ebook img

Asteroseismology of chemically peculiar stars PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Asteroseismology of chemically peculiar stars

o Comm.in Asteroseismology,N 159, 2009 ProceedingsoftheJENAM2008SymposiumNo 4: AsteroseismologyandStellarEvolution Asteroseismology of chemically peculiar stars O.Kochukhov 9 0 DepartmentofPhysicsandAstronomy,UppsalaUniversity, Box515,SE-75120Uppsala,Sweden 0 2 The section “Rapidly oscillating magnetic Ap stars” of this reviewisan updated version ofthe paperpublished inthe proceedings ofthe Wrocl awHELASWorkshop “Interpretation n ofAsteroseismicData”,CoAst,157,inpress,arXiv:0810.1508 a J Abstract 4 1 Pulsational variability is observed in several types of main sequence stars with anomalous chemical abundances. In this contribution I summarize the relationship between pulsations ] andchemicalpeculiarities, givingspecialemphasistorapidoscillationsinmagneticApstars. h These magneto-acoustic pulsators provide unique opportunities to study the interaction of p pulsations, chemical inhomogeneities, and strong magnetic fields. Time-series monitoring - o of rapidly oscillating Ap stars using high-resolution spectrometers at large telescopes and r ultra-precise space photometry has led to a number of important breakthroughs in our un- t derstanding of these interesting objects. Interpretation of the roAp frequency spectra has s allowed constraining fundamental stellarparameters andprobing poorly known properties of a [ the stellar interiors. At the same time, investigation of the pulsational wave propagation in chemically stratified atmospheres of roAp stars has been used as a novel asteroseismic tool 2 to study pulsations as a function of atmospheric height and to map in detail the horizontal v structure ofthemagnetically-distorted p-modes. 4 IndividualObjects:HR8799,HD116114,HD201601(γEqu),HD176232(10Aql),HD134214,HD137949 7 (33Lib),HD99563,HD24712,HD75445,HD137909(βCrB),HD101065,HR3831. 3 0 . Introduction 2 1 On and near the main sequence, for spectral types fromB to early F, one finds a remarkable diversity 8 of thestellarsurfaceproperties andvariability. In coolerandhotter partsof theH-Rdiagramasingle, 0 powerful process, such as convection in solar-type stars or mass loss in hot massive stars, dominates : the physics of stellar atmospheres. In contrast, several processes of comparable magnitudecompete in v the A-star atmospheres and envelopes, creating interesting and heterogeneous stellar population. The i radiativediffusion(Michaud1970)isthemostimportantprocessresponsiblefornon-solarsurfacechemical X composition. Thediffusiontheory suggeststhationsheavier thanhydrogen areableto levitate orsink under competing influence of the radiation pressure and gravity. Element segregation by the radiative r diffusion is easily wiped out by various hydrodynamical mixing effects and, thus, requires a star which a is stable over significant part of its outer envelope. Slowly rotating B-F stars with shallow convection zonesprovidetherequiredstability. Thepresenceofstrong,globalmagneticfieldcontributesfurtherto thesuppressionofturbulenceandleadstodifferentdiffusionvelocitiesdependingonthefieldinclination andstrength. Chemicallypeculiarstarsareseparatedintothetwodistinctsequences accordingtotheir magneticproperties. Am,λBoo,HgMnstarslackstrongmagneticfieldsandshowmildchemicalanomalies inchemicallyhomogeneousouterstellarlayers. ApandBpstarshavemagneticfieldsexceedingfewhundred gauss,exhibitextremechemicalanomaliesandhavesubstantialverticalandhorizontalchemicalgradients inthephotosphere. 2 Asteroseismologyofchemicallypeculiarstars Stellarvariability,includingpulsations,addsimportanttime-dependentaspecttothecomplexpicture ofchemicallypeculiarB–Fstars. Dependingonthepulsationfrequencyandthephysicsoftheinteraction betweenmodeexcitation,compositiongradientsandmagneticfield,differenttypesofpulsationsaresup- pressedorexcited. Observationandasteroseismicinterpretationofthispulsationalvariabilityisapowerful toolfordeterminingfundamentalstellarparametersandconstrainingpoorlyknowninteriorpropertiesof chemicallypeculiarstars. InthisreviewIsummarizeourcurrentunderstandingoftherelationshipbetweenstellarpulsationsand chemicalpeculiarityforstarsintheroAp,δScuti,SPBandβCepheiinstabilityregions. Metallic line A stars Thereisnear-exclusionofδScutipulsationsandAm-typechemicalpeculiarity(e.g.,Breger1970). The diffusiontheoryexplainsthisbyinvokinggravitationalsettling,whichremovesHefromtheHeiiionization zone,suppressingthedrivingofδScutipulsations. WhentheAmstarevolvesoffthemainsequence,the HeiiionizationregionshiftsdeeperintothestarandreacheslayerswheresomeresidualHeisleft. This allowsexcitation oflow-amplitudeδScutipulsations(Coxetal. 1979). Theseevolved δScuti variables withresidualAm-likechemicalpeculiaritiesareknownasρPupstars. ClassicalδScutipulsationshavebeenalsoclaimedinseveralunevolvedAmandApstars(e.g.,Kurtz 1989; Martinezetal. 1999; Gonz´alezetal. 2008). Insomeofthesecasesthedetection ofpulsational variabilityisconvincing. However,theAporAmnatureofthestarsinquestion,inferredfromphotometry andoldlow-resolutionclassificationspectra,isveryuncertain. Detailedmodelatmosphereandabundance analysesusingmodern,high-qualityspectroscopicmaterialarerequiredtoconfirmorrefutethesuspected unusualcombinationofhigh-amplitudeδScutipulsationandlargechemicalpeculiarities. Pulsating λ Bootis stars λBoostarsarePopulationIearly-Atoearly-Ftypestarswhichexhibitsignificantunderabundanceofmost iron-peakandheavyelementsbutshowsolarabundancesofCNOandsomeotherlightelements(Paunzen et al. 2002a; Heiter 2002). These chemical properties are believed to arisefromcontamination of the shallowstellarsurfaceconvectionzonesbytheaccretionofmetal-depletedgasfromacircumstellarshell (Venn&Lambert1990)oradiffuseinterstellarcloud(Kamp&Paunzen2002). TheH-RdiagrampositionoftheλBoogroupmemberspartiallyoverlapswiththeδScutiinstability strip. WhileaccumulationofmetalsandHedepletionpreventsδScutitypepulsationsinmostApandAm stars,theoppositeabundancesignaturesofλBoostarsmakethemmorepromisingtargetsforpulsational observations. Inparticular,asteroseismicinvestigationsofthesestarsareinterestingforconstrainingthe stellarfundamentalparametersanddeterminingtheaveragemetalcontentofthestellarinteriors. High-resolution time-series spectroscopy by Bohlender et al. (1999) revealed the presence of high- degree non-radialpulsationsinthemajorityofinvestigatedλBoostars. Theoverallpulsationalcharac- teristicsofthegroupweresummarizedbyPaunzenetal. (2002b). Theyconcludedthatthefractionof pulsatingλBoostarsinsidetheδScutiinstabilitystrip(atleast70%)issignificantlylargerthanfornormal stars. Moreover,incontrasttoclassicalδScutistars,whichoftenpulsateinthefundamentalmode,λBoo starstendtopulsateinhigh-overtonemodes. Interestingly,atleastoneobjectwithλBoochemicalcharacteristics–theplanetaryhoststarHR8799 –isknowntoexhibittheγDortypepulsationalvariability(Zerbietal.1999;Gray&Kaye1999).However, HR8799appearstobeanexceptionasothermembersoftheγDorgroupshownormalabundancepattern (Brunttetal. 2008). Pulsations and chemical peculiarity in hot stars Thehotpulsatingstars(SlowlyPulsatingBandβCephei),chemicallypeculiarBpstars,andnon-pulsating normalBstarscoexistinthesamepartoftheH-Rdiagram(Briquetetal. 2007). Nevertheless,uptonow no conclusive evidence forthe significantoverlap of the pulsational,magnetic, and chemical peculiarity phenomena has been identified for B-type stars. Analysis of the low-resolution UV flux distributions showedthatmetallicitiesofSPB(Niemczura2003)andβCephei(Niemczura&Daszynska-Daszkiewicz 2005) pulsators do not differ from those of normal B stars. On the other hand, Morel et al. (2008) suggestedtheexistenceofapopulationofnitrogen-richandboron-depletedslowlyrotatingBstarsbased onNLTEabundanceanalysisofhigh-resolutionspectra. Itispossiblethatthephotosphericchemistryof these objects is altered by a weak magnetic field in qualitatively the sameway as much stronger fields of Bp stars lead to prominent deviations from the solar chemical composition. However, apart from a smallnumberofSPBandβCepheistarswith∼100Gfields(Neineretal. 2003;Hubrigetal. 2006a), O.Kochukhov 3 the universal presence of weak magnetic fields could not be convincingly established fornormal and/or pulsatingB-typestars. The non-magnetic HgMn chemically peculiar stars present another challenge for our understanding of the excitation of pulsations in hot stars. Many HgMn stars are situated within the SPB instability strip. Furthermore, anincreased opacitydue to accumulation ofmetals by radiativediffusionin HgMn starsisexpected toenhancethedrivingoftheSPBpulsations(Turcotte&Richard2002). Contraryto thistheoretical predictionphotometric observationsshownoevidence ofpulsationalvariabilityinHgMn stars(Adelman1998). SpectroscopiclineprofilevariationsdetectedforahandfulofHgMnstarsislimited to linesof2–3heavyelements andis,consequently, attributedto chemicalinhomogeneitiesratherthan pulsation(Adelman et al. 2002; Kochukhov et al. 2005; Hubrig etal. 2006b). Incompleteness of the theoreticaldiffusionmodelsintheouterpartofthestellarenvelopeisthemostlikelyexplanationforthe contradictionbetweenpredictedandobservedpulsationpropertiesofHgMnstars. Rapidly oscillating magnetic Ap stars ThissectionisanupdatedversionofthereviewpublishedbyKochukhov(2008,intheproceedingsofthe Wrocl awHELASWorkshop“InterpretationofAsteroseismicData”,CoAst,157,inpress). Rapidly oscillating Ap (roAp) stars represent the most prominent subgroup of pulsating chemically peculiarstars. TheseobjectsbelongtotheSrCrEutypeofmagneticAstars,andpulsateinhigh-overtone, low degree p-modes. roAp stars are found at or near the main sequence, at the cool border of the regionoccupiedbythemagneticAp/Bpstars(Kochukhov&Bagnulo2006). Accordingtotheseriesof recent spectroscopic studies (e.g., Ryabchikova et al. 2002, 2004; Kochukhov et al. 2002a), effective temperaturesofroApstarsrangefromabout8100downto6400K.Theiratmospheresarecharacterized bydiversechemicalabundancepatterns,buttypicallyhavenormalorbelowsolarconcentrationoflightand iron-peakelementsandaverylargeoverabundanceofrare-earthelements(REEs). Similartoothercool magneticAstars,roApstarspossessglobalfieldswithatypicalstrengthfromfewtotenkG(Mathyset al. 1997),althoughinsomestarsthefieldintensitycanexceed20kG(Kurtzetal. 2006b). Theseglobal magnetictopologiesaremostlikelytheremnantsofthefieldswhichweresweptatthestar-formationphase orgeneratedbydynamointheconvectiveenvelopesofpre-mainsequencestars,thenquicklydecayedtoa stableconfiguration(Braithwaite&Nordlund2006)andnowremainnearlyconstantonstellarevolutionary timescales. Theslowrotation andstabilizingeffect of the strongmagneticfield facilitates operationof theatomicdiffusionprocesses(Michaudetal. 1981;LeBlanc&Monin2004),whichareresponsiblefor thegrosslynon-solarsurfacechemistryandlargeelementconcentrationgradientsinAp-staratmospheres (Ryabchikovaetal. 2002,2008;Kochukhovetal. 2006). Variationofthefieldstrengthandinclination acrossthestellarsurfacealtersthelocaldiffusionvelocities(Alecian&Stift2006),leadingtotheformation ofspottedchemicaldistributionsandconsequentialsynchronousrotationalmodulationofthebroad-band photometricindices,spectrallineprofiles,thelongitudinalmagneticfieldandthemeanfieldmodulus(e.g., Ryabchikovaetal. 1997). PulsationsincoolApstarswerediscovered30yearsago(Kurtz1978)andwereimmediatelyrecognized tobeanothermanifestationoftheprominentinfluenceofunusuallystrongmagneticfieldsonthestellar interiorsandatmospheres. Currently,38coolApstarsareknowntopulsate. SeveralnewroApstarswere recentlydiscoveredusinghigh-resolutionspectroscopicobservations(Hatzes&Mkrtichian2004;Elkinet al. 2005;Kurtz etal. 2006b;Kochukhovetal. 2008a,2009; Gonz´alesetal. 2008). Oscillationshave amplitudesbelow10mmagintheJohnson’sBfilterand0.05–5kms−1inspectroscopy,whiletheperiods lieintherangefrom4to22min. ThelatterupperperiodthresholdofroAppulsationcorrespondstothe secondmoderecentlydetected bythehigh-precisionRVobservationsoftheevolvedApstarHD116114 (Kochukhov,Bagnulo&LoCurto,inpreparation). Theamplitudeandphaseofpulsationalvariabilityaremodulatedwiththestellarrotation. Asimple geometrical interpretation of this phenomenon was suggested by the oblique pulsator model of Kurtz (1982), which supposesanalignmentof the lowangulardegree modes with thequasi-dipolarmagnetic fieldofthestarandresultingvariationoftheaspectatwhichpulsationsareseenbythedistantobserver. Detailedtheoreticalstudies(Bigot&Dziembowski2002;Saio2005)showedthatthehorizontalgeometry of p-mode pulsations in magnetic stars is far more complicated: individual modes are distorted by the magneticfieldandrotationinsuchawaythatpulsationalperturbationcannotbeapproximatedbyasingle sphericalharmonicfunction. Photometric studiesofroAppulsations MajorityofroApstarswerediscovered byD.Kurtzandcollaboratorsusingphotometricobservationsat SAAO (see review by Kurtz & Martinez 2000). The search for roAp stars in the Northern hemisphere is being conducted at the Nainital (Joshi et al. 2006) and Maidanak (Dorokhova & Dorokhov 2005) 4 Asteroseismologyofchemicallypeculiarstars observatories. SeveralroApstarswereobservedincoordinatedmulti-sitephotometriccampaigns(Kurtz etal. 2005a;Handleretal. 2006),whichallowedtodeducefrequencieswiththeprecisionsufficientfor asteroseismicanalysis. However, lowamplitudesofbroad-bandphotometricvariationofroApstars,low duty cycle and aliasing problems inevitably limit precision of the ground-based photometry. Instead of pursuing observations from the ground, recent significantprogress has been achieved by uninterrupted, ultra-highprecisionobservationsofknownroApstarsusingsmallphotometrictelescopesinspace. Here theCanadianMOSTspacetelescopeisundisputedleader. TheMOSTteamhascompleted3–4weekruns onHD24712,γ Equ(HD201601),10Aql(HD176232),HD134214,andHD99563. Observationsof 33Lib(HD137949)areplannedforApril-May2009. Inadditiontoprovidinguniquematerialfordetailed asteroseismicstudiesofHD24712,γEqu, and 10Aql,theMOSTphotometryhasrevealedthepresenceofaveryclosefrequencypairinγ Equ,giving modulationofpulsationamplitudewith≈18dperiod(Huberetal.2008). Itispossiblethatthisfrequency beating is responsiblefor the puzzlingdiscrepancy of the radialvelocity amplitudesfound forγ Equ in differentshortspectroscopicobservingruns(Sachkovetal. 2009). Thisamplitudevariationcouldnotbe ascribedtotherotationalmodulationbecauserotationperiodofthisstarexceeds70years(Bychkovetal. 2006). Spectroscopy ofroAppulsations High-quality time-resolved spectra of roAp stars have proven to be the source of new, incredibly rich information, which not only opened new possibilities for the research on magneto-acoustic pulsations butyieldedresultsofwideastrophysicalsignificance. NumerousspectroscopicstudiesofindividualroAp stars (e.g., Kochukhov & Ryabchikova 2001a; Mkrtichian et al. 2003; Ryabchikova et al. 2007a), as wellascomprehensiveanalysisofpulsationalvariabilityin10roApstarspublishedbyRyabchikovaetal. (2007b), demonstrated pulsationsin spectral lines very different fromthose observed in anyother type of non-radially pulsating stars. The most prominent characteristic of the RV oscillation in roAp stars istheextreme diversityofpulsationsignaturesofdifferentelements. Onlyafewstarsshowevidenceof <50ms−1variationinthelinesofiron-peakelements,whereasREElines,especiallythoseofNdii,Ndiii, Priii,Dyiii,andTbiiiexhibitamplitudesrangingfromafewhundredms−1 toseveralkms−1. The narrowcoreofHαbehavessimilarlytoREElines(Kochukhov2003;Ryabchikovaetal. 2007b),suggesting lineformationatcomparableatmosphericheights. Pulsationphasealsochangessignificantlyfromonelinetoanother(Kochukhov&Ryabchikova2001a; Mkrtichianetal. 2003),withthemostnotoriousexampleof33Libwheredifferentlinesofthesameion pulsatewitha180oshiftinphase,revealingaradialnode,andshowverydifferentratiosoftheamplitude atthemainfrequencyanditsfirstharmonic(Ryabchikovaetal. 2007b). Severalstudiesconcludedthat, in general, roAp stars show a combination of running (changing phase) and standing (constant phase) pulsationwavesatdifferentatmosphericheights. AnotherunusualaspectofthespectroscopicpulsationsinroApstarsisalargechangeoftheoscillation amplitude and phase from the line core to the wings. The bisector variation expected for the regular sphericalharmonicoscillationisunremarkableandshouldexhibitneitherchangingphasenorsignificantly varying amplitude. Contrary to this expectation of the common single-layer pulsation model, the roAp bisector amplitudeoften showsanincrease from200–400ms−1 inthecores ofstrong REElinesto 2– 3kms−1inthelinewings,accompaniedbysignificantchangesofthebisectorphase(Sachkovetal. 2004; Kurtzetal. 2005b;Ryabchikovaetal. 2007b). Theabilitytoresolveandmeasurewithhighprecisionpulsationalvariationinindividuallinesallows tofocusanalysisonthespectralfeaturesmostsensitivetopulsations.Byco-addingradialvelocitycurves ofmanyREElinesrecordedinaspectrumwithawidewavelengthcoverageoneisabletoreachtheRV accuracy of ∼1 ms−1 (Mathys et al. 2007). This made possiblediscovery of the very low-amplitude oscillations in HD75445 (Kochukhov et al. 2009) and HD137909 (Hatzes & Mkrtichian 2004). The secondobject,well-knowncoolApstarβCrB,waspreviouslyconsideredtobeatypicalnon-pulsatingAp (noAp)starduetonullresultsofnumerousphotometricsearchesofpulsations(Martinez&Kurtz1994) andtheabsenceofprominentREEionizationanomalyfoundfornearlyallotherroApstars(Ryabchikova etal. 2001,2004). Thefactthatβ CrBisrevealed asthesecondbrightestroApstarcorroboratesthe ideathatp-modeoscillationscouldbepresentinallcoolApstarsbutlowpulsationamplitudesprevented detectionofpulsationsintheso-callednoApstars(Kochukhovetal. 2002b;Ryabchikovaetal. 2004). Despitetheimprovedsensitivityinsearchesofthelow-amplitudeoscillationsinroApcandidatesand numerousoutstandingdiscoveriesforknownroApstars,themajorlimitationofthehigh-resolutionspec- troscopicmonitoringisarelativelysmallamountofobservingtimeavailableatlargetelescopesforthese projects. As a result, onlysnapshottime-series spanning2–4 hourswere recorded formostroAp stars, thusprovidinganincompleteand,possibly,biasedpictureforthemultiperiodicpulsators,forwhichclose frequencies cannot be resolved in such short runs. Observations on different nights, required to infer detailed RV frequency spectrum, were secured only fora few roAp stars (Kochukhov 2006; Mkrtichian O.Kochukhov 5 etal. 2008). Forexample,inrecentmulti-sitespectroscopiccampaigncarriedoutfor10Aqlusingtwo telescopesonsevenobservingnights(Sachkovetal. 2008),wefoundthatbeatingofthethreedominant frequenciesleadstostrongchangesoftheapparentRVamplitudeduringseveralhours. Thisphenomenon couldexplainpuzzlingmodulationoftheRVpulsationsontimescalesof1–2hoursdetectedinsomeroAp stars(Kochukhov&Ryabchikova2001b;Kurtzetal. 2006a). Asteroseismology ofroApstars ThequestionoftheroApexcitationmechanismhasbeendebatedformanyyearsbutnowisnarroweddown totheκmechanismactinginthehydrogenionizationzone,withtheadditionalinfluencefromthemagnetic quenchingofconvectionandcompositiongradientsbuiltupbytheatomicdiffusion(Balmforthetal.2001; Cunha2002;Vauclair&Th´eado2004). However,theoriescannotreproducetheobservedtemperatureand luminositydistributionofroApstarsandhavenotbeenabletoidentifyparametersdistinguishingpulsating Ap starsfromtheirapparentlyconstant,butotherwisevery similar,counterparts (Th´eadoetal. 2009). At the same time, some success has been achieved in calculating magnetic perturbation of oscillation frequencies (Cunha & Gough 2000; Saio & Gautschy 2004) and inferring fundamental parameters and interiorpropertiesformultiperiodicroApstars(Matthewsetal. 1999;Cunhaetal. 2003). RecentasteroseismicinterpretationofthefrequenciesdeducedfromtheMOSTdataforγEqu(Gru- berbaueretal. 2008)and10Aql(Huberetal. 2008)yieldsstellarparametersingoodagreementwith detailedmodelatmospherestudies. Atthesametime,themagneticfieldrequiredbyseismicmodelsto fittheobservedfrequenciesis2–3timesstrongerthanthefieldmodulusinferredfromtheZeemansplit spectrallines. Thisdiscrepancycouldbeanindicationthatmagneticfieldinthep-modedrivingzoneis significantlystrongerthanthesurfacefieldoritmayreflectanincompletenessofthetheoreticalmodels. Mkrtichian et al. (2008) presented the first detailed asteroseismic analysis of a roAp star based entirelyonspectroscopicobservations. Usinghigh-precisionRVmeasurementsspanningfourconsecutive nights, the authors detected 26 frequencies for famousroAp starHD101065(Przybylski’s star). Mode identificationshowedthepresenceof15individualmodeswithℓ=0–2. Thisrichfrequencyspectrumof HD101065canbewellreproducedbytheoreticalmodelsifanexcessivelystrong(≈9kG)dipolarmagnetic fieldisassumed,incontradictiontohBi=2.3kGinferreddirectlyfromthestellarspectrum(Cowleyet al. 2000). Tomography ofatmospheric pulsationsinroApstars ThekeyobservationalsignatureofroAppulsationsinspectroscopy–largeline-to-linevariationofpulsation amplitudeandphase–isunderstoodintermsofaninterplaybetweenpulsationsandchemicalstratification. ThestudiesbyRyabchikovaetal. (2002,2008)andKochukhovetal. (2006)demonstratedthatlightand iron-peakelementstendtobeoverabundantindeepatmosphericlayers(typicallylogτ5000≥−0.5)ofcool Apstars,whichagreeswiththepredictionsofself-consistentdiffusionmodels(LeBlanc&Monin2004). Ontheotherhand,REEsaccumulateinacloudatverylowopticaldepth. TheNLTEstratificationstudies, performedforNdandPrions,placethelowerboundaryofthiscloudatlogτ5000≈−3(Mashonkinaetal. 2005,2009).Then,theriseofpulsationamplitudetowardstheupperatmosphericlayersduetoexponential density decrease doesnot affect Ca, Fe, andCr lines butshows up prominently inthe core of Hαand in REElines. This pictureof thepulsationwaves propagatingoutwards through thestellaratmosphere withhighlyinhomogeneouschemistryhasgainedgeneralsupportfromobservationsandtheoreticalstudies alike. Hence the properties of roAp atmospheres allowan entirely new type of asteroseismicanalysis– verticalresolutionofp-modecross-sectionssimultaneouslywiththeconstraintsondistributionofchemical abundances. Thetwo complimentaryapproachestotheroAppulsationtomographyproblemhavebeendiscussed byRyabchikovaetal. (2007a,2007b). Ontheonehand,tediousanddetailedlineformationcalculations, includingstratificationanalysis,NLTElineformation,sophisticatedmodelatmospheresandpolarizedra- diativetransfer,cansupplymeanformationheightsforindividualpulsatinglines. Then,thepulsationmode structurecanbemappeddirectlybyplottingpulsationamplitudeandphaseofselectedlinesagainstoptical orgeometricaldepth. Ontheotherhand,thephase-amplitudediagrammethodproposedbyRyabchikova etal. (2007b)issuitableforacoarseanalysisoftheverticalpulsationstructurewithoutinvokingmodel atmospherecalculationsbutassumingthe presence of theoutwardly propagatingwavecharacterized by a continuous change of amplitude and phase. In this case, a scatter plot of the RV measurements in thephase-amplitudeplanecanbeinterpretedintermsofthestandingandrunningwaves,propagatingin differentpartsoftheatmosphere. Tolearn aboutthephysics ofroApatmosphericoscillationsoneshouldcompareempiricalpulsation mapswiththeoreticalmodelsofthep-modepropagationinmagnetically-dominant(β<<1)partofthe stellarenvelope. Sousa&Cunha(2008)consideredananalyticalmodeloftheradialmodesinanisothermal atmosphere with exponential density decrease. They argue that waves are decoupled into the standing 6 Asteroseismologyofchemicallypeculiarstars magnetic and running acoustic components, oriented perpendicular and along the magnetic field lines, respectively. Thetotalprojectedpulsationvelocity,producedbyasuperpositionofthesetwocomponents, can have widely different vertical profile depending on the magnetic field strength, inclination and the aspectangle. Forcertainmagneticfieldparametersandviewinggeometries thetwo componentscancel out,creating anode-likestructure. Thismodelcanpossiblyaccountforobservationsofradialnodesin 33Lib(Mkrtichianetal. 2003)and10Aql(Sachkovetal. 2008). Thequestionofinterpretingthelineprofilevariation(LPV)ofroApstarshasrecievedgreatattention afteritwasdemonstrated thattheREElinesinγ Equexhibitunusualblue-to-redasymmetricvariation (Kochukhov&Ryabchikova2001a),whichisentirelyunexpectedforaslowlyrotatingnon-radialpulsator. Kochukhovetal. (2007)showedthepresenceofsimilarLPVintheREElinesofseveralotherroApstars andpresentedexamplesofthetransformationfromtheusualsymmetricblue-red-blueLPVinNdiilines totheasymmetricblue-to-redwavesinthePriiiandDyiiilinesformedhigherintheatmosphere. These lines alsoshowanomalouslybroad profiles (e.g., Ryabchikova etal. 2007b),suggestingexistence ofan isotropicvelocity field, withdispersionoftheorder of10kms−1, intheuppermostatmosphericlayers. Kochukhovetal. (2007)proposeda phenomenologicalmodelofthe interactionbetween thisturbulent layer andpulsationsthathassuccessfullyreproduced asymmetricLPVof doublyionizedREElines. An alternativemodelbyShibahashietal. (2008)obtainssimilarLPVbypostulatingformationofREElines atextremely lowopticaldepths,indisagreementwiththedetailedNLTEcalculationsbyMashonkinaet al. (2005,2009),andrequiresthepresenceofshockwavesinstellaratmospheres,whichisimpossibleto reconcilewiththefactthatobservedRVamplitudesarewellbelowthesoundspeed. Obliquepulsationsanddistortionofnon-radialmodesbyrotationandmagneticfieldprecludesdirect applicationofthestandardmodeidentificationtechniquestoroApstars. Ameaningfulstudyoftheirhori- zontalpulsationgeometrybecamepossiblebyusingthemethodofpulsationDopplerimaging(Kochukhov 2004a). Thistechniquederivesmapsofpulsationalfluctuationswithoutmakinga prioriassumptionof thesphericalharmonicpulsationgeometry. Applicationofthismethodto HR3831(Kochukhov2004b) providedthefirstindependentverificationoftheobliquepulsatormodelbyshowingalignmentoftheax- isymmetricpulsationswiththesymmetryaxisofthestellarmagneticfield. Atthesametime,Saio(2005) showed thatthe observed deviation ofthe oscillationgeometry of HR3831froma obliquedipolemode agreeswellwithhismodelofmagneticallydistortedpulsation. Outlook Aprogressinunderstandingtherelationbetween thephenomenaofchemicalpeculiarityandstellarpul- sations calls for a detailed model atmosphere and chemical abundance analysis of the suspected high- amplitudeδScutiApandclassicalAmstars. Interpretation ofthemodernhigh-resolutionspectroscopic observationalmaterialusingrealisticmodelatmospheresisalsoneededtoclarifythequestionofthecon- nectionbetweenCPandhotpulsatingstars. Systematichigh-resolutionspectropolarimetricobservations areurgentlyneededtoverifytheclaimsofweakmagneticfieldsinmanySPBandafewβCepheistars. Ontheotherhand,comprehensivetheoreticalmodellingisneededtoexploreasteroseismicpotentialofthe pulsatingλBoostarsand,inparticular,totestpossibilitiesofconstrainingtheirinteriorchemicalprofiles. ForroApstars,severalimportantopenquestionsandpromisingresearchdirectionscanbeidentified. Onthetheoreticalside,thefailureofthecurrentpulsationmodelstoaccountfortheobservedblueandred bordersoftheroApinstabilitystripshouldbeaddressedbyincludingamorerealisticphysicaldescription of the interplay between pulsations, magnetic fields, stratified chemistry, and stellar rotation. On the observational side, systematic spectroscopic searches for low-amplitude magnetoacoustic oscillations in coolApstarsareevidentlyneededtoovercomethelimitationsandbiasesofpreviousphotometricsurveys. Theremarkablespectroscopicpulsationalbehaviour,demonstratedinnumerousrecentstudiesofroAp stars,extendstheroApresearchtotheunchartedterritoryfarbeyondthefieldofclassicalasteroseismology. Inadditiontointerpretationofpulsationfrequencies,roApstarsnowofferauniqueopportunityforpulsation tomography,i.e. astudyofdifferentpulsationmodesin3-D,madepossiblebytherotationalmodulation of the oblique pulsations and a prominent effect of chemical stratification. Spectacular observational results,suchasresolutionoftheverticalpulsationmodecross-sectionsandDopplerimagingofatmospheric pulsationsinroApstars,are,however,yettobematchedbycorrespondingtheoreticaldevelopments. Atthe momentwelackrealisticmodelstreatingpropagationofpulsationwavesintheouterlayersofmagnetic Ap stars. Our knowledge about chemical stratification, in particular that of rare-earth elements, and itsimpactontheatmosphericstructureisequallyincomplete. Addressingthesetheoretical questionsis requiredforthedevelopmentofasolidphysicalbasisforastrophysicalinterpretationoftherecentroAp pulsationtomographyresults. References O.Kochukhov 7 AdelmanS.J.1998,A&ASS,132,93 AdelmanS.J.,GulliverA.F.,KochukhovO.P.,&RyabchikovaT.A.2002,ApJ,575,449 AlecianG.,&StiftM.J.2006,A&A,454,571 BalmforthN.J.,CunhaM.S,DolezN.,etal. 2001,MNRAS,323,362 BigotL.,&DziembowskiW.A.2002,A&A,391,235 BohlenderD.A.,Gonz´alezJ.F.,&MatthewsJ.M.1999,A&A,350,553 BraithwaiteJ.,&Nordlund˚A.2006,A&A,450,1077 BregerM.1970,ApJ,162,597 BriquetM.,HubrigS.,DeCatP.,etal. 2007,A&A,466,269 BrunttH.,DeCatP.,&AertsC.2008,A&A,478,487 BychkovV.D.,BychkovaL.V.,&MadejJ.2006,MNRAS,365,585 CowleyC.R.,RyabchikovaT.,KupkaF.,etal. 2000,MNRAS,317,299 CoxA.N.,KingD.S.,&HodsonS.W.1979,ApJ,231,798 CunhaM.S.,&GoughD.2000,MNRAS,319,1020 CunhaM.S.2002,MNRAS,333,47 CunhaM.S.,FernandesJ.M.M.B.,&Monteiro,M.J.P.F.G.2003,MNRAS,343,831 DorokhovaT.,&DorokhovN.2005,JApA,26223 ElkinV.G.,RilejJ.,CunhaM.,etal. 2005,MNRAS,358,665 Gonz´alezJ.F,HubrigS.,KurtzD.W.,ElkinV.,&SavanovI.2008,384,1140 GruberbauerM.,SaioH.,HuberD.,etal. 2008,A&A,480,223 GrayR.O,&KayeA.B.1999,AJ,118,2993 HandlerG.,WeissW.W.,ShobbrookR.R.,etal. 2006,MNRAS,366,257 HatzesA.P.,&MkrtichianD.E.2004,MNRAS,351,663 HeiterU.2002,A&A,381,959 HuberD.,SaioH.,GruberbauerM.,etal. 2008,A&A,483,239 HubrigS.,BriquetM.,Scho¨llerM.,etal. 2006a,MNRAS,369,L61 HubrigS.,Gonz´alezJ.F.,SavanovI.,etal. 2006b,MNRAS,371,1953 JoshiS.,MaryD.L.,MartinezP.,etal. 2006,A&A,455,303 KampI.,&PaunzenE.2002,MNRAS,335,L45 KochukhovO.,&RyabchikovaT.2001a,A&A,374,615 KochukhovO.,&RyabchikovaT.2001b,A&A,377,L22 KochukhovO.,BagnuloS.,&BarklemP.S.2002,ApJ,578,L75 KochukhovO.,LandstreetJ.D.,RyabchikovaT.,WeissW.W.,&KupkaF.2002b,MNRAS,337,L1 KochukhovO.2003,inMagneticFields inO, Band Astars,eds. BalonaL.A.,HenrichsH.F.,& MedupeR.,ASPConf. Ser.,305,104 KochukhovO.2004a,A&A,423,613 KochukhovO.2004b,ApJ,615,L149 KochukhovO.,PiskunovN.,SachkovM.,&KudryavtsevD.2005,A&A,439,1093 KochukhovO.2006,A&A,446,1051 KochukhovO.2009,CoAst,157,inpress(arXiv:0810.1508) KochukhovO.,&BagnuloS.2006,A&A,450,763 KochukhovO.,BagnuloS.,&BarklemP.S.2002,ApJ,578,L75 KochukhovO.,TsymbalV.,RyabchikovaT.,etal. 2006,A&A,460,831 KochukhovO.,RyabchikovaT.,WeissW.W.,etal. 2007,MNRAS,376,651 8 Asteroseismologyofchemicallypeculiarstars KochukhovO.,RyabchikovaT.,BagnuloS.,&LoCurtoG.2008a,A&A,479,L29 KochukhovO.,BagnuloS.,LoCurtoG.,&RyabchikovaT.,2009,A&A,inpress(arXiv:0812.1565) KurtzD.W.1978,IBVS,1436 KurtzD.W.1982,MNRAS,200,807 KurtzD.W.1989,MNRAS,238,1077 KurtzD.W.,&Martinez,P.2000,BalticAstronomy,9,253 KurtzD.W.,ElkinV.G.,&MathysG.2005a,MNRAS,358,L10 KurtzD.W.,CameronC.,CunhaM.S.,etal. 2005b,MNRAS,358,651 KurtzD.W.,ElkinV.G.,&MathysG.2006a,MNRAS,370,1274 KurtzD.W.,ElkinV.G.,CunhaM.S.,etal. 2006b,MNRAS,372,286 LeBlancF.,&MoninD.2004,inIAU Symposium 224,eds. ZverkoJ.,ZiznovskyJ.,AdelmanS.J., &WeissW.W.,193 MashonkinaL.,RyabchikovaT.,&RyabtsevV.2005,A&A,441,309 MashonkinaL.,RyabchikovaT.,RyabtsevA.,&KildiyarovaR.2009,A&A,inpress(arXiv:0811.3614) MathysG.,HubrigS.,LandstreetJ.D.,etal. 1997,A&AS,123,353 MathysG.,KurtzD.W.,&ElkinV.G.2007,MNRAS,380,181 MatthewsJ.M.,KurtzD.W.,&MartinezP.1999,ApJ,511,422 MartinezP.,&KurtzD.W.1994,MNRAS,271,129 MartinezP.,KurtzD.W.,&AshokaB.N.,etal. 1999,MNRAS,309,871 MichaudG.1970,ApJ,160,641 MichaudG.,CharlandY.,&MegessierC.1981,A&A,103,244 MkrtichianD.E.,HatzesA.P.,&KanaanA.2003,MNRAS,345,781 MkrtichianD.E.,HatzesA.P.,SaioH.,&ShobbrookR.R.2008,A&A,490,1109 MorelT.,HubrigS.,&BriquetM.2008,A&A,481,453 NeinerC.,GeersV.C.,HenrichsH.F.,etal. 2003,A&A,406,1019 NiemczuraE.2003,A&A,404,689 NiemczuraE.,&Daszynska-DaszkiewiczJ.2005,A&A,433,659 PaunzenE.,IlievI.Kh.,KampI.,&BarzovaI.S.2002a,MNRAS,336,1030 PaunzenE.,HandlerG.,WeissW.W.,etal. 2002b,A&A,392,515 RyabchikovaT.A.,LandstreetJ.D.,GelbmannM.J.,etal. 1997,A&A,327,1137 RyabchikovaT.A.,SavanovI.S.,MalanushenkoV.P.,&KudryavtsevD.O.2001,Astron. Reports,45, 382 RyabchikovaT.,PiskunovN.,KochukhovO.,etal. 2002,A&A,384,545 RyabchikovaT.,NesvacilN.,WeissW.W.,etal. 2004,A&A,423,705 RyabchikovaT.,SachkovM.,WeissW.W.,etal. 2007a,A&A,462,1103 RyabchikovaT.,SachkovM.,KochukhovO.,&LyashkoD.2007b,A&A,473,907 RyabchikovaT.,KochukhovO.,&BagnuloS.2008,A&A,480,811 SachkovM.,RyabchikovaT.,KochukhovO.,etal. 2004,inIAU Colloquium193,eds. KurtzD.W., &PollardK.R.,ASPConf. Ser.,310,208 SachkovM.,KochukhovO.,RyabchikovaT.,etal. 2008,MNRAS,389,903 SachkovM.,KochukhovO.,RyabchikovaT.,&GruberbauerM.2009,inInterpretation of Asteroseismic Data,CoAst,inpress SaioH.,&GautschyA.2004,MNRAS,350,485 SaioH.2005,MNRAS,360,1022 ShibahashiH.,GoughD.,KurtzD.W.,&KambeE.2008,PASJ,60,63 SousaJ.,&Cunha,M.S.2008,CoSka,38,453 Th´eadoS.,DupretM.-A.,NoelsA.,&FergusonJ.W.2009,A&A,493,159 O.Kochukhov 9 TurcotteS.,&RichardO.2002,Ap&SS,284,225 VauclairS.,&Th´eadoS.2004,A&A,425,179 VennK.A.,&LambertD.L.1990,ApJ,363,234 ZerbiF.M.,RodriguezE.,GarridoR.,etal. 1999,MNRAS,303,275

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.