ebook img

Astrometry and Exoplanet Characterization: Gaia and Its Pandora's Box PDF

0.71 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Astrometry and Exoplanet Characterization: Gaia and Its Pandora's Box

Astrometry and ExoplanetCharacterization: Gaiaand ItsPandora’s Box Sozzetti, A.1 1. INAF-OsservatorioAstronomicodiTorino ViaOsservatorio20,I-10025PinoTorinese,Italy [email protected] Introduction In its all-skysurvey, Gaia will monitorastrometricallyhundredsof thousandsof main-sequencestars within ≈200 pc, looking for the presence of giant planetary companions within a few AUs from their host stars. In- 2 deed, Gaia observations will have great impact is the astrophysics of planetary systems (e.g., Casertano et al. 1 2008),inparticularwhenseenasacomplementtoothertechniquesforplanetdetectionandcharacterization(e.g., 0 2 Sozzetti 2011). In this paper, I briefly address some of the relevanttechnical issues associated with the precise and accurate determinationof astrometric orbitsof planetarysystems using Gaia data. I then highlightsome of n theimportantsynergiesbetweenGaia high-precisionastrometryandotherongoingandplanned,indirectanddi- a J rectplanet-findingandcharacterizationprograms,bothfromthe groundandinspace, andovera broadrangeof 7 wavelengths,providingpreliminaryresultsrelatedtoonespecificexampleofsuchsynergies. 1 ] P 1. ExoplanetOrbitswithGaiaAstrometry:TheChallenge E h. We are about to enter the age of micro-arcsecond(m as) astrometry with Gaia. In the matter of astrometric p detectionofplanetary-masscompanionsaroundnearbystars,theimprovementofovertwoordersofmagnitudein - single-measurementprecisionwithrespecttopresent-dayHipparcosastrometryisabsolutelymandatorytofinally o r putanendtothelonglistof‘blunders’thatthistechniquehasdelivered(forareview,seeSozzetti2010).However, t s theimprovedaccuracyoftheGaiameasurementswillnotresolvebyitselfthetechnicalproblemsassociatedwith a themodelingoftheastrometricsignaturesofplanetarysystems,whichwillhavetobecarefullydealtwith. [ 1 1.1 OrbitalFitsofPlanetarySystems v 4 8 TheproblemofthecorrectdeterminationoftheastrometricorbitsofplanetarysystemsusingGaiadata(highly 4 non-linear orbital fitting procedures, with a large number of model parameters) will present many difficulties. 3 For example, it will be necessary to assess the relative robustness and reliability of differentproceduresfor or- . 1 bital fits. Consistency checks between differentsolution algorithmswill be mandatoryas a way of learning the 0 lessons of radial-velocity surveys, that are showing us, particularly in the case of multiple-planetsystems, how 2 disagreementonorbitalsolutiondetails,andsometimenumberofplanets!,basedonthesamedatasetsisnotthat 1 : uncommon (e.g., Forveille et al. 2011, and references therein; Hatzes et al. 2011, and references therein). A v detailedunderstandingofthestatisticalpropertiesoftheuncertaintiesassociatedwiththemodelparameterswill i X havetobedeveloped,basedontherelativemeritofdifferentmetricstailoredtothistask,suchascovariancema- r trices,c 2 surfacemapping,andbootstrappingprocedures. Formultiplesystems,atrade-offwillhavetobefound a betweenaccuracyinthedeterminationofthemutualinclinationanglesbetweenpairsofplanetaryorbits,single- measurement precision and redundancyin the number of observations with respect to the number of estimated modelparameters. Itwillconstitutea challengeto correctlyidentifysignals(andtheassociated)withamplitude closetothemeasurementuncertainties,particularlyinthepresenceoflargersignalsinducedbyothercompanions and/orsourcesofastrophysicalnoiseofcomparablemagnitude. Finally,incasesofmultiple-componentsystems wheredynamicalinteractionsareimportant(asituationex-periencedalreadybyradial-velocitysurveys),fullydy- namical(Newtonian)fitsinvolvingann-bodycodemighthavetobeusedtoproperlymodeltheGaiaastrometric dataandtoensuretheshort-andlong-termstabilityofthesolution(seeSozzetti2005). 1.2 ExoplanetsTreatmentintheGaiaDataProcessingPipeline AlltheaboveissuescouldhaveasignificantimpactonGaia’scapabilitytodetectandcharacterizeplanetary systems. Forthesereasons,withinthepipelineofCoordinationUnit4(objectprocessing)oftheGaiaDataPro- Figure1: DU437ActivityDiagram. cessingandAnalysisConsortium(DPAC),inchargeofthescientificprocessingoftheGaiadataandproduction ofthefinalGaia cataloguetobe releasedsometimein 2021,a DevelopmentUnit(DU437)hasbeenspecifically devotedtothemodellingoftheastrometricsignalsproducedbyplanetarysystems. TheDUiscomposedofsev- eraltasks,whichimplementmultiplerobustproceduresfor(singleandmultiple)astrometricorbitfitting(suchas MarkovChainMonteCarloandgeneticalgorithms)andthedeterminationofthedegreeofdynamicalstabilityof multiple-componentsystems. Iprovidehereaquick-lookviewofthesoftwareanditsstatus. 1.3 FittingAlgorithms: Highlights Figure1showstheactivitydiagramofDU437.Themainfeatureofthissoftwaremoduleconsistsoftheuseof twodifferentsolutionalgorithmsforfittingastrometricorbitsofplanetarysystemstoGaiadata. The first algorithm is based on a hybrid Markov Chain Monte Carlo (MCMC) approach. The global non- linear least-square problem is partially linearized in then paramters a , w , W , and i (for j =1,...,n, where j j j j n is the number of planets) using the Thiele-Innes elements representation (Green 1985). An iterative period search provides seeds for initializing the MCMC procedure (a parallel-tempering algorithm upgrade is in the works).AnMCMCchainisthenrunonthenonlinearparameters(e ,P,t ),drawingfromGaussianindependent j j j distributions. Each step of the chain drivesa linear LSQ solver (SVD). Multiple MCMC chains are run (one is usedforinference),andconvergenceischeckedviatheGelman-Rubintest. Finally,thesetofparameterswiththe highestlikelihoodistheseedforalocalnon-linearminimizationintheleast-squaressenseusingtheLevemberg- Marquardtalgorithm. The second otbital solution module implements an approach based on a genetic algorithm (GA). The first step consists of the generation of a population of 7∗n chromosomes. The fitness of each chromosome in the populationisevaluated,andtheselectionof‘parent’chromosomepairsismadefromthepopulationaccordingto theirfitness. Thenextstep includesthe iterativemodelingusinga set ofoperatorssuch asmutation,cross-over, Levemberg-Marquardt,andperiodscan. Finally, acceptanceof newoffspringsin the populationis realized, and furtheriterationsofthealgorithmusingthenewpopulationarecarriedout. ThelastimportantelementoftheDU437softwaremoduleisconstitutedbyitsorbitalstabilityanalysiscompo- nent.Atpresent,asimpleHillstabilitycriterionisapplied(Marchal&Bozis1982).Foratwo-planetconfiguration, thesystemwillbeconsideredHill-stableifthefollowinginequalityissatisfied: 2M m m − c2h>1+34/3 1 2 , (1) G2M⋆3 m23/3(m1+m2)4/3 whereM isthetotalmassofthesystem, m andm aretheplanetmasses(thesubscript1referstotheinner 1 2 Figure2: Left:First-passperiodogramforastarwithalong-periodplanet.Right: Theperiodogramafterthe removalofthesignatureoftheouterplanet. planet), m is the mass of the star, G is the gravitational constant, M =(m m +m m +m m ), c is the total 3 ⋆ 1 2 1 3 2 3 angularmomentumof thesystem, andh is theenergyThisissufficienttodouble-checkdynamicallypathologic (whilepotentiallycorrectinac 2sense!)solutionsets(e.g.,orbit-crossingduetoe∼1.0)obtainedbytheMCMC andGAalgorithms.LimiteduseofanN-bodyintegrator(e.g.,Burlisch-Stöer)isbeingtestedatthetimeofwriting. 1.4 AReadinessTest I show in Figure 2 and Figure 3 some results from the application of the MCMC algorithm on a simulated Gaiadataforastellarsampleof100nearby(d<100pc)solar-massstarswithGaiamagnitudeG<10magand orbitedbytwo planetswithperiodsuptotwice thenominal5-yrmissioneduration. Giventhepresent-dayGaia astrometric error model, inclusive of the effects of a gate scheme to avoid saturation at the bright end (G<13 mag), in this sample ≈1/3 of the systems were not detectable in Gaia astrometry, ≈1/3 had one detectable planet,and≈1/3hadtwodetectablecompanions. Forexample,inatwo-planetsystemwithalong-periodplanet identifiedin the initial periodogram(Figure2, left panel), the correctremovalof the outer planet’sorbitunveils intheperiodogramtheclearsignalofthesecond,innerplanet(Figure2, rightpanel). Similarly,inthecaseofa systemwithtwoplanetsinducinglow-S/Nsignaturesofcomparablemagnitude,theperiodicityanalysiscorrectly identifiestheperiodsofbothcomponentsalreadyinthefirstpass(Figure3,leftpanel).Theresultingqualityofthe fittedperiods(showninFigure3,rightpanel)indetectabletwo-planetsystemsisingoodagreementwithearlier results(Casertanoetal. 2008). 2. TheGaia-ExoplanetsSynergyPotential Gaia’s maincontributionto exoplanetscience will be its unbiasedcensusofplanetarysystemsorbitinghun- dredsof thousandsnearby(d <200pc), relatively bright(G<13)stars across all spectraltypes, screenedwith constantastrometricsensitivity.Asaresult,theactualimpactofGaiameasurementsinexoplanetsscienceisbroad, andratherstructured.TheGaiadatahavethepotentialto:a)significantlyrefineourunderstandingofthestatistical propertiesofextrasolarplanets;b)helpcruciallytesttheoreticalmodelsofgasgiantplanetformationandmigra- tion; c) achieve key improvements in our comprehension of important aspects of the formation and dynamical evolutionofmultiple-planetsystems;d)aidintheunderstandingofdirectdetectionsofgiantextrasolarplanets;e) provideimportantsupplementarydatafortheoptimizationofthetargetselectionforfutureobservatoriesaimingat thedirectdetectionandspectralcharacterizationofhabitableterrestrialplanets. Forareview,seeSozzetti(2010). ThebroadrangeofapplicationstoexoplanetsscienceissuchthatGaiadata canbe seenasanidealcomple- ment to (and in synergy with) many ongoing and future observing programs devoted to the indirect and direct detectionandcharacterizationofplanetarysystems,bothfromthegroundandinspace,andacrossabroadrange of wavelengths. Gaia will contribute critically, for example, to the definition of input catalogues for proposed quasi-all-skyphotometrictransit surveys(PLATO,TESS); it will informground-baseddirectimaging programs (e.g.,SPHERE/VLT,EPICS/E-ELT)andspectroscopiccharacterizationprojects(e.g.,EChO,FINESSE)aboutthe epochandlocationofmaximumbrightnessof(primarilynontransiting)exoplanets,inordertoestimatetheirop- Figure3: Left:First-passperiodogramforastarwithtwolow-S/Nplanets. Right:Fittedvs. truevaluesofthe orbitalperiodfordetectabletwo-planetsystems. timalvisibility,andwillhelpinthemodelingandinterpretationofgiantplanets’phasefunctionsandlightcurves. Anothercriticalaspectwillconcernthelargeeffortintermsofground-basedfollow-upactivitiesto improvethe characterizationofastrometricallydetectedsystems(andpossiblythosefoundtransitingbyGaiaphotometry).For example,high-precisionradial-velocitycampaigns(bothatvisibleandinfraredwavelengths)willbeanecessary complement,withthethree-foldedaimofimprovingthephasesamplingoftheastrometricorbitsfoundbyGaia, extendingthetimebaselineoftheobservations(toputstringentconstraintsonoractuallycharacterizelong-period companions),andsearchforadditional,low-massand/orshort-periodcomponentswhichmighthavebeenmissed byGaiaduetolackofsensitivity. 2.1 ASynergeticExample:TheGaiasurveyofNearbyMDwarfs Cool,nearbyMdwarfswithinafewtensofparsecsfromtheSunarebecomingthefocusofdedicatedexper- iments in the realm of exoplanetsastrophysics. This is due to the shift in theoreticalparadigmsin light of new observations,andtotheimprovedunderstandingoftheobservationalopportunitiesforplanetdetectionandchar- acterizationprovidedbythissample. Gaia,initsall-skysurvey,willdeliverprecisionastrometryforamagnitude- limited(G=20)sampleofMdwarfs, providinganinventoryofcoolnearbystarswitha muchhigherdegreeof completeness(particularlyforlatesub-types)withrespecttocurrentlyavailablecatalogs. IpresentherepreliminaryfindingsofasimulationexperimentaimedatgaugingtheGaiapotentialforprecision astrometryofexoplanetsorbitingasampleofknown,nearbydMstars(Lépine2005). Gaiasensitivitythresholds areexpressedasafunctionofsystemparametersandinviewofthelatestmissionprofile,includingthemostup-to- dateastrometricerrormodel. Thesimulationsalsoprovideinsightonthecapabilityofhigh-precisionastrometry toreconstructtheunderlyingorbitalelementsandmassdistributionsofthegeneratedcompanions. Theseresults willhelpinevaluatingthecompleteexpectedGaiaplanetpopulationaroundlate-typestars. The synergy between the Gaia data on nearby M dwarfs and other ground-basedand space-borne programs forplanetdetectionandcharacterizationisalsoinvestigated,withaparticularfocuson: a)thepotentialforGaia topreciselydeterminetheorbitalinclination,whichmightindicatetheexistenceoftransitinglong-periodplanets; b) the ability of Gaia to carefully predict the ephemerides of (transiting and non-transiting) planets around M stars; and c) its potentialto help in the precise determinationof the emergentflux, for systematic spectroscopic characterizationoftheiratmosphereswithdedicatedobservatoriesinspace,suchasEChO. Simulation Scheme The basis is constituted by the Casertano et al. (2008) simulation setup. This has been updatedbyincludingthelatesGaiascanninglaw,foranominalT =5yrmissionduration. Themostup-to-date errormodelas a functionof Gaia G-band mag has been utilized, with the exclusion of the presently envisioned gate scheme (affecting only some 20% of bright (G<12) M dwarfs). Single-measurementerrors are typically s m∼100m as. Theactuallistoftargetsencompasses3150Mdwarfs(0.09−0.6M⊙)within33pcfromtheSun fromtheLSPM-NorthCatalog(Lp´ine2005),withaverageG∼14.0mag. Oneplanetwasgeneratedaroundeach star,withmassM =1M ,orbitalperiodP<3T,andmoderateeccentricities(e<0.6).Allotherorbitalelements p J Figure4: Left:Fractionalerrorontheinclinationangleiasafunctionofiitself. Right: Degradationrateinthe predictionforthevalueoforbitalseparationoftheplanetasafunctionofitsorbitalperiod. Figure5:Left: Errorontheplanetaryphasefunction(assumingaLambertsphere)asafunctionofuncertainty onthereconstructedplanetaryphase. Right:Predictedplanetaryemergentflux(anduncertainty)asafunctionof orbitalseparationfromtheMdwarfprimary. wereuniformlydistributedwithintheirrespectiveranges. PreliminaryResults Themainfindingsinthisexperimentcanbesummarizedasfollows: 1)Fordetectedgiant planetswithperiodsintherange0.2−5yr(i.e.,withaccuratelydeterminedmassesandorbits),inclinationangles will be determined with enough precision (<1%, see Figure 4, left panel) so that it will be possible to identify long-periodplanetswhicharelikelytotransit;2)forwell-sampledorbits(P<T),theuncertaintiesonplanetary ephemerides,separationr andpositionangleJ , willdegradeattypicalratesofD r <0.01AU/yr(seeFigure4, right panel) and D J <1 deg/yr, respectively. These are over an order of magnitude smaller than the degrada- tionlevelsattainedbypresent-dayephemeridespredictionsbasedonmilli-arcsecprecisionHST/FGSastrometry (Benedictetal. 2006);3)Planetaryphaseswillbe measuredwith typicaluncertaintiesD a ofa few degrees,re- sulting (assuming a simple purely scattering atmosphere) in average errors on the phase function DF (a )≈0.1 (Figure 5, left panel), and expected uncertainties in the determination of the emergent flux of wide-separation (a>0.3AU)giantplanetsof∼15%(Figure5,rightpanel). AlltheaboveconclusionshelptoquantifytheactualrelevanceoftheGaiaobservationsofthelargesampleof nearbyMdwarfsforinasynergeticefforttooptimizetheplanningandinterpretationoffollow-up/characterization measurementsofthediscoveredsystemsbymeansoftransitsurveyprograms,andupcomingandplannedground- based as well as space-borne observatories for direct imaging (e.g., SPHERE, EPICS) and simultaneous multi- wavelengthspectroscopy(e.g.,EChO). Conclusion Thelargestcompilationofhigh-accuracyastrometricorbitsofgiantplanets,unbiasedacrossallspectraltypes up to d <200 pc, will allow Gaia to crucially contribute to several aspects of planetary systems astrophysics (formation theories, dynamical evolution), in combination with present-day and future extrasolar planet search programs. Inthispaper,I havefirst discussedsomeofthe relevantissue relatedtothe robustassessmentof astrometric orbits of planetary systems detected by Gaia, with a focus on readiness tests of the DU437 software module in charge of providing(single and multiple) orbital solutions for exoplanetswithin the contextof the Gaia data processingpipeline. Then,I havepresentedpreliminaryresultsonan investigationofthesynergybetweenGaia astrometryonnearbyMdwarfsandotherground-basedandspace-borneprogramsforexoplanetcharacterization, focusing on: a) the potential for Gaia to precisely determine the orbital inclination, which might indicate the existenceoftransitinglong-periodplanets;b)theabilityofGaiatocarefullypredicttheephemeridesof(transiting andnon-transiting)planetsaroundMstars;andc)itspotentialtohelpintheprecisedeterminationoftheemergent flux,forsystematicspectroscopiccharacterizationoftheiratmosphereswithdedicatedobservatoriesinspace. Acknowledgements TheauthorwishestothankM.G.Lattanzi,R.Morbidelli,G.Micela,G.Tinetti,P.Giacobbeandthecolleagues of(DPACCU4)DU437D.Ségransan,D.Sosnowska,andN.Rambauxfortheirhelp,discussions,andinputs. References [1] BenedictG.F.,etal.2006.TheExtrasolarPlanete Eridanib:OrbitandMass,AJ,132,2206. [2] CasertanoS.,LattanziM.G.,SozzettiA.,etal.2008.Double-blindtestprogramforastrometricplanetdetec- tionwithGaia,A&A,482,699. [3] Forveille T., et al. 2011.The HARPS search for southernextra-solarplanetsXXXII. Only 4 planetsin the Gl581system,A&Asubmitted(arXiv:1109.2505). [4] GreenR.M.1985.SphericalAstronomy,CambridgeandNewYork,CambridgeUniversityPress [5] HatzesA.P.,etal.2011.TheMassofCoRoT-7b,ApJ,743,75. [6] LépineS.2005.NearbyStarsfromtheLSPM-NorthProper-MotionCatalog.I.Main-SequenceDwarfsand Giantswithin33ParsecsoftheSun,AJ,130,1680. [7] Marchal C., & Bozis G. 1982. Hill Stability and Distance Curves for the General Three-Body Problem, Celest.Mech.,26,311. [8] SozzettiA.2005.AstrometricMethodsandInstrumentationtoIdentifyandCharacterizeExtrasolarPlanets: AReview,PASP,117,1021. [9] SozzettiA.2010.DetectionandCharacterizationofPlanetarySystemswithm asAstrometry,EASPub.Ser., 42,55. [10] SozzettiA.2011.AstrometryandExoplanets:TheGaiaEraandBeyond,EASPub.Ser.,45,273.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.