ebook img

Asymmetric Organo-Metal Catalysis: Concepts, Principles, and Applications PDF

337 Pages·2022·21.363 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Asymmetric Organo-Metal Catalysis: Concepts, Principles, and Applications

AsymmetricOrgano-MetalCatalysis Asymmetric Organo-Metal Catalysis Concepts, Principles, and Applications Liu-Zhu Gong Author AllbookspublishedbyWILEY-VCHarecarefully produced.Nevertheless,authors,editors,and Prof.Liu-ZhuGong publisherdonotwarranttheinformation UniversityofScienceandTechnologyof containedinthesebooks,includingthisbook, China tobefreeoferrors.Readersareadvisedtokeep DepartmentofChemistry inmindthatstatements,data,illustrations, 230026Hefei proceduraldetailsorotheritemsmay China inadvertentlybeinaccurate. CoverDesign:Wiley LibraryofCongressCardNo.:appliedfor CoverImage:©ValentinValkov/Getty Images BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary. Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>. ©2022WILEY-VCHGmbH,Boschstr.12, 69469Weinheim,Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-34592-2 ePDFISBN:978-3-527-34596-0 ePubISBN:978-3-527-34594-6 oBookISBN:978-3-527-34593-9 Typesetting Straive,Chennai,India PrintingandBinding Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 v Contents Preface ix 1 WhyIsOrgano/MetalCombinedCatalysisNecessary? 1 1.1 Introduction 1 1.2 EarlyStageofOrgano/MetalCombinedCatalysisandGeneral Principles 3 1.3 Organo/MetalCooperativeCatalysis 7 1.3.1 ControlofStereochemistry 7 1.3.2 CooperativeActivationofChemicalBonds 9 1.4 Organo/MetalRelayandSequentialCatalysis 11 1.5 Conclusion 16 References 16 2 Metal/Phase-TransferCatalystCombinedCatalysis 19 2.1 Introduction 19 2.1.1 EarlyRacemicExamples:PTCandTransitionMetalCo-catalyzed Reactions 19 2.2 AsymmetricMetal/Phase-TransferCatalystCombinedCatalysis 20 2.2.1 CombinationofCationicPTCandTransitionMetalinAsymmetric Catalysis 22 2.2.2 CombinationofAnionicPTCandTransitionMetalinAsymmetric Catalysis 29 2.3 Conclusion 33 References 34 3 Enamine-MetalCombinedCatalysis 39 3.1 Introduction:CombinedEnamineActivationandMetalCatalysis 39 3.2 CatalyticAsymmetricα-AllylationofCarbonyls 39 3.2.1 OxidativeAddition-InitiatedAllylicAlkylation 39 3.2.2 MetalHydride-InitiatedAllylicAlkylation 48 3.2.3 LewisAcid-MediatedS 1orS 2Reaction 50 N N 3.3 CatalyticAsymmetricSubstitution 51 vi Contents 3.4 CatalyticAsymmetricα-Alkenylation,α-Arylation,and α-TrifluoromethylationofCarbonylCompounds 55 3.5 AsymmetricAdditiontoAlkynesbyCooperativeCatalysiswithπ-Lewis Acids 59 3.6 CatalyticAsymmetricPropargylicSubstitutionReactionofCarbonyl Compounds 61 3.7 CatalyticAsymmetricα-OxidationofAldehydes 63 3.8 RelayCatalysis 64 3.8.1 CatalyticAsymmetricCrossDehydrogenativeCoupling 64 3.8.2 TransformationofOlefins 68 3.9 Conclusion 70 References 71 4 IminiumandMetalCombinedCatalysis 75 4.1 Introduction:IminiumActivationandMetalCombinedCatalysis 75 4.2 IminiumActivationandPalladiumCatalysis 76 4.2.1 EnantioselectiveConjugateAdditionReaction 76 4.2.2 Asymmetric[3+2]CycloadditionViaRing-OpeningOxidative Addition 77 4.2.3 AsymmetricMichaelAdditionandCarbocyclizationCascade 81 4.2.4 AsymmetricOxidativeCascadeReaction 83 4.3 IminiumActivationandCoinageMetalCatalysis 83 4.4 IminiumActivationandOtherMetalCatalysis 85 4.5 Conclusion 87 References 88 5 BrønstedAcidandTransitionMetalCooperativeCatalysis 91 5.1 Introduction 91 5.2 EarlyStageofMetal/BrønstedAcidCooperativeCatalysis 93 5.3 MetalAlkynylide-MediatedTransformations 93 5.4 π-Allyl-Metal-MediatedTransformation 95 5.5 AsymmetricHydrogenationofC—NDoubleBond 107 5.6 MetalCarbene-MediatedTransformations 110 5.7 π-LewisAcidMediatedTransformations 116 5.8 SummaryandOutlook 119 References 120 6 Metal-BrønstedAcidRelayCatalysis 125 6.1 Introduction 125 6.2 π-LewisAcid-ChiralBrønstedAcidRelayCatalysis 125 6.2.1 Hydroamination-InitiatedCascadeReaction 127 6.2.2 HydroalkoxylationMediatedRelayCatalysis 132 6.2.3 HydrosiloxylationMediatedRelayCatalysis 136 6.2.4 RelayCatalysisInvolvingtheAdditionofNitroneorNitroGroupto Alkynes 138 Contents vii 6.2.5 RelayCatalysisInvolvingtheAdditionofCarbonNucleophilesto Alkynes 139 6.3 Metal/BrønstedAcidRelayCatalysisInvolvingAlkeneMetathesis 141 6.4 Metal/BrønstedAcidRelayCatalysisInvolvingAlkene Isomerization 144 6.5 Metal/BrønstedAcidRelayCatalysisInvolvingHydrogenation 151 6.6 Palladium/BrønstedAcidRelayCatalyticAsymmetricAllylationof Carbonyls 155 6.7 Metal/BrønstedAcidRelayCatalysisInvolvingHydroformylation 157 6.8 Metal/BrønstedAcidRelayCatalysisInvolvingMetalCarbene Formation 160 6.8.1 CascadeMetalCarbeneFormationandAsymmetricProtonation 160 6.8.2 MultipleCascadeReactionInitiatedwithMetalCarbene 165 6.9 LewisAcid/ChiralBrønstedAcidRelayCatalysis 167 6.10 Miscellaneous 169 6.11 SummaryandOutlook 172 References 173 7 LewisBase–LewisAcidCooperativeCatalysis 179 7.1 Introduction:CombinedLewisBaseandLewisAcidActivations 179 7.1.1 EarlyExamplesinLewisBase–LewisAcidCooperativeCatalysis 183 7.2 AsymmetricReactionsDrivenbyTertiaryAmine-MediatedAmmonium Enolates 184 7.2.1 AsymmetricBaylis–HillmanReactions 184 7.2.2 Asymmetric[2+2]Reactions 186 7.2.3 Asymmetric[4+2]Reactions 192 7.2.4 Asymmetricα-FunctionalizationofCarbonylCompounds 196 7.3 AsymmetricReactionsDrivenbyNHC-MediatedHomoenolates 198 7.3.1 AsymmetricAnnulationReactions 201 7.3.2 Asymmetricβ-ProtonationReactions 211 7.3.3 AsymmetricKineticResolutions 215 7.4 AsymmetricReactionsDrivenbyNHC-MediatedAzolium Enolates 216 7.5 AsymmetricReactionsDrivenbyAmmoniumSalts 221 7.6 AsymmetricReactionsDrivenbyNHC-Mediatedα,β-UnsaturatedAcyl Azoliums 225 7.6.1 Asymmetric[3+3]Reactions 225 7.6.2 AsymmetricCascadeReactions 229 7.6.3 AsymmetricKineticResolutions 231 7.7 Conclusion 235 References 235 8 LewisBase-TransitionMetalCooperativeCatalysis 241 8.1 Introduction 241 8.2 PhosphineandTransitionMetalCooperativeCatalysis 243 viii Contents 8.3 N-HeterocyclicCarbeneandTransitionMetalCooperative Catalysis 244 8.3.1 π-AllylMetalMediatedTransformations 245 8.3.2 Alkynyl-metalMediatedTransformations 253 8.3.3 Metal-allenylideneMediatedTransformations 254 8.4 TertiaryAmineandTransitionMetalCooperativeCatalysis 258 8.4.1 π-AllylMetalMediatedTransformations 258 8.4.2 π-Benzyl-metalMediatedTransformations 263 8.4.3 Metal-allenylideneMediatedTransformations 265 8.4.4 OtherTransitionMetalMediatedTransformations 267 8.5 Conclusions 271 References 271 9 ChiralOrganocatalystCombinedwithTransitionMetalBased PhotoredoxCatalyst 277 9.1 Introduction 277 9.2 Covalent-BasedOrganocatalyticActivationinCombinationwith TransitionMetal-BasedPhotoredoxCatalyst 279 9.2.1 ChiralAmine/PhotoredoxCombinedCatalysis 279 9.3 Photoredox-MediatedSOMOCatalysis 284 9.4 NucleophilicOrganocatalystinCombinationwithPhotoredox Catalyst 288 9.5 Noncovalent-BasedOrganocatalyticActivationinCombinationwith TransitionMetal-BasedPhotoredoxCatalyst 290 9.5.1 ChiralPhosphate/PhotoredoxCombinedCatalysis 290 9.6 AsymmetricIon-Pair/PhotoredoxCombinedCatalysis 295 9.7 SummaryandOutlook 297 References 297 10 ApplicationsinOrganicSynthesis 301 10.1 Introduction 301 10.2 ApplicationsofChiralPhosphoricAcid-MetalCooperative Catalysis 301 10.3 ApplicationofTransitionMetalCatalysisCombinedwithSecondary AmineCatalysis 305 10.4 ApplicationofPhotocatalysisCombinedwithOrganocatalysis 310 10.5 ApplicationofLewisBase–LewisAcidCooperativeCatalysis 312 10.6 ApplicationofLewisBase–TransitionMetalRelayCatalysis 316 10.7 ApplicationofMetal-BrønstedAcidRelayCatalysis 316 10.8 Conclusion 320 References 320 Index 325 ix Preface Thealarmingthalidomidetragedyofthe1960shasimmediatelyledtoaworldwide revisitofenantiomersinthemedicinalchemistryandpharmaceuticalindustries,as the biological systems would recognize each enantiomer for either targeted activ- ity or inactivity or severe side effect. Of all the synthetic strategies developed to distinguishenantiomersintheinterveningyears,thecatalyticprocessinducedby achiralmolecule,namelyasymmetriccatalysis,isundoubtedlythemostefficient approach to access enantiomerically pure compounds. In this context, enzymatic transformationsarethemostnaturalway,albeitwithlimitedtoleranceofreaction conditions;transitionmetalcomplexesareofstablyincreasingimportanceandpop- ularity in both fundamental research and industrial applications; organocatalysis employspurelysmallorganicmoleculesasthecatalyststoofferaconvenientand greensolutiontoasymmetricsynthesis. Inthepursuitofidealsynthesis,manyhaveexperiencedtheshortageofeffective chiralcatalystsinregardstobondactivationorstereochemicalcontrol.So,insteadof denovodesignandsynthesisofnewchiralcatalysts,whydon’ttrycatalystsblending: CombinedCatalysis?Incompatibilitiesnotwithstanding,therearevastopportunities incombiningdistinctcatalystsinasingleoperationforimprovingreactionefficiency orofferingauniquesolutiontochallengingtransformations.Thisbookfocuseson the concept of Organo/Metal Combined Catalysis, the proof of concept, and thor- oughgoingdiscussionsofthereactionsachieved,asthenumberofpublicationson thisfieldhasbeenincreasingexponentiallyduringthelastdecades.Organo/Metal CombinedCatalysisdatesbacktotheearly2000swhenachiralorganocatalystwas exploited to activate the nucleophiles, thus controlling the stereoselectivity of an allylicalkylationwithπ-allylpalladiumspecies,inthemostdesirablecooperative manner.Interestingly,onecatalystofacompatiblecatalyticsystemmayserveasa relayshuttleforothercatalyticcyclestoenableorthogonalbond-formingreactions, whichhasbeennamedasrelaycatalysis(alsoknownascascade,domino,ortan- demcatalysis).Oncetheincompatibilityissuebetweencatalystshasdeveloped,the Organo/MetalCombinedCatalysisfellsintoacategoryofsequentialcatalysis,acom- promiserelaycatalysisfeaturingstepwisecatalystsaddition. This book covers the whole array of organo/metal combined catalytic systems achieved to date, including 10 chapters: general introduction (Chapter 1); phase-transfer-catalyst and metals (Chapter 2); enamine and metals (Chapter 3); x Preface iminium and metals (Chapter 4); Brønsted acid and transition metal cooperative catalysis(Chapter5);Brønstedacidandmetalrelaycatalysis(Chapter6);Lewisbase andLewisacidcooperativecatalysis(Chapter7);Lewisbaseandtransitionmetal cooperativecatalysis(Chapter8);chiralorganocatalystandtransitionmetal-based photoredox catalyst (Chapter 9); applications in total synthesis (Chapter 10). All knowledgeableauthors,Dr.Zhi-YongHan,Dr.JieYu,Dr.ChangGuo,Dr.JinSong, Dr. Dian-Feng Chen, and Dr. Pu-Sheng Wang, have significantly contributed to thedevelopmentofOrgano/MetalCombinedCatalysis,andcanprovideinvaluable perspectives. This book could serve as an excellent textbook for graduate students and a greathandbookforresearchersandotherpractitionersatalllevelsofasymmetric synthesis. 1 1 Why Is Organo/Metal Combined Catalysis Necessary? 1.1 Introduction Molecularchiralityhasplayedanimportantroleinabroadscopeoffields,includ- ingsyntheticchemistry,drugdiscovery,biologicalsystem,andmaterialsscienceand willcontinuetoexertagreatimpactonphysicalscience.Suchunparalleledsignif- icanceofchiralityleadstoincreasingdemandforefficientasymmetricprotocolsto buildupchiralstructures. Chiral resolution is the oldest way to isolate optically pure chiral molecules from the racemic form. Chiral pool- and auxiliary-induced asymmetric synthesis has frequently been synthetic strategies of choice to create chiral elements in organic synthesis [1]. Although chiral auxiliary-induced asymmetric synthesis hasbeenprevalentlyappliedtotheasymmetricsynthesisofnaturalproductsand pharmaceutically significant substances, and thus held the historical impact on synthetic chemistry [2], the installation and removal of chiral auxiliary basically requireadditionalreactionstepstotherebyattenuatethesyntheticefficiency. Asymmetriccatalysishasgloballybeenacceptedasthemostefficientconceptto stereoselectivelybuildupmolecularchirality.Sincetheadventofasymmetriccyclo- propanationandhydrogenationcatalyzedbychiralcopperandrhodiumcomplexes, respectively [3, 4], asymmetric metal catalysis has continuously been the central focusofasymmetricsynthesis.Theversatilityandrobustnessofmetalsintheacti- vation of a wide spectrum of chemical bonds, even those with high bond energy, haverenderedmanyfamiliesofasymmetrictransformationstobeaccessedbyeither Lewisacidortransitionmetalcatalysis[5,6]. Thecontrolofstereochemistryinasymmetricmetalcatalysisprincipallyrelieson thechiralligandandtoalargedegreeontheligandacceleration[7].Thestereochem- icalcontroleventsinvolvedinthetransitionmetalcatalysismightbeoneorsome ofthetypicalelementaryreactionsincludingchiralligandcoordination,oxidative addition,insertion,andreductiveelimination.Theoxidativeadditionoccursmore easilywithanelectronicallyricherandlow-valentmetaltoincreasetheoxidation stateandcoordinationnumberofthemetalcenter;thereforetheligandcoordina- tionfacilitatesthisreaction.Theglobalandlong-standinginterestinthedesignand developmentofchiralligandshasculminatedintheexplosiveappearanceofpriv- ileged ligands [8], which actually propel the proliferationof elegant and practical AsymmetricOrgano-MetalCatalysis:Concepts,Principles,andApplications,FirstEdition.Liu-ZhuGong. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.