ebook img

Asteroid 2013 ND15: Trojan companion to Venus, PHA to the Earth PDF

1.3 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Asteroid 2013 ND15: Trojan companion to Venus, PHA to the Earth

Mon.Not.R.Astron.Soc.000,000–000(2014) Printed5February2014 (MNLATEXstylefilev2.2) Asteroid 2013 ND : Trojan companion to Venus, PHA to the Earth 15 ⋆ C. de la Fuente Marcos and R. de la Fuente Marcos UniversidadComplutensedeMadrid,CiudadUniversitaria,E-28040Madrid,Spain 4 1 0 2 Accepted2014January20.Received2014January19;inoriginalform2013October18 b e F ABSTRACT Venushas threeknownco-orbitals:(322756)2001CK32, 2002VE68 and 2012XE133. The 4 first two have absolute magnitudes 18 < H < 21. The third one, significantly smaller at H = 23.4 mag, is a recent discoverythat signals the probable presence of many other sim- ] P ilar objects: small transient companions to Venus that are also potentially hazardous aster- E oids (PHAs). Here, we study the dynamical evolution of the recently discovered asteroid . 2013 ND15. At H = 24.1 mag, this minor body is yet another small Venus co-orbital and h PHA,currentlyclosetotheLagrangianpointL4andfollowingthemosteccentricpathfound p sofarforobjectsinthisgroup.ThistransientTrojanwillleavethe1:1meanmotionresonance - o within a few hundredyears althoughit could be a recurrentlibrator. Due to its high eccen- r tricity (0.6), its dynamics is different from that of the other three known Venus co-orbitals t even if they all are near-Earth objects (NEOs). A Monte Carlo simulation that uses the or- s a bitaldata anddiscoverycircumstancesofthe fourobjectsasproxiesto estimate the current [ sizeofthispopulation,indicatesthatthenumberofhigh-eccentricity,low-inclinationVenus co-orbitalNEOsmayhavebeengreatlyunderestimatedbycurrentmodels.Threeoutoffour 2 v knownobjectswerediscoveredwithsolarelongationatperigeegreaterthan135◦evenifvisi- 3 bilityestimatesshowthatlessthan4percentoftheseobjectsareexpectedtoreachperigeeat 1 suchlargeelongations.Ourcalculationssuggestthatthenumberofminorbodieswithsizes 0 above150mcurrentlyengagedinco-orbitalmotionwithVenuscouldbeatleastoneorderof 5 magnitudelargerthanusuallythought;thenumberofsmallerbodiescouldeasilybeinmany 1. thousands.Thesefigureshavestrongimplicationsonthe fractionof existingPHAsthatcan 0 barelybedetectedbycurrentsurveys.Nearly70percentoftheobjectsdiscussedherehave 4 elongationatperigee<90◦and65percentareprospectivePHAs. 1 : Keywords: celestialmechanics–minorplanets,asteroids:individual:2002VE68 –minor v planets,asteroids:individual:2012XE133 –minorplanets,asteroids:individual:2013ND15 i X –minorplanets,asteroids:individual:322756–planetsandsatellites:individual:Venus. r a 1 INTRODUCTION theyarealsomembersofthenear-Earthobject(NEO)population thatexperiencescloseapproachestoourplanet.Theminimumor- Venus hasno known satelliteslarger than about 0.3km inradius bitintersectiondistances(MOIDs)withtheEarthof322756,2002 (Sheppard&Trujillo2009).Asforunboundcompanions,multiple VE68 and 2012 XE133 are 0.08, 0.03 and 0.003 au, respectively. secularresonancesmakethepresenceofprimordial(long-termsta- Thispropertymakesthemobjectsofsignificantinterest. ble) Venusco-orbitals veryunlikely (Scholl,Marzari &Tricarico Potentiallyhazardousasteroids(PHAs)arecurrentlydefined 2005). In contrast, numerical simulations consistently show that ashavinganEarthMOIDof0.05auorlessandanabsolutemagni- present-daytemporaryco-orbitalcompanionstoVenusshouldexist tude,H,of22.0orless(Marsden1997);followingthisdefinition (Mikkola&Innanen1992;Michel1997;Christou2000;Tabachnik and at the time of this writing, there are 1451 known PHAs.1 If & Evans 2000; Brasser & Lehto 2002). This theoretical prospect thesizelimit(>150m,foranassumedalbedoof13percent)is hasbeenconfirmedwiththeidentificationof(322756)2001CK32, loweredorignored(hereafter, thePHAregime),thereareseveral ahorseshoe-quasi-satelliteorbiter(Brasseretal.2004),2002VE68, thousandsof knownPHAs.Loweringthesizelimitappearstobe a quasi-satellite (Mikkola et al. 2004) and 2012 XE133, a former wellsupportedbytheanalysisoftheeffectsoftherecentimpactof L5 Trojanmovingintoahorseshoe orbit(delaFuenteMarcos& asmallasteroidincentralRussia,theChelyabinskEvent(seee.g. delaFuenteMarcos2013).Besidesbeingtemporarilytrappedina Brownetal.2013),whichdemonstratesthatevensmallerobjects 1:1meanmotionresonancewithVenus,alltheseobjectsareMer- (under20m)canstillcausesignificantdamageiftheyhitdensely curygrazers,VenuscrossersandEarthcrossers.AsEarthcrossers, ⋆ E-mail:nbplanet@fis.ucm.es 1 http://neo.jpl.nasa.gov/neo/groups.html 2 C. dela FuenteMarcos andR. delaFuenteMarcos populatedareas.Inanycase,asteroids322756and2002VE68have anduncertaintiesinTable1istheJetPropulsionLaboratory(JPL) absolutemagnitudes18<H <21;therefore,2002VE68isaPHA Small-BodyDatabase.2 instrictsenseaccordingtothecurrentdefinition. Its very small relative semimajor axis, |a − aVenus| ∼ Discardingaprimordialoriginfordynamicalreasons,thegen- 0.0002±0.0002 au (the smallest found so far), makes this object esisofthisgroupofNEOsisfarfromwellunderstood.Theseob- aclear candidate tobe aVenus co-orbital. It completes one orbit jects exhibit resonant (or near-resonant) behaviour with Mercury around the Sun in 224.79 d or 0.6154 yr when Venus does it in (9:23), Venus(1:1) and theEarth(8:13), following rather chaotic 224.70dor0.6152yr.Itscurrentorbitisbasedon21observations paths with e-folding times of the order of 100 yr. Close encoun- withadata-arcspanof26d.Asexpectedofrecentdiscoveries,the terswiththethreeinnermost planets make thispopulation intrin- qualityoftheorbitsofboth2012XE133and2013ND15iscurrently sicallytransient;therefore,oneormoremechanismsshouldbeat lowerthanthatoftheothertwoco-orbitals.Itissimilar,however, worktomitigatethelosses,repopulatingthegroup.Christou(2000) totheoneavailablewhentheothertwoobjectswereidentifiedas predictedaquasi-steady-statefluxofminorbodiesmovinginand unbound companions to Venus back in 2004 (de la Fuente Mar- outoftheco-orbitalstatewithVenus.Morais&Morbidelli(2006) cos&delaFuenteMarcos2013).ThisobjecthasH =24.1mag explained the existence of this population within the steady-state (assumedG=0.15)oradiameterof40to100mforanassumed scenarioenvisionedbyBottkeetal.(2000,2002)whereNEOsare albedointherange0.20–0.04. constantlybeingsuppliedfromthemainasteroidbelt.Predictions As a Venus co-orbital candidate, the key parameter to study fromtheirmodelappeartobeconsistentwiththeavailableobser- istheoscillationofthedifferencebetweenthemeanlongitudesof vationalevidencebuttheyimplythatcurrentsurveyshavealready theobjectandVenusorrelativemeanlongitude,λr.Themeanlon- reachedcompletenessforH <21.However,somecrucialobserva- gitudeof anobject isgiven byλ=M +Ω+ω,where M isthe tionalfactshavenotyetbeentakenintoconsideration.Forinstance, meananomaly, Ωisthelongitudeoftheascendingnodeandω is howefficientareongoingsurveysexpectedtobeinthecaseofob- theargumentofperihelion.Anobjectisco-orbitalifλr oscillates jectsthatspendmostofthetimeatsolarelongations<90◦?Are (librates)aroundaconstantvalue;ifλr cantakeanyvalue(circu- theknownobjectsjustthetipoftheiceberg,representinganunex- lates)thenwehaveapassingobject.Foradditionaldetailsonco- pectedabundance ofsmallminorbodieswhoseorbitsmakethem orbitaldynamicalbehaviourseee.g.Namouni(1999)andChristou companionstoVenusandPHAstotheEarth? (2000). In this paper, we show that the recently discovered asteroid To confirm the co-orbital nature of 2013 ND15 with Venus, 2013ND15isanothersmalltransientVenusco-orbitalinthePHA we have carried out N-body simulations using the Hermite inte- regime(withaMOIDof0.007au,butanH=24.1mag).Together grator(Makino1991;Aarseth2003)inbothdirectionsoftimefor with 2012 XE133 (H= 23.4 mag), they may signal the presence 10kyr.ThestandardversionofthisdirectN-bodycodeispublicly of asignificant population of small transient Venus co-orbitalsin available from the IoA web site.3 Relativistic terms and the role thePHAregime.Toexplorethisinterestingpossibility,theorbital of the Yarkovsky and Yarkovsky–O’Keefe–Radzievskii–Paddack propertiesoftheseobjectsandtheirdiscoverycircumstancescanbe (YORP)effects(seee.g.Bottkeetal.2006)areneglected.Thenon- usedtoestimate(i)theirchancesofbeingfoundbyongoingNEO inclusion of these effectshas no impact on theassessment of the surveysand,indirectly,(ii)theactualsizeofthispopulation.This current dynamical statusof thisobject but mayaffect predictions paperisorganizedasfollows.InSection2,wepresenttheavailable regardingitsfutureevolutionanddynamicalpast.Inparticular,the dataon2013ND15 andbrieflyoutlineournumericalmodel.Sec- Yarkovsky effectmayhaveanon-negligible roleonthemedium- tion3focusesonanalysingthepast,presentandfuturedynamical andlong-termevolutionofobjectsassmallas2013ND15.Proper evolutionoftheobject.Section4providesacomparativedynami- modellingoftheYarkovskyforcerequiresknowledgeonthephys- calanalysiswiththeotherthreeVenusco-orbitals.Somerelevant icalpropertiesof theobjectsinvolved(for example, rotationrate, issuesregardingtheobservabilityoftheseobjectsarediscussedin albedo,bulkdensity,surfaceconductivity,emissivity)whichisnot Section5.OurconclusionsaresummarizedinSection6. thecasefor2013ND15.Detailedobservationsobtainedduringfu- tureencounterswiththeEarthorfromtheGaiamissionshouldbe abletoprovidethatinformationandeventuallyimprovethemod- ellingpresented here (seee.g. Carbognani et al. 2012; Cellino& Dell’Oro2012;Delbo´ etal.2012). Our model Solar system includes the perturbations by the eight major planets, treatingthe Earth and the Moon as two sep- 2 DATAANDNUMERICALMODEL arateobjects,thebarycentreofthedwarfplanetPluto–Charonsys- Asteroid2013ND15 wasdiscoveredbyN.Primak,A.Schultz,T. temandthethreelargestasteroids.Weuseinitialconditions(posi- GoggiaandK.ChambersobservingforthePan-STARRS1project tionsandvelocitiesinthebarycentreoftheSolarsystemreferredto fromHaleakalaon2013July13(Wainscoatetal.2013).Theob- theJD2456600.5epoch,t=0coincideswiththisepoch)provided jectwasfirstobservedusinga1.8mRitchey–Chretientelescopeat by the JPL’s HORIZONS ephemeris system (Giorgini et al. 1996; anapparentwmagnitudeof20.5;itwasre-observedinsubsequent Standish 1998).4 Relative errors in the total energy at the end of nightsfromCerroTololoObservatoryandwiththe3.6mCanada– thesimulationsare< 2×10−14.Additionaldetailscanbefound France–Hawaii Telescope from Mauna Kea. With a value of the indelaFuenteMarcos&delaFuenteMarcos(2012,2013). semimajoraxisa=0.7235au,veryclosetothatofVenus(0.7233 In addition to the calculations performed using the nominal au),thisAtenasteroidisanNEOmovinginaveryeccentric,e= orbital elements in Table 1, we have completed 100 control sim- 0.61,andalittleinclined,i = 4◦.8,orbitthatmakesitaMercury, Venus and Earth crosser. Therefore, its orbit is slightly different from those of the three previously known Venus co-orbitals (see 2 http://ssd.jpl.nasa.gov/sbdb.cgi Table1):(322756) 2001CK32,2002VE68 and2012XE133.The 3 http://www.ast.cam.ac.uk/∼sverre/web/pages/nbody.htm source of the Heliocentric Keplerian osculating orbital elements 4 http://ssd.jpl.nasa.gov/horizons.cgi A transientTrojancompanionto Venus 3 Table1.HeliocentricKeplerianorbitalelements(andthe1σuncertainty)ofasteroids2013ND15,(322756)2001CK32,2002VE68and2012XE133(Epoch =JD2456600.5,2013-Nov-4.0;J2000.0eclipticandequinox.Source:JPLSmall-BodyDatabase). 2013ND15 322756 2002VE68 2012XE133 Semimajoraxis,a(au) = 0.7235±0.0002 0.725457880±0.000000004 0.7236543902±0.0000000005 0.72297±0.00014 Eccentricity,e = 0.6115±0.0006 0.3824353±0.0000002 0.41033045±0.00000005 0.4332±0.0003 Inclination,i(◦) = 4.794±0.009 8.13201±0.00002 9.005960±0.000013 6.711±0.008 Longitudeoftheascendingnode,Ω(◦) = 95.84±0.02 109.5014±0.0002 231.579688±0.000005 281.095±0.006 Argumentofperihelion,ω(◦) = 19.69±0.02 234.0956±0.0002 355.463807±0.000014 337.085±0.007 Meananomaly,M(◦) = 357.57±0.06 1.35441±0.00009 123.30681±0.00003 351.6±0.2 Perihelion,q(au) = 0.2811±0.0005 0.44801718±0.00000011 0.42671696±0.00000004 0.4098±0.0003 Aphelion,Q(au) = 1.1660±0.0002 1.002898585±0.000000006 1.0205591818±0.0000000007 1.0361±0.0002 Absolutemagnitude,H(mag) = 24.1 18.9 20.5 23.4 greater than the usual value of +60◦. The libration centre is dis- placedfromthetypicalequilaterallocationforeccentricorbits;the short-termevolutionof theresonant angle,λr,isdisplayedinthe B-panelsofFig.2. All the integrated control orbits for 2013 ND15 exhibit Tro- janlibrationwithrespecttoVenusatt=0.Asanexample,Fig.2 displaystheshort-termdynamicalevolutionofanorbitarbitrarily closetothe nominal one (central panels) and thoseof tworepre- sentative worst orbits which are most different from the nominal one.Theorbitlabelledas‘dynamicallycold’(left-handpanels)has beenobtainedbysubtractingthricetheuncertaintyfromtheorbital parameters(thesixelements)inTable1.Itisindeedthecoldest,dy- namicallyspeaking,orbit(lowestvaluesofa,eandi)compatible withthecurrentvaluesofitsorbitalparameters.Incontrast,theor- bitlabelledas‘dynamicallyhot’(right-handpanels)wascomputed byaddingthreetimesthevalueoftheuncertaintytotheorbitalel- ementsinTable1.Thismakesthistrajectorythehottestpossiblein dynamicalterms(largestvaluesofa,eandi).Allthecontrolorbits Figure1.Themotionof2013ND15 overthetimerange(-200,50)yris exhibitconsistentbehaviourwithinafewhundredyearsoft = 0. displayedprojectedontotheeclipticplaneinacoordinatesystemrotating Asteroid2013ND15isindeedaVenusTrojanaccordingtothecur- withVenus(nominalorbitinTable1).TheorbitandpositionofVenusare rent observational uncertainties or at aconfidence level >99 per alsoindicated. cent.However, itsTrojandynamical statusisonlytemporaryand thetadpoleorbitthatitcurrentlyfollows(seeFig.1),shortlived. ulationsusingsetsof orbitalelementsobtained fromthenominal oneswithintheaccepteduncertainties.Thecomputedsetofcontrol orbitsfollowsanormaldistributioninthesix-dimensional orbital Ourcalculations(seeFigs3and4,left-handpanels)showthat parameter space. These synthetic orbital elements arecompatible 2013ND15hasalreadyremainedinthe1:1commensurabilitywith withthenominal oneswithinthe3σ deviations(seeTable1)and Venusforafewthousandyears.Duringthistime-span,theobject reflecttheobservationaluncertaintiesinastrometry.Theshort-term may have been a Trojan (L4 and L5), a quasi-satellite (λr = 0◦) dynamicalevolutionoftheentiresetofcontrolorbitsisconsistent and a horseshoe librator (λr = 180◦). Its future orbital evolution withtheonederivedfromthenominalorbit. strongly depends on the outcome of flybys with our planet dur- ingthenext250–500yr.AverycloseencounterwiththeEarthat nearly0.003 au maytake placeabout 250 yr fromnow. Asteroid 3 CURRENTDYNAMICALSTATUSANDEVOLUTION 2013ND15 maybecomeapassingobjectaftersuchanencounter butrecurrentco-orbitalepisodesareobservedformostcontrolor- The motion of 2013 ND15 over the time range (-200, 50) yr as bits.Thisisconsistentwithitspastorbitalevolution.Afuturebetter seeninacoordinatesystemrotatingwithVenusprojectedontothe orbitmayhelptoreducetheuncertaintiesinthepredicteddynami- eclipticplaneisplottedinFig.1(nominal orbitinTable1).This calevolutionbutthefactisthatmuchbetterorbitsstilltranslateinto minorbodyisaVenusco-orbitalcurrentlyfollowingatadpoleor- ratherchaoticorbitalevolutionbothinthepastandthefuturefor bit around Venus’ Lagrangian point L4; it is, therefore, a Trojan (322756)2001CK32and2002VE68(seee.g.delaFuenteMarcos (seee.g.Murray&Dermott1999).Duetoitssignificanteccentric- &delaFuenteMarcos2012,2013).Forobjectsfollowingintrinsi- ityandinaccordancetotheoreticalpredictions(Namouni,Christou callyirregularpaths,animprovedorbitdoesnotmakemedium-or &Murray1999; Namouni&Murray2000),thelibrationangleis long-termpredictionssignificantlybetterormorereliable. 4 C. dela FuenteMarcos andR. delaFuenteMarcos Figure2.Comparativeshort-termdynamicalevolutionofvariousparametersforanorbitarbitrarilyclosetothenominaloneof2013ND15 asinTable1 (centralpanels)andtworepresentativeexamplesoforbitsthataremostdifferentfromthenominalone(seethetextfordetails).ThedistancefromtheEarth (A-panels);thevalueoftheHillsphereradiusoftheEarth,0.0098au,isdisplayed.Theresonantangle,λr (B-panels).Theorbitalelementsa−aVenus (C-panels),e(D-panels),i(E-panels)andω(F-panels).Thedistancestothedescending(thickline)andascendingnodes(dottedline)appearintheG-panels. Earth’sandMercury’saphelionandperiheliondistancesarealsoshown. 4 ASTEROID2013ND15INCONTEXT the‘-’signisforthedescendingnode.Thepositionsofthenodes areplottedintheG-panels.Theevolutionovertimeofthelocation Fig.4displaysthecomparativeevolutionoftheosculatingorbital ofthenodesof(322756)2001CK32,2002VE68and2012XE133is elementsandother parametersof interestofalltheknown Venus verysimilar;theyremainconfinedbetweenMercury’sandEarth’s co-orbitals (nominal orbits in Table 1). It is clear that the higher aphelia, 0.4667 au and 1.0167 au, respectively. In sharp contrast, eccentricity(mainly)andslightlylowerinclinationoftheorbitof thenodesof2013ND15 exhibitawideroscillationrange,0.3–1.2 2013 ND15 are responsible for the obvious differences observed au.Thelowerinclinationtranslatesintomorefrequentflybyswith in the figure. One common feature is also evident, all these ob- theEarth.Theseencountersarenotasdeepasinthecaseofsome jectsswitchbetweenresonantstatesrelativelyfrequently.Transfers oftheotherthreeobjectsbuttheyoccurmoreoften.Asteroid2013 betweentadpole,horseshoeandquasi-satelliteorbitsaretriggered ND15 seemstobeanextremeversionof2012XE133 anditsorbit bycloseencounterswiththeinnerplanetsandthosearetheresult isevenmoreunstable. ofthelibrationofthenodes(Wiegert,Innanen&Mikkola1998). Chaos-inducedtransferfromoneLagrangepointtoanotherappears tobeadynamical propertycommontotemporarilycapturedTro- jansoftheterrestrialplanets(Schwarz&Dvorak2012). 5 BUT,HOWMANYAREOUTTHERE? Foranobjectfollowinganinclinedpath,closeencounterswith major planets are only possible in the vicinity of the nodes. The Themodel inMorais &Morbidelli (2006) onlystrictlyapplies if distance between the Sun and the nodes is given by r = a(1− H <22anditpredictstheexistenceoftwoVenusco-orbitalswith e2)/(1±ecosω),wherethe‘+’signisfortheascendingnodeand absolute magnitude brighter than 21 mag. There are two known A transientTrojancompanionto Venus 5 approximation (e.g. Murray & Dermott 1999) to find the Earth- objectMOIDorperigee.Thenweestimatethesolarelongationat perigee(assumedtobethemostlikelydiscovery time)andstudy theresultingstatistics.TheorbitoftheEarthusedinthissimulation wascomputedatEpochJD2456600.5 bythe HORIZONSsystem. Therandomvaluesoftheorbitalparametersoftheobjectsfollow thetrendsobserved inTable1,namely0.720< a(au)<0.727, 0.3< e <0.7and0< i(◦) <10,withbothΩandω∈(0,360)◦. Theresultsof107 testorbitsareplottedinFig.5(thevalueofthe geocentricsolarelongationiscolourcoded).Onlyperigeesofless than0.1au(∼91percent,65percentareinthePHAregime)are considered.Thefractionoftheseorbitsreachingperigeewithelon- gation<90◦(dawntodusksky)is72.5percent;only3.6percent oftheobjectsreachperigeewithelongations>135◦. Ourresultsconcerningthevisibilityoftheseobjectsarecon- sistent with those in Morais & Morbidelli (2006); however, our interpretation is rather different. Assuming that the brightest ob- Figure3.Theresonantangle,λr,forthenominalorbitof2013ND15 in jects are the easiest to spot and that, at elongations > 135◦, the Table1(redline)andtwoofthecontrolorbits.Thebluelinecorrespondsto discoveryefficiencyofNEOsurveysapproaches100percent(but aparticularcontrolorbitthatwaschosenclosetothe3σlimitsoitsorbital seebelow),thediscoveryofonesinglebrightobject,2002VE68, elementsaremostdifferentfromthenominalones.Thethirdorbit(green atelongation150◦.9in12yearsofobservations stronglysuggests line)hasosculatingelementswithin1σofthoseofthenominalorbit. that at least 28 other similarly bright objects are still waiting for discovery. Besides, southern declinations under -30◦and northern declinationsabove+80◦areoutsidethecoverageofmostsurveys. Table2.Equatorial coordinates (J2000.0),apparentmagnitudes (withfil- Nearly30percentofthestudiedorbitshaveMOIDunder0.05au ter),solarelongation, θ,andphase,φ,atdiscoverytimeofknownVenus anddeclinationunder-30◦.Thesefactssuggestthatthenumberof co-orbitals.Source:MPCDatabase. asteroids with sizes above 150 m currently engaged in co-orbital motionwithVenusis,atleast,oneorderofmagnitudelargerthan Object α(h:m:s) δ(◦:′:′′) m(mag) θ(◦) φ(◦) usuallythought. Thenumber ofsmallerbodiescouldeasilybein 2001CK32 16:54:52.51 +33:02:23.9 17.2 83.8 90.0 manythousands andtheymaybesecondary fragments, theresult 2002VE68 01:05:00.91 +26:34:22.8 14.1(R) 150.9 28.2 oftidalorrotationalstresses(seee.g.Richardson,Bottke&Love 2012XE133 07:32:51.54 +59:02:11.9 18.5(V) 137.0 40.5 1998). 2013ND15 21:21:58.739 -26:52:18.69 20.5(w) 154.3 22.3 Fig.6shows thefrequency distributioninequatorial coordi- nates at perigee for the set of orbits studied here. From this and Table2,itisobviousthatnoneoftheknownobjectswerediscov- objects within that limit: (322756) 2001 CK32 and 2002 VE68. ered within the regions of the sky where the density of perigees Morais&Morbidelli(2006)alreadyconsideredsurprisingthatthe of these objects isexpected tobe thehighest (the eclipticpoles). currentlyknownsampleoftheseobjectswasapparentlycomplete Fig.7providesthedistributioninequatorialcoordinatesoftheac- up to H < 21. This result is even more extraordinary when we tualperigees(colourcoded).Oncemoreitisclearthattheknown realizethatongoing NEOsearchprogrammes arenotspecifically objects have been discovered far from the optimal locations. The targetingthisclassofobjects.Alookbackintothediscoverycir- smallestMOIDsarefoundintheregionwithinα∈(14,22)hand cumstancesofindividualobjects,ascompiledinTable2,mayhelp δ∈(20,−70)◦.Only2013ND15hasbeendiscoveredclosetothat ustounderstandbetterthisintriguingissue.Inparticular,thevalue areaofthesky.Thisstatisticalanalysiscanbeusedtoimplement ofthesolarelongationoranglebetweentheSunandtheobjectas better strategies tofind theseobjects. In any case, optimized sur- seenfromtheEarthatthetimeofdiscoverycanprovidevaluable veysrequiretheuseofspace-basedtelescopes.TheupcomingGaia cluesonhowabundanttheseobjectsreallyare.Thesourceofthe mission6 representsaverygoodopportunitytostudythispopula- datainTable2istheMinorPlanetCenter(MPC)Database.5 tionandconfirm/rejectourcurrentviews.Gaiacanobserveclose Threeoutoffourobjectswerefoundatelongations>135◦. totheSun(downtoanangulardistanceof45◦fromtheSun)and Observationally speaking, this is not unusual as NEO surveys shouldbeabletoobserveover77percentoftheseobjects,ifthey mainlyfocusontheregionsoftheskyatelongationsinthatrange. do exist. In sharp contrast, nearly 70 per cent of the objects dis- However,andintheory,mostoftheobjectsdiscussedhereareun- cussedherehaveelongationatperigee<90◦and,therefore,cannot likelytoroutinelyreachperigeeatsuchlargeelongations asthey be observed from the ground. The search for Trojan asteroids in spendmostofthetimeintheunobservable(daytime)sky.Morais theinnerSolarsystemingeneral,andusingGaiainparticular,has &Morbidelli(2006)estimatedthat78percentofVenusco-orbitals beendiscussedbyTodd,Coward&Zadnik(2012). arehiddenintheunobservablesky(theirregionIII)andjustthree Atthispoint,itmaybearguedthatourfindingsaresimplya per cent arefound intheobservable sky(theirregionI).Inorder corollaryof thestrong, but known, observational biasagainst de- tocomputeourownestimates,weperformedaMonteCarlosimu- tectingAtenspointedoutbye.g.Mainzeretal.(2012).Ifweper- lation(Metropolis&Ulam1949)inwhichweusedtheequations formanotherMonteCarlocalculationforobjectsmovinginAten- oftheorbitsofboththeEarthandtheobject under thetwo-body typeorbits (a < 1au, Q >0.983 au, withQ = a (1 + e) 5 http://www.minorplanetcenter.net/db search 6 http://sci.esa.int/gaia/ 6 C. dela FuenteMarcos andR. delaFuenteMarcos Figure4.ComparativedynamicalevolutionofvariousparametersforthefourknownVenusco-orbitals.ThedistancefromtheEarth(panelA);thevalueof theHillsphereradiusoftheEarth,0.0098au,isdisplayed.Theresonantangle,λr(panelB)forthenominalorbitinTable1.Theorbitalelementsa−aVenus (panelC),e(panelD),i(panelE)andω(panelF).Thedistancestothedescending(thickline)andascendingnodes(dottedline)appearinpanelG.Earth’s andMercury’saphelionandperiheliondistancesarealsoshown. beingtheapheliondistance,andassuminge <1.0andi <60◦, perigeeatsolarelongation<90◦;incontrastandforhypothetical withboth Ω and ω in the range 0–360◦) and plot the results, we Venusco-orbitalsofthetypediscussedhere,thefractionis65.9per obtainFig.8.Itistruethatthereisindeed astrongobservational cent.Thedifferenceislargeenoughtowarrantspecificconsidera- biasagainstdetectingAtens.Itsactualimpactishoweverunknown tion,separatedfromthebulkoftheAtens.Only29.3percentofthe becausewedonotknowtherealdistributionoftheorbitalelements Aten-typeorbitsstudied herearemoving inthePHAregime; for ofobjectsmovinginAten-typeorbits.Ourdiagrams(hereandin Venusco-orbitalsofthetypediscussedherethisfractionamounts thepreviousfigures)assumethatthedistributionoftheorbitalele- to65.1percent.Itisobviousthattheoverallprobabilityofcollision mentsisuniformbutitcouldbethecasethatlow-eccentricity,low- with our planet is much higher for the type of Venus co-orbitals inclinationorbitsarelesslikelytooccurthaneccentricandinclined discussed in this work than for the typical Aten population. The onesduetofrequentplanetarycloseencounters.Wesimplydonot meanimpactprobabilitiesassociatedwithAtensandotherdynam- know; acompletesampleofobjectsisneeded toprovideabetter icalclasseshavebeenstudiedpreviously(seee.g.Steel&Bagga- answer.However, iftheorbitaldistributionisuniformor closeto ley1985;Chyba1993;Steel1995;Dvorak&Pilat-Lohinger1999; uniform as assumed here, the predictions from our simple mod- Dvorak & Freistetter 2001) and it is well established that Atens ellingshowthattheactualnumberofAtensshouldbesignificantly have the shortest lifetimes against collision, closely followed by higher than the current tally. Consistently, the number of objects Apollos(afactor2–5longer).Iftheobjectsstudiedherehavelife- movinginorbitssimilartothoseofknownVenusco-orbitalsmust timesagainst collision withour planet even shorter than those of behighertoobuttheirdetectabilityismoreseriouslyaffectedthan typicalAtens,thispopulationmustbeabletoefficientlyreplenish that of Atens (compare frequencies in Figs 5 and 8 for an equal thelossesviasomeunknownmechanism(s). numberoftestorbits,107). Our analysisindicatesthattheexistenceofarelativelylarge Only 26.4 per cent of the simulated Aten-type orbits reach population of Venus co-orbitals with sizes under 150 m is very A transientTrojancompanionto Venus 7 Figure5.Distributioninequatorialcoordinatesatperigeeoforbitssimilar Figure8.SimilartoFig.5butforobjectsmovinginAten-typeorbits.See to those ofknown Venus co-orbitals as a function of the (colour coded) thetextfordetails. geocentricsolarelongation(toppanel).Afrequencyanalysisofthesame data(bottompanel).Onlyperigees<0.1auareconsidered. likely.Thissmallsizesuggeststhattheycouldbefragmentsoffrag- ments.Asteroidaldecaycouldbeinducedbycollisionalprocesses (e.g.Ryan2000)butalsobethecombinedresultofthermalfatigue (e.g.Cˇapek&Vokrouhlicky´2010)andtidal(e.g.To´th,Veresˇ&Ko- rnosˇ2011)orrotationalstresses(e.g.Walsh,Richardson&Michel 2008).Theselastthreeprocessescanefficientlyproducesecondary fragments.TherecentstudyofMainzeretal.(2014)maypointin that direction. Using NEOWISE (the asteroid-hunting portion of the Wide-field Infrared Survey Explorer mission) data they have foundapopulationoftinyNEOscharacterizedbyincreasingalbe- doswithdecreasingsize.Thismaybetheresultofaselectionbias against finding small, dark NEOs but it may also be the specific signatureofadistinctivepopulationamong smallobjectsthatare theresultofsecondaryfragmentation. Figure6.Frequencydistributioninequatorialcoordinates(rightascension, 6 CONCLUSIONS toppanel,anddeclination,bottompanel)atperigeeoforbitssimilartothose Inthispaper,wehaveidentifiedyetanotherhigh-eccentricityVenus ofknownVenusco-orbitals(asinFig.5).Thebestareastosearchforthese objectsarelocatedtowardstheeclipticpoles. co-orbital and PHA, 2013 ND15. This object is the first known VenusTrojan.OurcalculationsindicatethatthissmallNEOmoves inatransitional,highlychaotictrajectory;ithasbeenaco-orbital companiontoVenusforjustafewthousand yearsanditmaybe- comeapassingobjectwithinthenextfewhundredyears.Although its future orbital evolution is not easily predictable beyond that time-scale,theobjectmayexperiencerecurrentco-orbitalepisodes with Venus. However, all the calculations consistently show that 2013 ND15 iscurrently in the Trojan dynamical state. Due to its veryeccentricorbit,itsdynamical evolutionismarkedlydifferent from that of the three previously known Venus co-orbitals, being evenlessstable.Ontheotherhand,thescarcityofdetectedVenus co-orbitalsappearstobetheresultofobservationalbias,notphysi- callackofobjects.Ourcalculationssuggestthatthenumberofmi- norbodieswithsizesabove150mcurrentlyengagedinco-orbital Figure 7. Distribution in equatorial coordinates of the (colour coded) motionwithVenuscouldbeatleastoneorderofmagnitudelarger perigeesofobjectsmovinginorbitssimilartothoseofknownVenusco- thanusuallythought;thenumberofsmallerbodiescouldeasilybe orbitals(asinFig.5).Thegreenpointsrepresentthediscoverycoordinates inmanythousands.Theseobjectsarebetteridentifiedusingspace- ofthefourobjectsinTable2. based telescopes because nearly 70 per cent of them have solar elongationatperigee<90◦. 8 C. dela FuenteMarcos andR. delaFuenteMarcos ACKNOWLEDGEMENTS ToddM.,CowardD.M.,ZadnikM.G.,2012,Planet.SpaceSci.,73,39 To´thJ.,VeresˇP.,KornosˇL.,2011,MNRAS,415,1527 The authors would like to thank S. J. Aarseth for providing one WainscoatR.J.,MicheliM.,ForshayP.,PrimakN.,SchultzA.,GoggiaT., of thecodes used in thisresearch and the anonymous refereefor ChambersK.,ListerT.,2013,MPECCirc.,MPEC2013-O04 his/her constructive and useful report. This work was partially WalshK.J.,RichardsonD.C.,MichelP.,2008,Nature,454,188 supported by the Spanish ‘Comunidad de Madrid’ under grant WiegertP.A.,InnanenK.A.,MikkolaS.,1998,AJ,115,2604 CAMS2009/ESP-1496. Theauthorsalsothank M. J.Ferna´ndez- Figueroa,M.RegoFerna´ndezandtheDepartmentofAstrophysics of theUniversidad Complutense deMadrid(UCM)for providing computingfacilities.Mostofthecalculationsandpartofthedata analysis were completed on the ‘Servidor Central de Ca´lculo’ of theUCM.Inpreparationofthispaper,theauthorsmadeuseofthe NASAAstrophysics DataSystem, theASTRO-PHe-printserver, theMPCdataserverandtheNEODysservice. REFERENCES Aarseth S. J., 2003, Gravitational N-body simulations. Cambridge Univ. Press,Cambridge,p.27 Bottke W. F., Jedicke R., Morbidelli A., Petit J. M., Gladman B., 2000, Science,288,2190 BottkeW.F.,MorbidelliA.,JedickeR.,PetitJ.M.,LevisonH.,MichelP., MetcalfeT.,2002,Icarus,156,399 Bottke W.F.,Jr., Vokrouhlicky´ D.,Rubincam D.P.,Nesvorny´ D.,2006, Annu.Rev.EarthPlanet.Sci.,34,157 BrasserR.,LehtoH.J.,2002,MNRAS,334,241 BrasserR.,InnanenK.A.,ConnorsM.,VeilletC.,WiegertP.,MikkolaS., ChodasP.W.,2004,Icarus,171,102 BrownP.G.etal.,2013,Nature,503,238 CˇapekD.,Vokrouhlicky´D.,2010,A&A,519,A75 CarbognaniA.,TangaP.,CellinoA.,Delbo´ M.,MottolaS.,MarcheseE., 2012,Planet.SpaceSci.,73,80 CellinoA.,Dell’OroA.,2012,Planet.SpaceSci.,73,52 ChristouA.A.,2000,Icarus,144,1 ChybaC.F.,1993,Nature,363,701 delaFuenteMarcosC.,delaFuenteMarcosR.,2012,MNRAS,427,728 delaFuenteMarcosC.,delaFuenteMarcosR.,2013,MNRAS,432,886 Delbo´ M.,Gayon-MarktJ.,BussoG.,BrownA.,GalluccioL.,Ordenovic C.,BendjoyaP.,TangaP.,2012,Planet.SpaceSci.,73,86 DvorakR.,FreistetterF.,2001,Planet.SpaceSci.,49,803 DvorakR.,Pilat-LohingerE.,1999,Planet.SpaceSci.,47,665 GiorginiJ.D.etal.,1996,BAAS,28,1158 MainzerA.etal.,2012,ApJ,752,110 MainzerA.etal.,2014,ApJ,inpress(arXiv:1310.2980) MakinoJ.,1991,ApJ,369,200 MarsdenB.G.,1997,Ann.NewYorkAcad.Sci.,822,52 MetropolisN.,UlamS.,1949,J.Am.Stat.Assoc.,44,335 MichelP.,1997,A&A,328,L5 MikkolaS.,InnanenK.,1992,AJ,104,1641 MikkolaS.,BrasserR.,WiegertP.,InnanenK.,2004,MNRAS,351,L63 MoraisM.H.M.,MorbidelliA.,2006,Icarus,185,29 Murray C.D.,Dermott S.F.,1999, Solar System Dynamics. Cambridge Univ.Press,Cambridge NamouniF.,1999,Icarus,137,293 NamouniF.,MurrayC.D.,2000,Celest.Mech.Dyn.Astron.,76,131 NamouniF.,ChristouA.A.,MurrayC.D.,1999,Phys.Rev.Lett.,83,2506 RichardsonD.C.,BottkeW.F.,Jr.,LoveS.G.,1998,Icarus,134,47 RyanE.V.,2000,Ann.Rev.EarthPlanet.Sci.,28,367 SchollH.,MarzariF.,TricaricoP.,2005,AJ,130,2912 SchwarzR.,DvorakR.,2012,Celest.Mech.Dyn.Astron.,113,23 SheppardS.S.,TrujilloC.A.,2009,Icarus,202,12 Standish E. M., 1998, JPL Planetary and Lunar Ephemerides, DE405/LE405.InterofficeMemo.312.F-98-048,NASAJPL SteelD.I.,1995,MNRAS,273,1091 SteelD.I.,BaggaleyW.J.,1985,MNRAS,212,817 TabachnikS.,EvansN.W.,2000,MNRAS,319,63

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.