleu1o9ro-Dniitarsotesrteyor-eanned5en4anatffioosreldeicntigvetdhoemihneoxcaysculibssattiitount.ed nloaded by Biblished on 25 coccaeyfnsctclthoareehdsee1x,ri2ane-nakecoet5tnioo5enawsmbiytoihndtthtehhneaeturiceccrleeeoaxoptppielohorniailtitaecindoad.nndc(oSenlcethrceotmrlooepfhs1iil9xic)s.3ct1ehraeIronagcettnehriicss wu oP More recently, the Michael addition was extrapolated to D 1,2-keto esters 56 giving a-functionalised chiral anti-Michael adducts 57, which were easily converted to five-membered heterocycles 58 or carbocycles 59 with additional controlled stereocentres(Scheme20).32 Pa´pai’s model was invoked to explain the stereochemical outcome of these reactions involving 1,2-keto esters as pro- nucleophiles (this explains also the stereochemistry of the enantioselective conjugate addition with 1,2-keto amides).33 Theprotonatedtertiaryamineofcatalyst51bindstothenitro function, hence enhancing the electrophilic character of the Scheme21 Transition states for the Michael addition of 1,2-keto nitroalkene,whereasthethioureamoietybindstothestrongly esterstonitroalkenes. polarised enolate (Scheme 21). In the resulting conformation- allyrestrainedenvironment,theSifaceofthethermodynamic realised only lately and the first achievement was reported by (Z)-enolatepreferentiallyattackstheRefaceofthenitroalkene Rueping et al. in 2008. They judiciously used 2-hydroxy-1,4- accountingfortheformationoftheanti-(R,R)-Michaeladduct. naphthoquinone 60 in a domino Michael-acetalisation C–O The formation of the syn-Michael adduct, which would come heterocyclisation sequence with a,b-unsaturated aldehydes 61 fromtheRefaceattackofthe(Z)-enolate,isminor(syn:antio underiminiumactivationwithcatalyst62leadingtosynthetically 1:20).Inthistransitionstate,thebindingofthethioureamoiety valuable 1,4-pyranonaphthoquinones 63 in good yields and to the enolate is disfavored because of the strong steric inter- excellentenantioselectivities(Scheme22).34Treatmentof63with actionbetweenthebenzylicesterfunctionandthecatalyst. sodiumborohydridefollowedbyHClgaveb-lapachonederiva- Besides1,2-ketoacidderivatives,highlyreactive1,2-diketonesare tives64insyntheticallyusefulyields.Alternatively,oxidationof alsoparticularlyattractivespeciesforthedevelopmentofdomino 63producedthelactones65withoutlossofenantiopurity. reactions by combining both their nucleophilic and electrophilic ThissequenceMichael-acetalisationwaslaterappliedbyWang characters in successive transformations. However, this was andco-workerswiththesame2-hydroxy-1,4-naphthoquinone60 Thisjournalis c TheRoyalSocietyofChemistry2012 Chem.Commun., 2012,48, 6763–6775 6769 View Online 2 1 0 2 ber C m1 pte069 e3 SC 8 C 22 n C e o39/ e0 n1 Mediterrag | doi:10. Scheme24 EnantioselectivecascadeMichael–enolisation–cyclisation. e la c.or niversite dp://pubs.rs ceslonigrrrihcethspeedroonsdnioiannpghitndhiothhqyeudirenonopanynertsiidoim6n8eeri6cc9oeuxilndcesmbs.oedMceoroanrteveeirnyttieeedlrdesttaoinndgtlhyae, bliotheque de L'uApril 2012 on htt dbSocuhmteimnwoeit2rh2eacatT,iboMn-u.Sn-dsiaatruyrlpartoeldinoplyr6u2v-caatteaslys6e6d aMsicthhaeel-ealceecttarloispahtiiolne edgdtrieaorSasiuivltm.pearitteliobavoyresrleye7ala,e0ccccttiyhnivacloelmsorhoaindneduexecaerlaaffienlot-lceo1pi,wehy2niie-eldtdilciddo.tunshuaeebl(sfC7toi1–rt)umOtwaiontainusocnsloehfooopfwthhntiehleebhytyqoduwWrioanarxinndygesl nloaded by Biblished on 25 usknedleetroHn-bbaosneddinthgiocuatraelays6i7saw(iSthchaemcheir2a3l)1.3,52-Ttrhaense-ndaianmtioinmoeinridcaalnlye ed(aSn,iabcomh-luiesinmnastoeaiiotnu2nd4r–aa)cn.ty3ee6cdlsiTksapehtlyueirostuo,nvnaasnebteqasuesened6na6cntehtiiaococasutetiralneelgcyatsi6eva7desbbdwdyouamasalidc-nheeolvierecaMltlorp1oic,ep2hdh-acifelioels–sr- wu oP thesynthesisofvaluabledihydro-2H-pyranes72inhighyields D and excellent enantioselectivities. The catalyst probably acti- vatesdiketone71andb,g-unsaturateda-ketoester66withits amineandthioureafunctionalgroupsenhancingreactivitiesof both substrates in a chiral environment for the enantio- differentiatingstep. ThesameconceptinvolvinganenantioselectiveC-Michael- O-cyclisation strategy was reported by Ding and Zhao with arylidenemalononitriles 73 as electrophiles leading to chiral 2-amino-3-cyano-pyran derivatives 75.37 In this case, the moderateenantioselectivitiescanbetheresultofalesseffective hydrogenbondinginteractionwiththenitrilefunctionsandthe thioureamoietyofthebifunctionalcatalyst74(Scheme25). Incomplementtotheseheterocyclisations,71actingsucces- sivelyasnucleophileandelectrophilewasalsoexploitedinan elegant asymmetric organocatalytic domino Michael–aldol carbocyclisation sequence, via enamine–iminium activation with catalyst 62.38 The optically active polyfunctionalised bicyclo[3.2.1]octanes 77 obtained in good yields from a,b- unsaturated aldehydes 76 constitute versatile synthetic plat- forms upon selective fragmentations.53 Oxidative cleavage of the 1,2-diol obtained after sodium borohydride reduction of 77affordedthetrisubstitutedcycloheptanones78withconser- Scheme23 Enantioselective organocatalysed Michael-acetalisation vationoftheopticalpurity(Scheme26).Alternatively,bicycle dominoreaction. 77 could also be converted to the hemiacetal 79 through 6770 Chem.Commun., 2012,48, 6763–6775 Thisjournalis c TheRoyalSocietyofChemistry2012 View Online 2 1 0 2 ber C m1 pte069 e3 SC Scheme25 Enantioselectivesynthesisofaminopyranderivatives. 8 C 22 n C e o39/ e0 n1 Mediterrag | doi:10. e la c.or niversite dp://pubs.rs Sthcehesmyneth2e7sisMofecbhicayncilsom[3.i2n.1v]oolcvtianngeismysinteiumms.–enamine activation for bliotheque de L'uApril 2012 on htt Bi5 nloaded by blished on 2 Scheme26 EnantioselectiveMichael–aldoldominoreaction. wu oP D base-induced retro-aldol ring cleavage reaction but with the concomitantdestructionofonestereogeniccentre. Fromamechanisticpointofview,theintermediateiminium 80 evolves through a Michael addition with cyclohexa-1,2- dione(71)togeneratethetransientenamine81,whichsuffers an intramolecular aldol-type reaction affording the bicyclo[3.2.1]octanes77afterhydrolysis(Scheme27). A similar enantioselective domino Michael–Henry cascade Scheme28 EnantioselectiveMichael–Henrydominoreaction. involving nitroalkenes 82 as electrophiles under bifunctional hydrogen-bonding catalysis with 83 was reported inde- good yields and excellent selectivities (Scheme 29).40 The use pendently shortly after by the same group and Zhao’s team of bifunctional catalyst 86 combining Brønsted acidic and (Scheme28).39Structurallyidenticalbicyclo[3.2.1]octanecores Lewis basic moieties allows specific activation of substrates wereobtainedwithlowerdiastereoselectivity,probablydueto andresultsincomplementarypolarisationsatthetwoterminal a base-catalysed epimerisation at the a-nitro position of carbonatoms.Theslownessofthereactionispossiblydueto product 84. Interestingly, when a-disubstituted nitroalkenes productinhibitionsince87couldalsobindtothecatalystthe wereemployed,bicyclicstructureswithtwoadjacentquaternary samewayasthatofthestartinga-ketoenones85. stereogeniccentres wereobtained.Itis notablethatthepresent Nowadays, the creation of C–C bonds by selective activa- methodology involving non-covalent hydrogen-bonding activa- tion of 1,2-dicarbonyl pronucleophiles largely leads the way tionnecessitatesfarlesscatalystloading(1–2mol%)compared andtherearemanyotherinterestingreactivitiestobediscovered. tothepreviousone(10mol%)thatusesthecovalentenamine– Teradaandco-workersopenedupthisnewdirectionveryrecently iminiumactivation. by demonstrating that hydrogen-bonding catalysis could also Recently,simplefunctionalisedacyclica-ketoenones85have specificallyactivate1,2-ketoestersforthecreationofC–Nbonds. beenemployedinanunprecedentedorganocatalyticasymmetric Theyuseanaxiallychiralguanidinebase89forthea-aminationof Nazarov cyclisation affording a-hydroxycyclopentenones 87 in 1,2-ketoesters15witht-Bu-diazodicarboxylate(88)(Scheme30).41 Thisjournalis c TheRoyalSocietyofChemistry2012 Chem.Commun., 2012,48, 6763–6775 6771

Description:
selective Mannich-type reaction of α-keto anilide donors 19 with N-o-nitrophenyl .. elegant asymmetric organocatalytic domino Michael–aldol carbocyclisation . 3-substituted 2-keto esters,44 or for an easy access to optically.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.