Lecture Notes in Physics SSuubbhheennddrraa MMoohhaannttyy AAssttrrooppaarrttiiccllee PPhhyyssiiccss aanndd CCoossmmoollooggyy PPeerrssppeeccttiivveess iinn tthhee MMuullttiimmeesssseennggeerr EErraa Lecture Notes in Physics Volume 975 FoundingEditors WolfBeiglböck,Heidelberg,Germany JürgenEhlers,Potsdam,Germany KlausHepp,Zürich,Switzerland Hans-ArwedWeidenmüller,Heidelberg,Germany SeriesEditors MatthiasBartelmann,Heidelberg,Germany RobertaCitro,Salerno,Italy PeterHänggi,Augsburg,Germany MortenHjorth-Jensen,Oslo,Norway MaciejLewenstein,Barcelona,Spain AngelRubio,Hamburg,Germany ManfredSalmhofer,Heidelberg,Germany WolfgangSchleich,Ulm,Germany StefanTheisen,Potsdam,Germany JamesD.Wells,AnnArbor,MI,USA GaryP.Zank,Huntsville,AL,USA The Lecture Notes in Physics The series Lecture Notes in Physics (LNP), founded in 1969, reports new developmentsin physics research and teaching - quickly and informally,but with ahighqualityandtheexplicitaimtosummarizeandcommunicatecurrentknowl- edgeinanaccessibleway.Bookspublishedinthisseriesareconceivedasbridging materialbetweenadvancedgraduatetextbooksandtheforefrontofresearchandto servethreepurposes: (cid:129) to be a compact and modern up-to-date source of reference on a well-defined topic; (cid:129) to serve as an accessible introduction to the field to postgraduate students and nonspecialistresearchersfromrelatedareas; (cid:129) to be a source of advanced teaching material for specialized seminars, courses andschools. Both monographs and multi-author volumes will be considered for publication. Edited volumesshouldhoweverconsist of a verylimited numberof contributions only.ProceedingswillnotbeconsideredforLNP. Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive being available at springerlink.com. The series contentisindexed,abstractedandreferencedbymanyabstractingandinformation services, bibliographic networks, subscription agencies, library networks, and consortia. Proposals should be sent to a member of the Editorial Board, or directly to the responsibleeditoratSpringer: DrLisaScalone SpringerNature Physics Tiergartenstrasse17 69121Heidelberg,Germany [email protected] Moreinformationaboutthisseriesathttp://www.springer.com/series/5304 Subhendra Mohanty Astroparticle Physics and Cosmology Perspectives in the Multimessenger Era SubhendraMohanty TheoryDivision PhysicalResearchLaboratory Ahmedabad,Gujarat,India ISSN0075-8450 ISSN1616-6361 (electronic) LectureNotesinPhysics ISBN978-3-030-56200-7 ISBN978-3-030-56201-4 (eBook) https://doi.org/10.1007/978-3-030-56201-4 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Dedicatedto MyParents. Preface In the last decade, there have been several seminal discoveries starting with the Higgs boson at the LHC (2012); neutrinos with PeV energies at IceCube (2013); detection of gravitational waves from black hole and neutron star mergers by LIGO (2016) and the first picture of the black hole at the centre of the M87 galaxyby the EHT (2019).This comesafter the successof the solar, atmospheric and reactor neutrino observation experiments in the last three decades and the cosmic microwave anisotropy measurement experiments (COBE (1989–1993), WMAP(2001–2011)andPLANCK(2009–2011)).Terrestrialdarkmatterdetection experimentscontinuetoputlimitsonthemassandcross-sectionofdarkmatter(if at all they are elementary particles). Astronomical observations are ongoing in a very large range of the electromagnetic spectrum (from radio to gamma rays) in addition to the observations of high energy neutrinos by IceCube. This ongoing multi-prongedobservationof the universe will help us to answer the fundamental questionsabouttheunderlyingtheoriesthatgoverntheuniverse. Inthisbook,weexplorethetheoreticalconsequencesofthesemulti-messenger signals from the universe. A graduate student or researcher who is curious about learning a particular research topic may delve into the chapter of their choice to getanintroductiontothesubject.Thetreatmentismorepedagogicalandfocussed comparedwith a review article. The main results discussed are worked out in the text. In Chap.1, we give a survey of the recent experimental observations, which started the multi-messenger era of astronomical observations like observations of gravitationalwaves,gammarays,neutrinosandcosmicraysfromthesamesource (e.g. blazers). We also list other important unsolved issues like final unobserved signal of the inflation paradigm, namely the observation of inflation-generated gravitational waves in the early universe via the measurement of the B-mode polarizationoftheCMBsignal. Dark matter is amongst the hottest areas of enquiry in particle physics and cosmology. In Chap.2, we discuss the phenomenology of dark matter at cosmo- logicalandgalacticscales.DirectdetectionexperimentslikeXenon-1Thaveruled out a large swathe of the mass vs DM–nucleon cross-section parameter space challenging the conventional paradigm of the ∼100GeV weakly interacting dark matter,wheretheobservedrelicdensityisnaturallyaccountedfor.Newmechanisms vii viii Preface for explainingthe relic density like the freeze-in productionof dark matter or the 3 → 2annihilationprocessarerequiredforevadingthestringentconstraintsfrom directdetectionexperiments.Darkmattermaybeverylightwithamassof10−22eV, ortheymaynotbeelementaryparticlesatallandmaybeprimordialblackholes. Large-scalegalacticsurveyssuchastheSloanDigitalSkySurvey,DarkEnergy Survey and Baryon Oscillations Spectroscopy Survey are increasingly providing data aboutthe distribution of matter in the universeand providea scope for us to test theories of dark matter, dark energy, neutrino mass, etc. To test theory with observations from the survey, we need to understand perturbations of the metric andmatter (darkmatter,baryons,photons,neutrinos)in the frameworkof general relativity.WedothisinChap.3. In Chap.4, we study the effect of perturbations on the cosmic microwave backgroundanisotropy spectrum. The observationsof COBE, WMAP, PLANCK, DESI,SPT,etc.turnedcosmologyintoprecisionscience.Futureobservationswill tell us about the existence (or not) of B-mode polarization, which will test the theories of inflation. CMB can also be used to study the interactions of the dark sector like neutrino–darkmatter interactionsor neutrino–darkenergyinteractions. WelaydownthebasicsofthetheoryofCMBanisotropyaimedatnon-expertsinthe subjectwho wouldlike to dive in and make predictionsbased on theoriesof their choiceforongoingandfutureobservations. InChap.5,wediscussmodelsofinflation,whichareconsistentwiththestringent limits on the tensor-to-scalar ratio and spectral index placed by PLANCK. There are a few well-motivated inflation models that make the cut, namely natural inflation, curvature-coupled Higgs inflation, R2 Starobinsky inflation and the no- scale supergravity models. We discuss the pros and cons of each of these models anddiscusstheirotherphenomenologicalconsequenceandfutureprospectsinCMB andLSSobservations. The discovery of the Higgs boson completed the last element in the particle spectrum envisaged in the standard model. The discovery of this first elementary scalar particle brings in several questions regarding the Higgs potential. In the standard model, the Higgs potential becomes negative at energy scales of ∼1011 GeV.Istheuniversestableagainsttunnellingtoanegative(Higgspotential)energy phase?WhatadditionalparticlescanmaketheHiggspotentialstableormetastable (thetimescaletunnellingissmallerthanthelifetimeoftheuniverse)? In Chap.6, we address these questions. We develop the idea of effective potentialofscalarfields.We discusstheColeman–Weinberg(oneloopatallorder in coupling) corrections to the tree-level potential. We also derive the effective potential at finite temperature, which will decide the nature of phase transition during symmetry breaking as the universe cools. Phase transitions in the early universecangenerategravitationalwavesthatmaybeobservedinLIGOorfuture gravitationalwavedetectors. In Chap.7, we discuss gravitational waves. The gravitational wave energy radiatedrate bybinarystarsis calculatedusingthe (quicker)effectivefieldtheory technique and the result compared to the classical derivation. Energy loss rate of other possible light scalars like axions from black holes or neutron stars is also Preface ix derived.Thegravitationalwaveformexpectedatthedetectorsfrombinarymergers isderived.Thestochasticgravitationalwavesfromphasetransitions,whichmaybe observedingravitationalwavedetectors,areworkedout. InChap.8,westudyblackholes.Blackholemergershavebeenobservedthrough their gravitational signals, and the ring down of the black holes has been seen in theLIGOobservations(2016).Fromthegravitationalwaveobservations,themass and spin of the black holes can be estimated. Moreover,recently there is a direct observationoftheblackholeshadowbythe EventHorizonTelescopeteamofthe supermassiveblackholeatthecentreofM87galaxy.Theseobservationsareagood motivationforstudyingthedetailsoftherotatingblackholesaswellasmoregeneral typesofblackholeslikethedilation-axionblackholespredictedfromstringtheory. ThedeviationfromtheKerrmetricmaybeobservableingravitationalwavesignals ormoredirectlyfromtheshapeandsizeofthephotonshadowsofthesuper-massive galacticcentreblackholes.Kerrblackholesmayalsogeneratehighenergyparticles bythemechanismofsuper-radiancethatwewilldiscusslaterinthatchapter. We hope that the reader will find the subjects covered interesting and be motivatedtodiveintotheresearchworkinthisfield. I thank the students Surya Nayak, Prafulla Panda, Sarira Sahu, Anshu Gupta, Akhilesh Nautiyal, Suratna Das, SoumyaRao, Moumita Das, TanushreeKaushik, Gaurav Tomar, Girish Chakravarti, Bhavesh Chauhan, Ashish Narang, Priyank Parashari,PrakrutChaubalandTanmayPoddarfortheirwonderfulcollaborations. I thank the postdoctoral fellows I have worked with namely, Peter Stockinger, Kaushik Bhattacharya, Joydeep Chakrabortty, Gaurav Goswami, Ila Garg, Ujjal KumarDey,NaveenSingh,NajimuddinKhan,SampurnAnand,ArindamMazum- dar,SoumyaSadhukhan,SoumyaJana,SukannyaBhattacharya,AyonPatra,Tripu- rariSrivastava,AbhassKumarandAbhijitSahaforkeepingmeup-to-dateaboutthe newavenuesofresearchovertheyears.Manyofmycollaboratorshavecontributed plotsandillustrationsforthisbook.Ithankthemallfortheirimmensehelp. I thank my long-term collaborators Eduard Masso, Anjan Joshipura, Durga PrasadRoy,SandipPakvasa,GaetanoLambiase,AragamPrasannaandothersfrom whomIhavelearntmuchofwhatappearsinthisbook. IthankmycolleaguesatPRLfortheirsupport. I thank my wife Srubabati and daughter Anushmita for among other things keepingmefedandwateredinthetryingtimesduringthecompletionofthebook. I thank B. Ananthanaryan, Indian Institute of Science, Bangalore (Editorial BoardmemberofSpringerBriefsinPhysics)forhisencouragementandsupport. Andlastbutnottheleast,IthankmySpringerEditorLisaScaloneforpatiently guidingmetillthecompletionofthisbook. Ahmedabad,India SubhendraMohanty May2020 Contents 1 Introduction .................................................................. 1 1.1 GravitationalWaveObservationbyLIGO ........................... 1 1.2 Multi-MessengerSignalatLIGO,VIRGO,IceCubeandFermi.... 2 1.3 IceCubeObservationofPeVNeutrinos .............................. 3 1.4 LSSandCMB ......................................................... 4 1.5 PhaseTransitionsandStochasticGravitationalWaves .............. 5 References..................................................................... 6 2 DarkMatter.................................................................. 9 2.1 Introduction............................................................ 9 2.2 DarkMatterintheGalaxies........................................... 10 2.2.1 IsothermalDistribution...................................... 11 2.2.2 NFWProfile.................................................. 13 2.2.3 BurkertProfile................................................ 14 2.2.4 TheLocalDensityofDarkMatter.......................... 14 2.3 DarkMatteratCosmologicalScales.................................. 14 2.3.1 RelicDensityofDarkMatterintheUniverse.............. 15 2.3.2 BoltzmannEquation......................................... 16 2.3.3 RelicDensityofColdDarkMatter.......................... 19 2.3.4 SelfInteractingDarkMatter................................. 26 2.3.5 ColdDarkMatterRelicbyFreeze-in ....................... 29 2.3.6 Ultra-LightDarkMatter .................................... 32 2.4 DirectDetectionofWIMPDarkMatter.............................. 33 2.4.1 AnnualModulationoftheSignal ........................... 34 2.4.2 FromNucleonCrossSectiontoNuclearScattering Rates.......................................................... 35 2.4.3 FromQuarksCouplingstoNuclearCouplingsof DarkMatter .................................................. 37 2.4.4 Spin-DependentCrossSection.............................. 41 2.4.5 InelasticDarkMatter ........................................ 43 2.5 DarkMatterSignalsinHighEnergyPhotonsandNeutrinos Observations........................................................... 44 2.6 Conclusion............................................................. 46 References..................................................................... 46 xi