ebook img

Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations PDF

336 Pages·2007·5.387 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations

Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations NitrogenFixation:Origins,Applications,andResearchProgress VOLUME 5 Thetitlespublishedinthisseriesarelistedattheendofthisvolume. Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations Edited by Claudine Elmerich InstitutPasteur, Paris,France and William E. Newton DepartmentofBiochemistry VirginiaPolytechnicInstituteandStateUniversity Blacksburg,Virginia,U.S.A. AC.I.P.CataloguerecordforthisbookisavailablefromtheLibraryofCongress. ISBN-101-4020-3541-1(HB) ISBN-13978-1-4020-3541-8(HB) ISBN-101-4020-3546-2(e-book) ISBN-13978-1-4020-3546-3(e-book) PublishedbySpringer, P.O.Box17,3300AADordrecht,TheNetherlands. www.springer.com Backgroundfigurecaption: “Aseedcropofclover(Trifoliumhirtum)inflowernearMoora,WesternAustralia.Photograph courtesyofMikeDavies,SeniorTechnicalOfficer,PastureResearchGroupofAgriculture WAandreproducedwithpermission.” Vol.5-specificfigurecaption: “ColonizationofawheatroothairbyAzospirillum.PhotographcourtesyofClaudineElmerich, InstitutdesSciencesduVégétal,CNRS,Gif-sur-Yvette,andInstitutPasteur,Paris,France, andreproducedwithpermission.” Printedonacid-freepaper AllRightsReserved ©2007 Springer Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmitted inanyformorbyanymeans,electronic,mechanical,photocopying,microfilming,recording orotherwise,withoutwrittenpermissionfromthePublisher,withtheexception ofanymaterialsuppliedspecificallyforthepurposeofbeingentered andexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. TABLE OF CONTENTS Preface to the Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Dedication – Johanna Döbereiner . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . xxi Chapter 1. Historical Perspective: From Bacterization to Endophytes C. Elmerich . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. The Nitrogen Cycle: Heritage from the 19th Century . . . . . . . . . . . . . 1 2. Nutritional Interactions between Bacteria and Plants . . . . . . . . . . . . . 3 3. Associative Nitrogen-fixing Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . 8 4. Discovery of Nitrogen-fixing Endophytes . . . . . . . . . . . . . . . . . . . . 11 5. Cyanobacterial Associations . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 14 6. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Chapter 2. Molecular Phylogeny and Ecology of Root Associated Diazotrophic (cid:302)- and (cid:533)-Proteobacteria M. Schmid and A. Hartmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2. Tools for Molecular Phylogeny and in situ Localization of Bacterial Isolates and Communities . . . . . . . . . . . . . . . . . . . . . 23 3. Molecular Phylogeny and Ecology of Azospirillum and Other Nitrogen-fixing (cid:302)-Subclass Proteobacteria . . . . . . . . . . . . . . . . . . . 27 4. Molecular Phylogeny and Ecology of Herbaspirillum, Diazotrophic Burkholderia spp., and Other N -fixing (cid:533)-Proteobacteria . . . 29 2 5. Conclusions and Prospects for Future Studies. . . . . . . . . . . . . . . . . . 35 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter 3. Regulation of Nitrogen Fixation and Ammonium Assimilation in Associative and Endophytic Nitrogen fixing Bacteria F. O. Pedrosa and C. Elmerich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2. Rhizospheric and Endophytic Bacteria: General Features . . . . . . . . 42 3. Structural Organization of nif Genes . . . . . . . . . . . . . . . . . . . . . . . . 44 4. Identification of RpoN and Its Involvement in Nitrogen Fixation . . 48 5. The Ntr System and the Control of Nitrogen Metabolism and Nitrogen Fixation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6. Regulation of Nitrogen Fixation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 v vi TABLEOFCONTENTS Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 4. Chemotaxis in Soil Diazotrophs: Survival and Adaptative Response G. Alexandre and I. B. Zhulin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2. Gene-Expression Regulation and Chemotaxis as Adaptive Responses to Environmental Changes . . . . . . . . . . . . . . . . . . . . . 74 3. Molecular Mechanism of the Chemotactic Response: Learning from Escherichia coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4. Directed Motility in Soil Diazotrophs . . . . . . . . . . . . . . . . . . . . . . . 78 5. Future Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 5. Molecular Genetics of Rhizosphere and Plant-Root Colonization E. Vanbleu and J. Vanderleyden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2. Motility of Associative Diazotrophs . . . . . . . . . . . . . . . . . . . . . . . . 86 3. Attachment to Plant Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4. Rhizosphere Competence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 6. Microbial Production of Plant Hormones B. E. Baca and C. Elmerich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 1. Discovery of Phytohormones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 2. Production and Role of Phytohormones . . . . . . . . . . . . . . . . . . . . . 115 3. Pathways for Plant Hormone Biosynthesis: Common Routes in Plants, Bacteria and Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4. Major Routes for IAA synthesis in Pathogenic and Beneficial Nitrogen-fixing Bacteria Associated with Plants . . . . . . . . . . . . 123 5. Multiple Routes for IAA Synthesis in Azospirillum . . . . . . . . . . . . 127 6. Other Phytohormones Produced by Plant Pathogenic and Nitrogen-fixing Associated and Endophytic Bacteria . . . . . . . . . 130 7. Plant Growth Promotion (PGP): Role of Bacterial Phytohormone Production, ACC-Deaminase, and Use of Synthetic Auxins . 133 8. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Chapter 7. The Plant Growth-Promoting Effect and Plant Responses S. Dobbelaere and Y. Okon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 1. N Fixation vs. “Hormonal” Effects: Historical Perspectives . . . . . 145 2 2. Effects of Azospirillum and Other Diazotrophs on Root Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 TABLEOFCONTENTS vii 3. Effects on Root Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4. Effects on Plant Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5. Future Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Chapter 8. Biocontrol of Plant Diseases by Associative and Endophytic Nitrogen-fixing Bacteria R. Bally and C. Elmerich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 1. Beneficial Plant-Associated Nitrogen-fixing Bacteria and Biocontrol of Plant Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 2. Interactions within Microbial Communities: Competition Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 3. Biological Control against Soil-Borne Diseases . . . . . . . . . . . . . . . 174 4. Regulation of Biocontrol Properties and Cell-Cell Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 5. Plant Response to Pathogens and Biological Control in the Rhizosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 6. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Chapter 9. Endophytic Associations of Azoarcus spp. B. Reinhold-Hurek and T. Hurek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 2. The Rise of Interest in Diazotrophic Endophytes . . . . . . . . . . . . . . 192 3. Azoarcus spp. and related Genera: Strictly Plant-Associated versus Soil Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 4. Habitats and Ecophysiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 5. Interactions with Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6. Infection of Roots by Endophytic Diazotrophs: An Active, Specific Process? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 7. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Chapter 10. Biological Nitrogen Fixation in Sugarcane V. Reis, S. Lee and C. Kennedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 1. Short Story of the Sugarcane-Cropping System . . . . . . . . . . . . . 213 2. Nitrogen-fixing Bacteria Colonising Sugarcane: New Phylogenetic Data, Properties, and Endophytic Status . . . . . . . . 215 3. Contribution of BNF to the Sugarcane Crop . . . . . . . . . . . . . . . . . . 219 4. Effect of N Fertilization on BNF . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 5. Genes for Nitrogen Fixation and Their Regulation in G. diazotrophicus and H. seropedicae . . . . . . . . . . . . . . . . . . . . . 221 6. Is Indole Acetic Acid Production an Important Factor in the Ability of G. diazotrophicus to Enhance Growth of Sugarcane? . . . . . . . 225 7. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 viii TABLEOFCONTENTS Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Chapter 11. Heterocyst Differentiation and Nitrogen Fixation in Cyanobacteria R. Haselkorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 1. Early History of the Association of Nitrogen Fixation with Heterocysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 2. Cyanobacterial Nitrogenase and nif-Genes Organization . . . . . . . . 236 3. Pathway of N Assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 4. Carbon Metabolism in Heterocysts . . . . . . . . . . . . . . . . . . . . . . . . . 240 5. Genetic Tools for Studying Cyanobacterial Nitrogen Fixation . . . . 241 6. Regulatory Genes Required for Heterocyst Differentiation . . . . . . . 242 7. Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Chapter 12. Cyanobacterial Associations B. Bergman, A. N. Rai, and U. Rasmussen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 2. Historical Aspects and Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . 259 3. Symbioses with Diatoms (Algae) . . . . . . . . . . . . . . . . . . . . . . . . . . 261 4. Symbioses with Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 5. Symbiosis with Bryophytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 6. Symbiosis with Pteridophytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 7. Symbioses with Cycads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 8. Symbiosis with Gunnera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 9. Creation of New Symbioses and Prospects . . . . . . . . . . . . . . . . . . . 290 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Chapter 13. Prospects for Significant Nitrogen Fixation in Grasses from Bacterial Endophytes E. W. Triplett . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 1. Ultimate Objective of Nitrogen-fixation Research – Nitrogen Fixation in Maize, Wheat, and Rice . . . . . . . . . . . . . . . . . . . . . . 303 2. Understanding the Basic Biology of Endophytic Colonization: Using Klebsiella pneumoniae 342 (Kp342) as the Model Diazotrophic Endophyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 305 3. Attributes Needed for a Model Diazotrophic Endophyte . . . . . . . . 307 4. Future Work Needed to Replace Nitrogen Fertilizer with Diazotrophic Endophytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 PREFACE TO THE SERIES Nitrogen Fixation: Origins, Applications, and Research Progress Nitrogen fixation, along with photosynthesis as the energy supplier, is the basis of all life on Earth (and maybe elsewhere too!). Nitrogen fixation provides the basic component, fixed nitrogen as ammonia, of two major groups of macromolecules, namely nucleic acids and proteins. Fixed nitrogen is required for the N-containing heterocycles (or bases) that constitute the essential coding entities of deoxyribonucleic acids (DNA) and ribonucleic acids (RNA), which are responsible for the high-fidelity storage and transfer of genetic information, respectively. It is also required for the amino-acid residues of the proteins, which are encoded by the DNA and that actually do the work in living cells. At the turn of the millennium, it seemed to me that now was as good a time as any (and maybe better than most) to look back, particularly over the last 100 years or so, and ponder just what had been achieved. What is the state of our knowledge of nitrogen fixation, both biological and abiological? How has this knowledge been used and what are its impacts on humanity? In an attempt to answer these questions and to capture the essence of our current knowledge, I devised a seven-volume series, which was designed to cover all aspects of nitrogen-fixation research. I then approached my long-time contact at Kluwer Academic Publishers, Ad Plaizier, with the idea. I had worked with Ad for many years on the publication of the Proceedings of most of the International Congresses on Nitrogen Fixation. My personal belief is that congresses, symposia, and workshops must not be closed shops and that those of us unable to attend should have access to the material presented. My solution is to capture the material in print in the form of proceedings. So it was quite natural for me to turn to the printed word for this detailed review of nitrogen fixation. Ad’s immediate affirmation of the project encouraged me to share my initial design with many of my current co-editors and, with their assistance, to develop the detailed contents of each of the seven volumes and to enlist prospective authors for each chapter. There are many ways in which the subject matter could be divided. Our decision was to break it down as follows: nitrogenases, commercial processes, and relevant chemical models; genetics and regulation; genomes and genomics; associative, endophytic, and cyanobacterial systems; actinorhizal associations; leguminous symbioses; and agriculture, forestry, ecology, and the environment. I feel very fortunate to have been able to recruit some outstanding researchers as co- editors for this project. My co-editors were Mike Dilworth, Claudine Elmerich, John Gallon, Euan James, Werner Klipp, Bernd Masepohl, Rafael Palacios, Katharina Pawlowski, Ray Richards, Barry Smith, Janet Sprent, and Dietrich Werner. They worked very hard and ably and were most willing to keep the volumes moving along reasonably close to our initial timetable. All have been a pleasure to work with and I thank them all for their support and unflagging interest. ix x PREFACE TOTHE SERIES Nitrogen-fixation research and its application to agriculture have been ongoing for many centuries – from even before it was recognized as nitrogen fixation. The Romans developed the crop-rotation system over 2000 years ago for maintaining and improving soil fertility with nitrogen-fixing legumes as an integral component. Even though crop rotation and the use of legumes was practiced widely but intermittently since then, it wasn’t until 1800 years later that insight came as to how legumes produced their beneficial effect. Now, we know that bacteria are harbored within nodules on the legumes’ roots and that they are responsible for fixing N and 2 providing these plants with much of the fixed nitrogen required for healthy growth. Because some of the fixed nitrogen remains in the unharvested parts of the crop, its release to the soil by mineralization of the residue explains the follow-up beneficial impact of legumes. With this realization, and over the next 100 years or so, commercial inoculants, which ensured successful bacterial nodulation of legume crops, became available. Then, in the early 1900’s, abiological sources of fixed nitrogen were developed, most notable of these was the Haber-Bosch process. Because fixed nitrogen is almost always the limiting nutrient in agriculture, the resulting massive increase in synthetic fixed-nitrogen available for fertilizer has enabled the enormous increase in food production over the second half of the 20th century, particularly when coupled with the new “green revolution” crop varieties. Never before in human history has the global population enjoyed such a substantial supply of food. Unfortunately, this bright shiny coin has a slightly tarnished side! The abundance of nitrogen fertilizer has removed the necessity to plant forage legumes and to return animal manures to fields to replenish their fertility. The result is a continuing loss of soil organic matter, which decreases the soil’s tilth, its water- holding capacity, and its ability to support microbial populations. Nowadays, farms do not operate as self-contained recycling units for crop nutrients; fertilizers are trucked in and meat and food crops are trucked out. And if it’s not recycled, how do we dispose of all of the animal waste, which is rich in fixed nitrogen, coming from feedlots, broiler houses, and pig farms? And what is the environmental impact of its disposal? This problem is compounded by inappropriate agricultural practice in many countries, where the plentiful supply of cheap commercial nitrogen fertilizer, plus farm subsidies, has encouraged high (and increasing) application rates. In these circumstances, only about half (at best) of the applied nitrogen reaches the crop plant for which it was intended; the rest leaches and “runs off” into streams, rivers, lakes, and finally into coastal waters. The resulting eutrophication can be detrimental to marine life. If it encroaches on drinking-water supplies, a human health hazard is possible. Furthermore, oxidation of urea and ammonium fertilizers to nitrate progressively acidifies the soil – a major problem in many agricultural areas of the world. A related problem is the emission of nitrogen oxides (NO ) from the soil by the action of microorganisms on the applied fertilizer and, if x fertilizer is surface broadcast, a large proportion may be volatilized and lost as ammonia. For urea in rice paddies, an extreme example, as much as 50% is volatilized and lost to the atmosphere. And what goes up must come down; in the case of fertilizer nitrogen, it returns to Earth in the rain, often acidic in nature. This

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.