ASTRONOMY AND ~ ASTROPHYSICS LIBRARY LIBRARY Series Editors: I. Appenzeller, Heidelberg, Germany G. Bomer, Garching, Germany M. Harwit, Washington, DC, USA R. Kippenhahn, Gottingen, Germany J. Lequeux, Paris, France V. Trimble, College Park, MD; and Irvine, CA, USA Springer-Verlag Berlin Heidelberg GmbH ONLINE LIBRARY Physics and Astronomy http://www.springer.de/phys/ Jean-Luc Starck Fionn Murtagh Astronomical Image and Data Analysis With 102 Figures, Including 27 Color Figures, and 10 Tables i Springer Dr. Jean-Luc Starck Centre d'Etudes de Saclay Service d' Astrophysique Orme des M6risiers 91191 Gif-sur- Yvette Cedex, France Professor Fionn Murtagh Queen's University Belfast School of Computer Science Belfast BT7 lNN, Northern Ireland, UK Cover picture: Five-minute exposure (five 60-second dithered and stacked images), R filter, taken with CFH12K wide-field camera (100 million pixels) at the primary focus ofthe CFHT in July 2000. The image is from an extremely rich zone of our Galaxy, containing star formation regions, dark nebulae (molecular c10uds and dust regions), emission nebulae (Ha regions), and evolved stars which are scattered throughout the field in their two-dimensiona1 projection effect. This zone is in the constellation of Sagittarius. (©Canada-France-Hawaii Telescope, J.-C. Cuillandre, 2000.) Library of Congress Cataloging-in-PublicationData. Starck, J.-L. (Jean-Luc), 1965- Astronomical image and data ana1ysis / Jean-Luc Starck, Fionn Murtagh. p. cm. - (Astronomy and astrophysics library, ISSN 0941-7834) Inc1udes bibliographica1 references and index. ISBN 978-3-662-04908-2 ISBN 978-3-662-04906-8 (eBook) DOI 10.1007/978-3-662-04906-8 1. Imaging systems in astronomy-Data processing. 1. Murtagh, Fionn. II. Title. III. Series. QB51.3145 S73 2002 522' .0285-dc21 2002074295 ISSN 0941-7834 ISBN 978-3-662-04908-2 This work is subject to copyright. All rights are reserved, whether the whole or par! of the material is concemed, spe cifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permis sion for use must a1ways be obtained from Springer-Verlag Berlin Heidelberg GmbH. Violations are liable for prosecution under the German Copyright Law. http://www.springer.de © Springer-Verlag Berlin Heidelberg 2002 Originally published by Springer Berlin Heidelberg New York in 2002 Softcover reprint of the hardcover 1s t edition 2002 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: by authors and LE-TEX GbR, Leipzig using La-TEX Cover design: design & production GmbH, Heidelberg Printed on acid-free paper SPIN: 10857166 55/31411YL -5432 1 O Preface When we consider the ever increasing amount of astronomical data available to us, we can well say that the needs of modern astronomy are growing by the day. Ever better observing facilities are in operation. The fusion of infor mation leading to the coordination of observations is of central importance. The methods described in this book can provide effective and efficient ripostes to many of these issues. Much progress has been made in recent years on the methodology front, in line with the rapid pace of evolution of our technological infrastructures. The central themes of this book are information and scale. The approach is astronomy-driven, starting with real problems and issues to be addressed. We then proceed to comprehensive theory, and implementations of demonstrated efficacy. The field is developing rapidly. There is little doubt that further important papers, and books, will follow in the future. Colleagues we would like to acknowledge include: Alexandre Aussem, Albert Bijaoui, Franc;ois Bonnarel, Jonathan G. Campbell, Ghada Jammal, Rene Gastaud, Pierre-Franc;ois Honore, Bruno Lopez, Mireille Louys, Clive Page, Eric Pantin, Philippe Querre, Victor Racine, Jerome Rodriguez, and Ivan Valtchanov. The cover image is from Jean-Charles Cuillandre. It shows a 5-min ex posure (5 60-s dithered and stacked images), R filter, taken with a CFH12K wide-field camera (100 million pixels) at the primary focus of the CFHT in July 2000. The image is from an extremely rich zone of our Galaxy, containing star formation regions, dark nebulae (molecular clouds and dust regions), emission nebulae (HaJ, and evolved stars which are scattered throughout the field in their two-dimensional projection effect. This zone is in the constella tion of Sagittarius. Paris, Belfast J ean-Luc Starck, June 2002 Fionn Murtagh Contents 1. Introduction to Applications and Methods. . . . . . . . . . . . . . . . 1 1.1 Introduction........................................... 1 1.2 Transformation and Data Representation. . . . . . . . . . . . . . . . . . 3 1.2.1 Fourier Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Time-Frequency Representation. . . . . . . . . . . . . . . . . . . . 6 1.2.3 Time-Scale Representation: The Wavelet Transform .. 9 1.2.4 The Radon Transform ............................ 12 1.3 Mathematical Morphology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 1.4 Edge Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15 1.4.1 First Order Derivative Edge Detection. . . . . . . . . . . . .. 15 1.4.2 Second Order Derivative Edge Detection ............ 19 1.5 Segmentation.......................................... 20 1.6 Pattern Recognition .................................... 21 1. 7 Summary.............................................. 25 2. Filtering.................................................. 27 2.1 Introduction........................................... 27 2.2 Multiscale Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 a 2.2.1 The Trous Isotropic Wavelet Transform. . . . . . . . . . .. 29 2.2.2 Multiscale Transforms Compared to Other Data Transforms ..... . . . . . . . . .. 30 2.2.3 Choice of Multiscale Transform .................... 32 2.2.4 The Multiresolution Support. . . . . . . . . . . . . . . . . . . . . .. 34 2.3 Significant Wavelet Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . .. 35 2.3.1 Definition....................................... 35 2.3.2 Noise Modeling .................................. 36 2.3.3 Automatic Estimation of Gaussian Noise. . . . . . . . . . .. 37 2.4 Filtering and Wavelet Coefficient Thresholding. . . . . . . . . . . .. 45 2.4.1 Thresholding.................................... 45 2.4.2 Iterative Filtering ................................ 46 2.4.3 Experiments..................................... 47 2.4.4 Iterative Filtering with a Smoothness Constraint ..... 49 2.5 Haar Wavelet Transform and Poisson Noise. . . . . . . . . . . . . . .. 51 2.5.1 Haar Wavelet Transform .......................... 52 VIII Contents 2.5.2 Poisson Noise and Haar Wavelet Coefficients. . . . . . . .. 52 2.5.3 Experiments..................................... 55 2.6 Summary.............................................. 58 3. Deconvolution............................................ 59 3.1 Introduction........................................... 59 3.2 The Deconvolution Problem ............................. 60 3.3 Linear Regularized Methods .... . . . . . . . . . . . . . . . . . . . . . . . .. 63 3.3.1 Least Squares Solution. . . . . . . . . . . . . . . . . . . . . . . . . . .. 63 3.3.2 Tikhonov Regularization. . . . . . . . . . . . . . . . . . . . . . . . .. 63 3.3.3 Generalization................................... 64 3.4 CLEAN............................................... 65 3.5 Bayesian Methodology ............................ . . . . .. 66 3.5.1 Definition....................................... 66 3.5.2 Maximum Likelihood with Gaussian Noise. . . . . . . . . .. 66 3.5.3 Gaussian Bayes Model. . . . . . . . . . . . . . . . . . . . . . . . . . .. 67 3.5.4 Maximum Likelihood with Poisson Noise. . . . . . . . . . .. 67 3.5.5 Poisson Bayes Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 68 3.5.6 Maximum Entropy Method. . .. . . . . .. . . . . . . . . .. . . .. 68 3.5.7 Other Regularization Models. . . . . . . . . . . . . . . . . . . . . .. 69 3.6 Iterative Regularized Methods ........................... 70 3.6.1 Constraints...................................... 70 3.6.2 Jansson-Van Cittert Method. . . . . . . . . . . . . . . . . . . . . .. 71 3.6.3 Other Iterative Methods .......................... 71 3.7 Wavelet-Based Deconvolution. . . . . . . . .. . . . . . . . . .. . . . . .. .. 72 3.7.1 Introduction..................................... 72 3.7.2 Wavelet-Vaguelette Decomposition. . . . . .. . . . . . . . . .. 73 3.7.3 Regularization from the Multiresolution Support. . . .. 75 3.7.4 Wavelet CLEAN. . . . .. . . . . . .. . . . . .. . . . . . . .. . . . . .. 79 3.7.5 Multiscale Entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 84 3.8 Deconvolution and Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . .. 86 3.9 Super-Resolution....................................... 87 3.9.1 Definition....................................... 87 3.9.2 Gerchberg-Saxon-Papoulis Method. . . . . . . . . . . . . . . .. 87 3.9.3 Deconvolution with Interpolation. . . . . . . . . . . . . . . . . .. 88 3.9.4 Undersampled Point Spread Function. . . . . . . . . . . . . .. 89 3.9.5 Multiscale Support Constraint ..................... 90 3.10 Conclusions and Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 90 4. Detection................................................. 93 4.1 Introduction........................................... 93 4.2 From Images to Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94 4.3 Multiscale Vision Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 98 4.3.1 Introduction..................................... 98 4.3.2 Multiscale Vision Model Definition ................. 99 Contents IX 4.3.3 From Wavelet Coefficients to Object Identification. . .. 99 4.3.4 Partial Reconstruction ............................ 102 4.3.5 Examples ....................................... 104 4.3.6 Application to ISOCAM Data Calibration ........... 106 4.4 Detection and Deconvolution ............................. 110 4.5 Conclusion ............................................ 112 4.6 Summary .............................................. 113 5. Image Compression ....................................... 115 5.1 Introduction ........................................... 115 5.2 Lossy Image Compression Methods ....................... 117 5.2.1 The Principle .................................... 117 5.2.2 Compression with Pyramidal Median Transform ..... 118 5.2.3 PMT and Image Compression ...................... 120 5.2.4 Compression Packages ............................ 123 5.2.5 Remarks on These Methods ....................... 124 5.3 Comparison ............................................ 126 5.3.1 Quality Assessment ............................... 126 5.3.2 Visual Quality ................................... 127 5.3.3 First Aladin Project Study ........................ 128 5.3.4 Second Aladin Project Study ...................... 131 5.3.5 Computation Time ............................... 136 5.3.6 Conclusion ...................................... 136 5.4 Lossless Image Compression ............................. 138 5.4.1 Introduction ..................................... 138 5.4.2 The Lifting Scheme ............................... 139 5.4.3 Comparison ..................................... 143 5.5 Large Images: Compression and Visualization .............. 144 5.5.1 Large Image Visualization Environment: LIVE ....... 144 5.5.2 Decompression by Scale and by Region .............. 146 5.5.3 The SAO-DS9 LIVE Implementation ............... 146 5.6 Summary .............................................. 149 6. Multichannel Data ........................................ 151 6.1 Introduction ........................................... 151 6.2 The Wavelet-Karhunen-Loeve Transform .................. 151 6.2.1 Definition ....................................... 151 6.2.2 Correlation Matrix and Noise Modeling ............. 152 6.2.3 Scale and Karhunen-Loeve Transform ............... 153 6.2.4 The WT-KLT Transform .......................... 154 6.2.5 The WT-KLT Reconstruction Algorithm ............ 155 6.3 Noise Modeling in the WT-KLT Space .................... 155 6.4 Multichannel Data Filtering ............................. 156 6.4.1 Introduction ..................................... 156 6.4.2 Reconstruction from a Subset of Eigenvectors ........ 156 X Contents 6.4.3 WT-KLT Coefficient Thresholding .................. 157 6.4.4 Example: Astronomical Source Detection ............ 158 6.5 The Haar-Multichannel Transform ........................ 158 6.6 Independent Component Analysis ........................ 159 6.7 Summary .............................................. 160 7. An Entropic Tour of Astronomical Data Analysis ......... 163 7.1 Introduction ........................................... 163 7.2 The Concept of Entropy ................................. 166 7.3 Multiscale Entropy ..................................... 172 7.3.1 Definition ....................................... 172 7.3.2 Signal and Noise Information ...................... 174 7.4 Multiscale Entropy Filtering ............................. 176 7.4.1 Filtering ........................................ 176 7.4.2 The Regularization Parameter ..................... 177 7.4.3 Use of a Model ................................... 179 7.4.4 The Multiscale Entropy Filtering Algorithm ......... 180 7.4.5 Optimization .................................... 181 7.4.6 Examples ....................................... 181 7.5 Deconvolution .......................................... 185 7.5.1 The Principle .................................... 185 7.5.2 The Parameters .................................. 186 7.5.3 Examples ....................................... 187 7.6 Multichannel Data Filtering ............................. 187 7.7 Background Fluctuation Analysis ......................... 190 7.8 Relevant Information in an Image ........................ 191 7.9 Multiscale Entropy and Optimal Compressibility ........... 192 7.10 Conclusions and Summary ............................... 194 8. Astronomical Catalog Analysis ........................... 197 8.1 Introduction ........................................... 197 8.2 Two-Point Correlation Function .......................... 198 8.2.1 Introduction ..................................... 198 8.2.2 Determining the 2-Point Correlation Function ........ 199 8.2.3 Error Analysis ................................... 200 8.2.4 Correlation Length Determination .................. 201 8.2.5 Creation of Random Catalogs ...................... 201 8.2.6 Examples ....................................... 202 8.3 Fractal Analysis ........................................ 206 8.3.1 Introduction ..................................... 206 8.3.2 The Hausdorff and Minkowski Measures ............. 207 8.3.3 The Hausdorff and Minkowski Dimensions ........... 208 8.3.4 Multifractality ................................... 209 8.3.5 Generalized Fractal Dimension ..................... 210 8.3.6 Wavelet and Multifractality ........................ 210