ebook img

ASTRO-H White Paper-AGN Reflection PDF

20 Pages·2014·6.5 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ASTRO-H White Paper-AGN Reflection

ASTRO-H Space X-ray Observatory White Paper 4 1 AGNReflection 0 2 c e C.Reynolds(UniversityofMaryland),Y.Ueda(KyotoUniversity),H.Awaki(EhimeUniversity), D L.Gallo(SaintMary’sUniversity),P.Gandhi(UniversityofDurham1), 3 Y.Haba(AichiUniversityofEducation),T.Kawamuro(KyotoUniversity),S.LaMassa(YaleUniversity), A.Lohfink(UniversityofMaryland2),C.Ricci(KyotoUniversity),F.Tazaki(KyotoUniversity3), E] andA.Zoghbi(UniversityofMaryland4) H onbehalfoftheASTRO-HScienceWorkingGroup . h FigureCredit: ESA/V.Beckmann(NASA) p - o r t s a [ 1 v 7 7 1 1 . 2 1 4 1 : v i X r a 1AlsoatUniversityofSouthampton 2AlsoatUniversityofCambridge 3AlsoatNationalAstronomicalObservatoryofJapan 4AlsoatUniversityofMichigan 1 Abstract X-rayobservationsprovideapowerfultooltoprobethecentralenginesofactivegalacticnuclei(AGN). AhardX-raycontinuumisproducedfromdeepwithintheaccretionflowontothesupermassiveblackhole, andallopticallythickstructuresintheAGN(thedustytorusofAGNunificationschemes,broademission lineclouds,andtheblackholeaccretiondisk)“lightup”inresponsetoirradiationbythiscontinuum. This WhitePaperdescribestheprospectsforprobingAGNphysicsusingobservationsoftheseX-rayreflection signatures. High-resolutionSXSspectroscopyoftheresultingfluorescentironlineintype-2AGNwillgive us an unprecedented view of the obscuring torus, allowing us to assess its dynamics (through line broad- ening) and geometry (through the line profile as well as observations of the “Compton shoulder”). The broad-bandviewobtainedbycombiningalloftheASTRO-Hinstrumentswillfullycharacterizetheshape of the underlying continuum (which may be heavily absorbed) and reflection/scattering, providing crucial constraints on models for the Cosmic X-ray Background with a subsequent impact on understanding of supermassiveblackholeevolution. ASTRO-Hwillalsopermittherelativisticallybroadenedreflectionspec- trumfromtheinneraccretiondisktoberobustlystudied,evenincomplexsystemswith,forexample,warm absorptionandcompositesoftexcesses. Finally,theHXIwillallowthedetectionandstudyofreverberation delaysbetweenthecontinuumandtheComptonreflectionhumpfromtheinnerdisk. 2 CompletelistoftheASTRO-HScienceWorkingGroup TadayukiTakahashia,KazuhisaMitsudaa,RichardKelleyb,FelixAharonianc,HirokiAkamatsud,FumieAkimotoe, SteveAllenf,NaohisaAnabukig,LorellaAngelinib,KeithArnaudh,MarcAudardi,HisamitsuAwakij,AyaBambak, MarshallBautzl,RogerBlandfordf,LauraBrennemanb,GregBrownm,EdwardCackettn,MariaChernyakovac, MengChiaob,PaoloCoppio,ElisaCostantinid,JelledePlaad,Jan-WillemdenHerderd,ChrisDonep,TadayasuDotania, KenEbisawaa,MeganEckartb,TeruakiEnotoq,YuichiroEzoer,AndrewFabiann,CarloFerrignoi,AdamFosters, RyuichiFujimotot,YasushiFukazawau,StefanFunkf,AkihiroFuruzawae,MassimilianoGaleazziv,LuigiGallow, PoshakGandhip,MatteoGuainazzix,YoshitoHabay,KenjiHamaguchih,IsamuHatsukadez,TakayukiHayashia, KatsuhiroHayashia,KiyoshiHayashidag,JunkoHiragaaa,AnnHornschemeierb,AkioHoshinoab,JohnHughesac, UnaHwangad,RyoIizukaa,YoshiyukiInouea,HajimeInouea,KazunoriIshibashie,ManabuIshidaa,KumiIshikawaq, YoshitakaIshisakir,MasayukiItoae,NaokoIyomotoaf,JelleKaastrad,TimothyKallmanb,TuneyoshiKamaef, JunKataokaag,SatoruKatsudaa,JunichiroKatsutau,MadokaKawaharadaa,NobuyukiKawaiah,DmitryKhangulyana, CarolineKilbourneb,MasashiKimuraai,ShunjiKitamotoab,TetsuKitayamaaj,TakayoshiKohmuraak, MotohideKokubuna,SaoriKonamir,KatsujiKoyamaal,HansKrimmb,AyaKubotaam,HideyoKuniedae, StephanieLaMassao,PhilippeLaurentan,Franc¸oisLebrunan,MauriceLeuteneggerb,OlivierLimousinan, MichaelLoewensteinb,KnoxLongao,DavidLumbap,GrzegorzMadejskif,YoshitomoMaedaa,KazuoMakishimaaa, MaximMarkevitchb,HironoriMatsumotoe,KyokoMatsushitaaq,DanMcCammonar,BrianMcNamaraas,JonMillerat, EricMillerl,ShinMineshigeau,IkuyukiMitsuishie,TakuyaMiyazawae,TsunefumiMizunou,KojiMoriz, HideyukiMorie,KojiMukaib,HiroshiMurakamiav,ToshioMurakamit,RichardMushotzkyh,RyoNaginog, TakaoNakagawaa,HiroshiNakajimag,TakeshiNakamoriaw,ShinyaNakashimaa,KazuhiroNakazawaaa, MasayoshiNobukawaal,HirofumiNodaq,MasaharuNomachiax,SteveO’Dellay,HirokazuOdakaa,TakayaOhashir, MasanoriOhnou,TakashiOkajimab,NaomiOtaaz,MasanobuOzakia,FritsPaerelsba,Ste´phanePaltanii,ArvindParmarx, RobertPetreb,CiroPinton,MartinPohli,F.ScottPorterb,KatjaPottschmidtb,BrianRamseyay,RubensReisat, ChristopherReynoldsh,ClaudioRicciau,HelenRusselln,SamarSafi-Harbbb,ShinyaSaitoa,HiroakiSameshimaa, GoroSatoag,KosukeSatoaq,RieSatoa,MakotoSawadak,PeterSerlemitsosb,HiromiSetabc,AuroraSimionescua, RandallSmiths,YangSoongb,ŁukaszStawarza,YasuharuSugawarabd,SatoshiSugitaj,AndrewSzymkowiako, HiroyasuTajimae,HiromitsuTakahashiu,HiroakiTakahashig,YohTakeia,ToruTamagawaq,TakayukiTamuraa, KeisukeTamurae,TakaakiTanakaal,YasuoTanakaa,YasuyukiTanakau,MakotoTashirobc,YuzuruTawarae, YukikatsuTeradabc,YuichiTerashimaj,FrancescoTombesib,HiroshiTomidaai,YohkoTsuboibd,MasahiroTsujimotoa, HiroshiTsunemig,TakeshiTsurual,HiroyukiUchidaal,YasunobuUchiyamaab,HidekiUchiyamabe,YoshihiroUedaau, ShutaroUedag,ShiroUenoai,ShinichiroUnobf,MegUrryo,EugenioUrsinov,CordeVriesd,ShinWatanabea, NorbertWernerf,DanWilkinsw,ShinyaYamadar,HiroyaYamaguchib,KazutakaYamaokae,NorikoYamasakia, MakotoYamauchiz,ShigeoYamauchiaz,TahirYaqoobb,YoichiYatsuah,DaisukeYonetokut,AtsumasaYoshidak, TakayukiYuasaq,IrinaZhuravlevaf,AbderahmenZoghbih,andJohnZuHoneb aInstituteofSpaceandAstronauticalScience(ISAS),JapanAerospaceExplorationAgency(JAXA),Kanagawa252-5210,Japan bNASA/GoddardSpaceFlightCenter,MD20771,USA cAstronomyandAstrophysicsSection,DublinInstituteforAdvancedStudies,Dublin2,Ireland dSRONNetherlandsInstituteforSpaceResearch,Utrecht,TheNetherlands eDepartmentofPhysics,NagoyaUniversity,Aichi338-8570,Japan fKavliInstituteforParticleAstrophysicsandCosmology,StanfordUniversity,CA94305,USA gDepartmentofEarthandSpaceScience,OsakaUniversity,Osaka560-0043,Japan hDepartmentofAstronomy,UniversityofMaryland,MD20742,USA iUniversite´deGene`ve,Gene`ve4,Switzerland jDepartmentofPhysics,EhimeUniversity,Ehime790-8577,Japan kDepartmentofPhysicsandMathematics,AoyamaGakuinUniversity,Kanagawa229-8558,Japan lKavliInstituteforAstrophysicsandSpaceResearch,MassachusettsInstituteofTechnology,MA02139,USA mLawrenceLivermoreNationalLaboratory,CA94550,USA nInstituteofAstronomy,CambridgeUniversity,CB30HA,UK oYaleCenterforAstronomyandAstrophysics,YaleUniversity,CT06520-8121,USA pDepartmentofPhysics,UniversityofDurham,DH13LE,UK qRIKEN,Saitama351-0198,Japan rDepartmentofPhysics,TokyoMetropolitanUniversity,Tokyo192-0397,Japan sHarvard-SmithsonianCenterforAstrophysics,MA02138,USA 3 tFacultyofMathematicsandPhysics,KanazawaUniversity,Ishikawa920-1192,Japan uDepartmentofPhysicalScience,HiroshimaUniversity,Hiroshima739-8526,Japan vPhysicsDepartment,UniversityofMiami,FL33124,USA wDepartmentofAstronomyandPhysics,SaintMary’sUniversity,NovaScotiaB3H3C3,Canada xEuropeanSpaceAgency(ESA),EuropeanSpaceAstronomyCentre(ESAC),Madrid,Spain yDepartmentofPhysicsandAstronomy,AichiUniversityofEducation,Aichi448-8543,Japan zDepartmentofAppliedPhysics,UniversityofMiyazaki,Miyazaki889-2192,Japan aaDepartmentofPhysics,UniversityofTokyo,Tokyo113-0033,Japan abDepartmentofPhysics,RikkyoUniversity,Tokyo171-8501,Japan acDepartmentofPhysicsandAstronomy,RutgersUniversity,NJ08854-8019,USA adDepartmentofPhysicsandAstronomy,JohnsHopkinsUniversity,MD21218,USA aeFacultyofHumanDevelopment,KobeUniversity,Hyogo657-8501,Japan afKyushuUniversity,Fukuoka819-0395,Japan agResearchInstituteforScienceandEngineering,WasedaUniversity,Tokyo169-8555,Japan ahDepartmentofPhysics,TokyoInstituteofTechnology,Tokyo152-8551,Japan aiTsukubaSpaceCenter(TKSC),JapanAerospaceExplorationAgency(JAXA),Ibaraki305-8505,Japan ajDepartmentofPhysics,TohoUniversity,Chiba274-8510,Japan akDepartmentofPhysics,TokyoUniversityofScience,Chiba278-8510,Japan alDepartmentofPhysics,KyotoUniversity,Kyoto606-8502,Japan amDepartmentofElectronicInformationSystems,ShibauraInstituteofTechnology,Saitama337-8570,Japan anIRFU/Serviced’Astrophysique,CEASaclay,91191Gif-sur-YvetteCedex,France aoSpaceTelescopeScienceInstitute,MD21218,USA apEuropeanSpaceAgency(ESA),EuropeanSpaceResearchandTechnologyCentre(ESTEC),2200AGNoordwijk,TheNetherlands aqDepartmentofPhysics,TokyoUniversityofScience,Tokyo162-8601,Japan arDepartmentofPhysics,UniversityofWisconsin,WI53706,USA asUniversityofWaterloo,OntarioN2L3G1,Canada atDepartmentofAstronomy,UniversityofMichigan,MI48109,USA auDepartmentofAstronomy,KyotoUniversity,Kyoto606-8502,Japan avDepartmentofInformationScience,FacultyofLiberalArts,TohokuGakuinUniversity,Miyagi981-3193,Japan awDepartmentofPhysics,FacultyofScience,YamagataUniversity,Yamagata990-8560,Japan axLaboratoryofNuclearStudies,OsakaUniversity,Osaka560-0043,Japan ayNASA/MarshallSpaceFlightCenter,AL35812,USA azDepartmentofPhysics,FacultyofScience,NaraWomen’sUniversity,Nara630-8506,Japan baDepartmentofAstronomy,ColumbiaUniversity,NY10027,USA bbDepartmentofPhysicsandAstronomy,UniversityofManitoba,MBR3T2N2,Canada bcDepartmentofPhysics,SaitamaUniversity,Saitama338-8570,Japan bdDepartmentofPhysics,ChuoUniversity,Tokyo112-8551,Japan beScienceEducation,FacultyofEducation,ShizuokaUniversity,Shizuoka422-8529,Japan bfFacultyofSocialandInformationSciences,NihonFukushiUniversity,Aichi475-0012,Japan 4 Contents 1 GeneralIntroduction 6 2 MappingthestructureofobscuredAGN 8 2.1 TheX-rayViewofType-2AGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 ASTRO-H/SXSstudiesoftype-2AGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 BroadbandContinuumstudiesofType-2AGNwithASTRO-H . . . . . . . . . . . . . . . . . 10 3 TheNatureofCompton-ThickAGNs 11 3.1 TheImportanceofCompton-ThickAGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 TheComptonShoulderasaProbeoftheObscurer . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.1 BroadbandContinuumStudiesofCTAGN. . . . . . . . . . . . . . . . . . . . . . . . 13 4 ProbesoftheRelativisticAccretionDiskandSMBH 13 4.1 IntotheHeartoftheAGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 DisentanglingtheAccretionDiskSpectrumFromOtherComplexities . . . . . . . . . . . . . 15 4.3 X-rayReverberationfromtheInnerDisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 SummaryofTopScience 18 5 1 General Introduction Afteroverfourdecadesofstudy,activegalacticnuclei(AGN)continuetobeofgreatinteresttoastrophysicists. With the realization that supermassive black holes (SMBHs) are ubiquitous, being present at the center of essentially every galaxy, a tremendous amount of attention is focused on the co-evolution of SMBHs and galaxies. ThetightcorrelationbetweenthemassoftheSMBHinagalacticcenterandthevelocitydispersion of the stellar budge (Gebhardt et al. , 2000; Ferrarese & Merritt , 2000) found in the local universe strongly suggests that SMBHs and host galaxies co-evolved. In the extreme (probably realized in massive galaxies), a SMBH can dramatically suppress baryonic cooling and star formation in the galaxy, all-but truncating any furthergrowthofthegalaxy. AGNarealsointerestingintheirownright,providingoneofthemostaccessible laboratoriesforstudyingtheextremesofphysicsfoundclosetothehorizonofablackhole(BH). Figure1:TheanatomyofanAGNasaccordingtothestandardunifiedmodel.FigurefromUrry&Padovani (1995) AnystudyofAGNmuststartbycharacterizingtheir“engineeringblueprint”,i.e.,thepropertiesoftheSMBH (mass and spin), the distribution of circumnuclear matter, the (inward and outward) flow of matter, and the formstakenbytheliberatedenergyasitleavestheAGN.OurcurrentunderstandingissummarizedinFigure1. At its heart, an AGN consists of a SMBH fed by an accretion disk. Powerful winds can be produced from 6 the accretion disk which probably produce the optical broad line region (BLR) with characteristic velocities of 2,000–20,000kms−1. These broad optical lines are the defining characteristic of the classical unabsorbed (type-1)AGN.Furtherout,weknowthatmanyAGNpossessacoldanddustystructure(the“dustytorus”)that can,dependinguponviewingangle,obscuretheBLRandthecentralaccretiondisk,leadingtoaclassification as an obscured (type-2) AGN. The nature (and even the location) of this important structure is unclear. The torusmaybethereservoirfortheaccretiondisk,beingfedbycoldgasflowsfromtheISMofthegalaxy—in other words, it is gas on the way in. Alternatively, it may be the colder/outer regions of the disk wind — gas on the way out. Both possibilities may be realized across the AGN population. In either case, “the torus” is the interface of the AGN with the rest of the galaxy, and understanding its basic nature is crucial if we are to understandtheAGN-galaxylink. 0 1 1 ) ν ( F ν 1 . 0 1 0 . 0 0.1 1 10 100 Energy (keV) Figure2:ExampleofanX-rayreflectionspectrum,assumingaslabofmatterirradiatedbyapower-lawspectrumwithaphotonindex Γ=2(reddashedline).Thesurfaceoftheslabisassumedtohaveanionizationparameterofξ=1ergcms−1.Figureproducedusing thexillvercodeofGarciaetal. (2013) X-ray spectroscopy is a powerful tool for determining the engineering blueprint of an AGN. X-rays are produceddeepwithintheheartoftheAGN,withinafewgravitationalradii(r ≡GM/c2,where M isthemass g of the SMBH) of the black hole. Any optically-thick structures in the AGN (the accretion disk, BLR clouds, and the torus) will then be irradiated by the X-ray continuum and respond by producing an “X-ray reflection spectrum”. AnexampleofanX-rayreflectionspectrumisshowninFigure2. TheclassicsignaturesofX-ray reflection are a strong iron-Kα emission line (at energies 6.4–6.97keV depending upon the ionization state of the reflector) and a broad hard X-ray hump peaking at 20keV where Compton reflection dominates over photoelectricabsorption(atlowerenergies)andComptonrecoillosses(athigherenergies). Ifthereflectorhas amoderate-to-highionizationparameter,asisthecasefortheinneraccretiondisk,thereflectionspectrumalso possessesaforestofsoftX-rayradiative-recombinationfeatures. TheironlineisacrucialdiagnosticofAGNstructure;ironisanabundantelementandpossessstrongemis- sion/absorptionfeaturesthatarerelativelyisolatedfromotherspectralcomplexities. TheironlineistoAGN/X- rayastronomerswhattheCOrotationallinesaretostar-formation/mm-waveastronomers. Detailedstudiesof reflectionspectraallowustostudythedistributionandkinematicsofgasflowingin,outandaroundtheSMBH; withthistool,wecanstarttodeterminetheblueprintoftheAGNcentralengine. This White Paper (WP) discusses the impact of ASTRO-H on studies of AGN structure using X-ray reflec- tion. The WP is divided into two parts. We start (Sections 2 and 3) by discussing the ability of ASTRO-H to 7 mapoutthestructuresthataredistantfromtheSMBH.Section2discussestheimpactofASTRO-Honstudies of photoionized winds and the torus in general type-2 AGN, whereas Section 3 focuses on the particularly interesting case of Compton-Thick AGN. The superior spectral resolution of the ASTRO-H/SXS and the su- perior bandbass achieved by combining SXS and HXI data will transform our knowledge of these systems. Asalreadymentioned, anunderstandingofAGNwindsandthetorusiscrucialifwewishtotrulyunderstand how the AGN is fueled and how it feeds back on its host galaxy. The second part of this WP (Section 4) discusses the ability of ASTRO-H to study X-ray reflection from the inner accretion disk, where relativistic Doppler and gravitational redshifts can strongly skew the observed spectrum. Reflection from the inner disk is a broad-band phenomenon, resulting in a soft excess (as the radiative recombination lines are smeared into a pseudo-continuum), the broadened iron line, and the Compton reflection hump. ASTRO-H will be the first observatorycapableofsimultaneouslyobservingandcharacterizingindetailallthreeaspectsofdiskreflection. Thisenergyreachrepresentsanimportantadvance. 2 Mapping the structure of obscured AGN 2.1 TheX-rayViewofType-2AGN The basic nature of dusty tori in AGN remains unclear. We are ignorant about many of their most basic characteristics, including their location, size, total mass, clumpiness, dynamics, and relation to the accretion diskandBLR.Eventhe“definition”ofthetorusisambiguous,anditisnotentirelyclearwhetheritisdistinct structure or just a smooth continuation from the BLR. A particularly curious fact is that they must typically subtend a large solid angle as seen from the SMBH in order to produce the observed fraction of type-2 AGN. Theoretical studies suggest that it is not easy to stably sustain such a cold but large scale-height (h/r ∼ 1) structure. This implies that the torus is not just static structure butmay be a sequence of dynamic phenomena like nuclear starburst (e.g., Hopkins et al., 2012; Wada, 2012). The total mass of a torus may be an important parameterreflectingtheevolutionalstageofthegalaxy(Kawakatu&Wada,2008). Highqualitybroad-bandX-rayspectragiveuniqueinsightsintotheanatomyofanAGN.HardX-rayshave strong penetrating power against obscuration, enabling us to study the properties of the obscuring matter and surroundinggas. Type-2AGNareparticularlywellsuitedforastudyofAGNstructure;(1)informationonthe line-of-sightmaterialcanbeobtainedthroughX-rayabsorption,(2)photoionizedgaslocatedoutsidethetorus (inthenarrowlineregion;NLR)canbeobservedinemissionandscatteringlinesthatgivesdefiniteprobeson itsphysicalstate,(3)theequivalentwidthsofiron-Klinesfromtheobscuringtorusbecomelargethankstothe attenuatedcontinuumlevelandhencearemorereadilycharacterized,and(4)thehighinclinationanglesmake iteasiertomeasureKeplerianmotionoflineemittingmatter. The typical X-ray spectrum of a type-2 AGN is characterized by the combination of a heavily absorbed primary power-law, Compton reflection with fluorescence lines from the cold torus (with additional reflection possible from the BLR and accretion disk), and soft X-ray emission dominated by the emission lines from highly ionized gas (Turner et al., 1997). The soft emission lines can provide diagnostic tools to reveal the temperature,density,andionizationstateofthegassurroundingthesupermassiveblackhole. Asanillustration,Figure3(leftpanel)showstheSuzakuspectrumoftheprototypicalSeyfert-2galaxyMrk3 (z = 0.0135), one of the brightest objects among the class (Cappi et al., 1999). Despite having an absorption column that is marginally Compton-Thick, we can see still see the direct (absorbed) power-law continuum at high-energies. Wealsoseethatsomefractionofthiscontinuumisscatteredaroundthethetorus. AcoldX-ray reflectioncomponentfrom,presumably,Compton-Thickregionsofthetorusoutofourlineofsightproducesa strong6.4keVironfluorescencelineandcontributessignificantlytothecontinuumabove5keV.Thesoft-band isverycomplex(Sakoetal.,2000;Pounds&Page,2005;Awakietal.,2008),requiringphotoionizedemitters withatleastthreedifferentionizationparametersaswellasacollisionallyionizedthermalplasmacomponent (seefigurecaption). 8 1 0.1 −1V −1counts s ke 01.00−13 nts s−1 keV−1 0.1 4 cou 0.01 2 χ 0 −2 −40.5 1 2 5 10 10−30.5 1 2 5 10 Energy [keV] Energy [keV] Figure 3: Left panel : The spectrum of Mrk 3 as observed by the Suzaku/XIS in 2005. The continuum (direct/absorbed an scattered/unabsorbed) is shown as dotted orange line. A strong cold reflection component is marked as a solid orange line. The complex soft spectrum is described as coming from three different photoionized plasmas (light blue; logξ = 0.01, N =1.0×1020 H cm−2, green; logξ = 1.8, N = 1.4×1021 cm−2, blue; logξ = 2.9, N = 2.0×1022 cm−2) and an optically-thin thermal plasma (ma- H H genta; apec in XSPEC) with temperature kT of 1.0 keV. Right panel : The simulated SXS spectrum of Mrk 3 for a 200ksec exposure based on the spectral model for Mrk 3. We employ the redistribution matrix function (RMF) with 5eV resolution, the currentbest-estimated(fileah sxs 5ev basefilt 20100712.rmf), andtheancillaryresponsefile(ARF)forthepointsource(file sxt-s 120210 ts02um of intallpxl.arf). 2.2 ASTRO-H/SXSstudiesoftype-2AGN The superior resolution of the ASTRO-H/SXS will permit a giant leap forward in the study of these line-rich AGN.Forexample,Figure3(rightpanel)showsasimulationofa200ksSXSobservationofMrk3. Comparing withtheSuzaku/XISspectrum,wecanseethattheforrestofsoftX-rayemissionlinesisresolved,allowingus toemploythefullmachineryoflineratiodiagnosticsfordensity,temperature,andexcitationmechanism. The Kα-tripletlinesfromhelium-likeionsareparticularlyuseful(Gabriel&Jordan,1969;Porquet&Dubau,2000). WhilethesesoftX-raylineshavealreadybeenseenatsuchresolutionsbythegratinginstrumentsonChandra and XMM-Newton, ASTRO-H/SXS provides significantly more sensitivity at soft energies (permitting the full spectralresolutiontoberealizedinrealisticexposuretimes)and, simultaneously, unprecedentedresolutionof theironlinecomplex. Theabilitytoresolveandcharacterizethevelocityprofileofthefluorescentironlinewillpermitthefirststudy ofthedynamicsoftheX-rayreflectingtorus. Atthesametime,theresolutionoftheSXSwillgreatlyfacilitate ourabilitytocentroidtheKαlineaswellasdetecttheKβline—bothoftheseobservablesaresensitivetothe ionization state of the gas. Putting this information together will permit us to determine the location (r), size (∆r) and density (n) of the torus material — the velocity broadening ∆v gives us the location from Keplerian √ arguments(∆v ≈ GM/r),thedominantionizationstatesofirontellustheionizationparameter(ξ = L/nr2, i whereL istheionizingluminosity)andthecombinationofthesetwoyieldsthedensity. Comparingthedensity i withthelineofsightcolumndensity(whichcanbemeasuredfromthecontinuumabsorption,providedthatthe AGNisCompton-thin)givesthesizeofthetorus∆r. Whiledetaileddynamicalandionizationmodelswillbeneededtointerprettherealresults,wecanobtaina first look at the impact of ASTRO-H/SXS results by assuming that the torus has a single ionization parameter andtheformofadisk-likestructureinKeplerianmotionabouttheSMBH.Forthisexercise,weusetheXSTAR photoionizationcodetomodelthescatteredandemittedspectrumofatoruswithadensityofn = 1013 cm−3,a columndensityof N = 1023cm−2 irradiatedbyaSeyfert-likeX-raysource(luminosityof1044 ergs−1 (0.01– H 10 keV) and a power-law spectrum of Γ = 2.0). We adopt three different distances for the torus, 1 pc, 0.1 pc, and 0.01 pc, which we designate the “far torus”, “near torus”, and “BLR” cases, respectively. These tori spectra are then convolved with the Doppler broadening appropriate for a disk in Keplerian motion (using the 9 eV−1 1 eV−1 1 eV−1 1 nts s k−1 0.5 nts s k−1 0.5 nts s k−1 0.5 u u u d co0.2 d co0.2 d co0.2 alize0.1 alize0.1 alize0.1 m m m or 5 or 5 or 5 n 4 n 4 n 4 ratio 23 ratio 23 ratio 23 1 1 1 6 6.5 7 7.5 6 6.5 7 7.5 6 6.5 7 7.5 Energy (keV) Energy (keV) Energy (keV) Figure4: SimulatedspectraofNGC4388withtheSXS,assuming300ksexposure. Threecasesshownarethefartorus(left),near torus(middle)andBLR(right). disklinemodelwithanemissivityprofiler−2)assuminganinclinationof45◦. Figure 4 shows a simulated 300ks SXS spectra in the iron-K band for NGC 4388, the brightest obscured Compton-thin AGN with a 14–195keV flux of F = 2.8×10−10ergs−1cm−2 (Baumgartner et al., 2013). It is clearlyseenthatdetailsofthe6.4keVlineprofileareresolved,inthiscaserevealingthedouble-peakstructure characteristic of the (assumed) keplerian disk. We can use the centroid and Kα/Kβ line ratios to constrain the dominantionizationstateoftheiron; fortheneartoruscase, weobtaintherangeFeII–FeVI,consistentwith theXSTARmodelthatisdominatedbyFeII.Inthissimulatedcase, wecanalsoconstraintheinnerradiusof thetorustobetterthan3%,andmeasuremeanbulkmotionwithaprecisionof< 100kms−1. Whiletheparametersofthissimulationareclearlysimplistic, ithighlightsthefactthatASTRO-Hwillopen anewwindowonAGNtori. 2.3 BroadbandContinuumstudiesofType-2AGNwithASTRO-H The Cosmic X-ray Background (CXB) results from the integrated X-ray emissions of all the AGN in the Universe, and the spectrum, normalization and spatial fluctuations of the CXB are important constraints on models for the cosmological evolution of SMBHs. While it is spectrally smooth, the CXB has a substantially harderspectrumthananyknownunabsorbedAGNand,infact,absorbedAGNarecrucialcomponentsanyCXB model. AgoodknowledgeofthereflectionandcontinuumparametersofAGNisfundamentalforthecreation of such models. Especially important but ill-constrained are the cut-off energies for the power-law continua from AGN resulting from the finite temperatures of the X-ray emitting coronae. This is another area where ASTRO-Hwillmakeamajorimpact,thistimeduetoitsabilitytosimultaneouslydeterminetheparametersof theprimarycontinuum,scatteringofthatcontinuum,reflection,andthecontinuumcut-off. Again, we illustrate this with the example of NGC 4388. A broad-band study of this source performed combiningXMM-NewtonEPIC/PN,INTEGRALIBIS/ISGRIandSwift/BATdatashowsanabsorbedcontinuum with a photon index of Γ = 1.79+0.07 and moderate levels of reflection (Ricci et al. in prep). However, even −0.08 withthisarrayofdata,thehigh-energycutoffofthepower-lawcouldnotbedetermined. To appreciate the importance of the high-energy cut-off, it is necessary to consider the physical processes responsible for producing the primary X-ray continuum. The primary X-ray continuum is thought to be pro- duced through Comptonization of the thermal optical/UV photons from the accretion disk by hot electrons in a magnetically energized corona (e.g., Haardt & Maraschi, 1993). The most basic parameters that we need to know about the corona if we wish to understand its nature and origin are its temperature kT and optical depth τ. Now, the resulting spectrum is approximated as an exponentially cut-off power-law, with a cut-off energy at E ∼ 3kT. If we only have knowledge of the photon index of the power-law, we can only constrain the C combinationkT ×τ(proportionaltotheso-calledComptony-parameter). Onlyifwemeasurethehigh-energy cutoffwecanbreakthedegeneracybetweenthesefundamentalcoronalparameters. Very recent NuSTAR results are already demonstrating the dramatic impact that a focusing hard X-ray tele- scopeishavingonourabilitiestomeasurecut-offenergiesinAGNspectra(seestudyofIC4329A;Brenneman 10

Description:
This White Paper (WP) discusses the impact of ASTRO-H on studies of AGN structure using X-ray reflec- tion For this exercise, we use the XSTAR.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.