nutrients Article Associations between Maternal Body Composition and Appetite Hormones and Macronutrients in Human Milk SambaviKugananthan1,2,†,ZoyaGridneva2,*,†,ChingT.Lai2,AnnaR.Hepworth2, PeterJ.Mark1,FoteiniKakulas2andDonnaT.Geddes2 1 SchoolofHumanSciences,TheUniversityofWesternAustralia,CrawleyWA6009,Australia; [email protected](S.K.);[email protected](P.J.M.) 2 SchoolofMolecularSciences,TheUniversityofWesternAustralia,CrawleyWA6009,Australia; [email protected](C.T.L.);[email protected](A.R.H.);[email protected](F.K.); [email protected](D.T.G.) * Correspondence:[email protected];Tel.:+61-8-6488-4427 † Theseauthorscontributeequallytothiswork. Received:25January2017;Accepted:7March2017;Published:9March2017 Abstract:Humanmilk(HM)appetitehormonesandmacronutrientsmaymediatesatietyinbreastfed infants. This study investigated associations between maternal adiposity and concentrations of HMleptin,adiponectin,proteinandlactose,andwhethertheseconcentrationsandtherelationship betweenbodymassindexandpercentagefatmass(%FM)inabreastfeedingpopulationchangeover thefirstyearoflactation. Lactatingwomen(n=59)providedmilksamples(n=283)atthe2nd,5th, 9thand/or12thmonthoflactation. Concentrationsofleptin,adiponectin,totalproteinandlactose weremeasured. Maternal%FMwasmeasuredusingbioimpedancespectroscopy. Highermaternal %FMwasassociatedwithhigherleptinconcentrationsinbothwhole(0.006±0.002ng/mL,p=0.008) andskimHM(0.005±0.002ng/mL,p=0.007),andprotein(0.16±0.07g/L,p=0.028)concentrations. Adiponectinandlactoseconcentrationswerenotassociatedwith%FM(0.01±0.06ng/mL,p=0.81; 0.08±0.11g/L,p=0.48,respectively). Wholemilkconcentrationsofadiponectinandleptindidnot differsignificantlyoverthefirstyearoflactation. Thesefindingssuggestthatthelevelofmaternal adiposityduringlactationmayinfluencetheearlyappetiteprogrammingofbreastfedinfantsby modulatingconcentrationsofHMcomponents. Keywords: leptin;adiponectin;maternalbodycomposition;percentagefatmass;lactation;human milk;breastfeeding;appetitehormones;macronutrients;protein;lactose 1. Introduction Humanmilk(HM)istheoptimalnutritionforterminfantsasitcontainsauniquelybalanced profileofmacronutrientsalongwithmicronutrients,hormones,antibodies,bioactivemolecules[1]and cells[2,3],whichadequatelysupportthenutritionalneeds,appropriategrowth,immunoprotectionand physiologicaldevelopmentoftheinfant[4,5]. Itiswelldocumentedthatprolongedbreastfeedingis associatedwithdecreasedprevalenceofoverweightandobesityacrossthelifecourse[6,7]. Enhanced appetitecontrolinadultswhohavebeenbreastfedasinfantshasbeenpartlyattributedtoregulatory appetitehormonespresentinHM[8–10],whichincludeleptinandadiponectin[8,11]. Inratpups, acuteorchronicadministrationofleptinbyintraperitonealinjectionhasbeenshownnottoreduce foodconsumptionbuttomodulatetheexpressionofneuropeptidesandreceptorsinvolvedinthe regulationoffeedingbehaviour(neuropeptideY(NPY)andproopiomelanocortin(POMC))[12],while inmicepupsleptindeficiencycausedprofounddisruptionsinthedevelopmentoftheprojectionsof Nutrients2017,9,252;doi:10.3390/nu9030252 www.mdpi.com/journal/nutrients Nutrients2017,9,252 2of18 thearcuatenucleusofthehypothalamus[13]. Thesefindingsindicatethatleptinplaysaneurotrophic roleandcontributestothedevelopmentalprogrammingofthehypothalamicappetitecircuitryduring theneonatalperiod, precedingleptin’sacuteregulationoffoodintakeinadults. Adiponectinhas anti-inflammatorypropertiesandimprovesbothfattyacidmetabolismandsensitivitytoinsulin[14]. Inmice,adiponectininhibitstension-sensitivegastricvagalafferentmechanosensitivity,modulating satietysignalsinbothleanandobeseanimals,whilesimultaneouslyincreasingthemechanosensitivity ofmucosalgastricvagalafferentinanobesity-inducedmodel[15]. Additionally,theconcentrationofmacronutrientsinHM,namelyprotein,fatandlactose,may alsobeinvolvedinregulationoftheinfantappetitecontrol[9,16]. Differencesintheconcentrations ofthesefactorsmaypartlyexplainthevariabilityinbreastfeedingpatternsobservedininfantswho feedondemand[17]. Assuch,anunderstandingofthefactorsthataffectconcentrationsofappetite hormonesandmacronutrientsinHMiscritical,asitpresentsauniqueopportunityfortheprevention ofunfavourableearlydevelopmentalprogrammingandsubsequentobesity. Leptin is secreted into the maternal circulation by white adipocytes and is subsequently transferred into the mammary ductal system via diffusion or a receptor-mediated transport mechanism [18]. Leptin is also contributed by lactocytes [19,20]. Previous studies have identified a positive correlation between maternal body mass index (BMI) and both maternal serum [21,22] andskimHMleptin[21–24],despitedifferingmethodologiesinleptinmeasurement[25]. However, noconsistentrelationshipbetweenmaternaladiposityandHMleptinconcentrationshasbeenshown acrosslactation,withMirallesetal. (2006)reportingonlymoderatecorrelationsbetweenmaternalBMI andHMleptinduringthefirst6monthsoflactation(R=0.387;p<0.01)[8],whileBronskyetal. (2011) sawnoconsistentrelationshipoverthefirst12monthsoflactation[11], despiteutilizingasimilar leptinmeasurementmethodology. Thereareanumberoffactorsthatmaycontributetotheseconflictingfindings. BMIisapoor measure of adiposity, as it fails to adequately differentiate between adipose tissue and lean body mass[26,27]. InvestigationsbetweentherelationshipofmaternalBMIandleptinhavebeenconducted predominantlyinskimHM,whichexcludesthefatandcellularcomponentsofHM[21,24]. Further, leptinconcentrationshavebeenshowntobehigherinwholeHMcomparedtoskimHM[20,23,28]. In contrast, maternal serum concentrations of adiponectin are lower if weight and BMI are higher [29,30]. Results associating maternal BMI and adiponectin concentrations in HM are conflicting [25], with several studies showing no associations [11,31,32] and two studies counter-intuitivelyreportingapositiveassociation[33,34]. Aswithleptin,useofBMIasameasure of maternal adiposity may contribute to these conflicting findings. Also, both increasing [11,35] and decreasing [30,33,36] trends in adiponectin concentrations across the lactation period have beenreported. Similartoitseffectsonappetitehormones, itispostulatedthatmaternaladiposityinfluences macronutrientconcentrationsinHM.Again,resultsareconflicting.Excessiveadiposetissuestoragehas beenshowntoimpairaminoacidandmonosaccharidemetabolismandtransport[37,38],yetincreased serumaminoacidlevelswerefoundinmotherswithmoreadiposetissue[39]. Inlactatingwomen, higher concentrations of HM protein were associated with lower BMI in one study [40], yet with higherBMI[41]andhigheradiposity[42]inothers. BMIalsowasfoundtoassociatepositivelywith concentrationofHMgalactose[41]. Thereisapossibilitythattheeffectofmaternalbodycomposition (BC)onlybecomesevidentinlatebutnotearlylactation,whenthefataccumulatedduringpregnancy isdepleted[42]. Moreprecisemeasurementsofmaternaladiposityacrossthelactationperiodare neededtoelucidateeffectsonHMcomposition. ThisstudyinvestigatedrelationshipsbetweenmaternaladiposityandHMleptin,adiponectin, totalproteinandlactose. Further,itinvestigatedtherelationshipbetweenpercentagefatmass(%FM) and BMI, and the change in maternal adiposity and component concentrations over the first year oflactation. Nutrients2017,9,252 3of18 2. MaterialsandMethods 2.1. StudyParticipants Fifty-ninepredominantlyCaucasian,English-speaking,breastfeedingmotherswererecruitedvia theAustralianBreastfeedingAssociation(ABA)andthroughexternalnetworking. Inclusioncriteria were: healthysingletons,gestationalage≥37weeks,fullybreastfedat2and/or5months[43]and maternal intention to breastfeed until 12 months. The exclusion criterion was: maternal smoking. Participantswererecruitedduringtheir2nd,5th,9thand12thmonthoflactationandinvitedtocome backatanysubsequenttimepoints. Twenty-oneparticipantscontributedsamplesattwoormoretime points.Allparticipantsprovidedinformedwrittenconsentandansweredasecureonlinequestionnaire thatwasadministeredandsecurelystoredattheuniversity. ThisstudywasapprovedbytheHuman ResearchEthicsCommitteeofTheUniversityofWesternAustralia(RA/4/1/4253)andregisteredwith theAustralianNewZealandClinicalTrialsRegistry(ACTRN12616000368437). 2.2. HumanMilkSampleCollection HMsampleswerecollectedonsiteatourresearchlaboratoryatKingEdwardMemorialHospital for Women (Subiaco, Perth, Australia). Pre-feed and post-feed milk samples (~5 mL each) were obtainedfromthebreast(s)theinfantfedfrombyhandexpressionorwithabreastpumpandwere analysedseparately.Sampleswerecollectedbetween9:30and11:30a.m.tominimisepossiblecircadian influencesonthemilkcomposition. Sampleswerestoredat−20◦Cforlaterbiochemicalanalysis. 2.3. AnthropometryandBodyComposition Maternalweightwasmeasuredusinganelectronicscale(±0.1kg;Seca,Chino,CA,USA).Height wasself-reportedbyparticipantsormeasuredagainstacalibratedmarkedwall(accuracy±0.1cm). BMIwascalculatedaskg/m2. Percentagefatmass(%FM)wasmeasuredwithwholebodybioimpedance(wristtoankle)using anImpediMedSFB7tetra-polarbioelectricalimpedanceanalyser(Impedimed,Brisbane,Australia) withtheparticipantinasupinepositiononanon-conductivesurfaceaccordingtothemanufacturer’s instructions. Beforeeachsession,theexternalcalibrationofthebioelectricalimpendenceanalyserwas testedwithacalibrationTestCell(ImpediMed,Brisbane,Australia). Tenconsecutivemeasurementsof %FMweretakenwithin1–2minandaveraged. Within-participantcoefficientofvariationformaternal %FMwas0.21%. Allmeasurementsweremadeafterthebreastfeedingsession. 2.4. LeptinandAdiponectinMeasurements LeptinconcentrationsinwholeandskimHMweremeasuredusingtheDuoSetHumanLeptin enzyme-linkedimmunosorbentassay(ELISA)(R&DSystems,Minneapolis,MN,USA)asdescribed previously[28]. Thedetectionlimitwas0.05ng/mLwitharecoveryof96.3%±1.2%(n=10)forskim milkand97.1%±9.1%(n=10)forwholemilkleptinandaninter-assaycoefficientofvariation(CV) of<7.2%. AdiponectinwasmeasuredinwholeHMusingtheBiovendorHumanAdiponectinSandwich ELISAkit,(LifeTechnologies,Asheville,NC,USA).Thedetectionlimitwas1ng/mL,witharecovery of96.2%±3.2%(n=10)andaninter-assayCVof<2.5%. 2.5. ProteinandLactoseMeasurements Protein content was measured using the Bradford assay according to the methods of Mitoulas et al. [44]. The detection limit was 1.03 g/L, with a recovery of 97.2% ± 1.4% (n = 10) andaninter-assayCVof<1.9%. Lactoseconcentrationwasmeasuredusingtheenzymatic–spectrophotometricmethodoutlined byKuhnetal.[45]accordingtothemethodsofMitoulasetal.[44]. Thedetectionlimitwas30mM, witharecoveryof98.2%±4.1%(n=10)andaninter-assayCVof<3.5%. Nutrients2017,9,252 4of18 2.6. StatisticalAnalyses StatisticalanalyseswereperformedusingR2.15.1forWindows[46]. Thepackagesnlme[47]and lattice[48],andRColorBrewer[49]wereusedforlinearmixedeffectsmodelinganddatarepresentation respectively. Descriptivestatisticsarereportedasmean±standarddeviation(SD)andrangeunless otherwisestated;modelparametersarepresentedasestimate±standarderror(SE). Inordertocollectsystematicinformationovertimeandatfixedmomentsintimeandtomake betteruseofthecollecteddata,acombineddataapproachthatconsidersindividual-levelrandom effectstoaccountforparticipantsmeasuredattwoormorestudysessionswasadopted. Wefurther contrastedtheresultsfromthecombineddataandfromthelongitudinalsubsettoconfirmourfindings. During this study, infants were measured at least at one of the four time points (2, 5, 9 and 12 months postpartum). An approximate sample size was calculated using the ‘Linear multiple regression: fixedmodel: r2increase’optioninG*Power[50]asifthiswasacross-sectionalstudywith equalnumbersateachtime. Allowingfourpredictors(onemaineffect,threegroupcontrasts),α=0.05 and22participantsateachtimepoint(88samplepoints=22participants×4timepoints)gavethe studypowerof0.80todetectaneffectsizeof0.15. Thisapproachwasselectedasthereisnoclosed form expression suitable for the calculation of sample sizes for this research design [51], with the considerationthatlongitudinalstudydesignismorepowerful. Tomaintainpredictedpowerandto addressissuesrelatingtomissedvisits,suchasinabilitytoattendduetoillnessandunwillingnessof mothersapproachedat2months(n=8)tocommittoastudythatrequiresbreastfeedingto12months, therecruitmentofparticipantscontinuedpast22, resultingin111sessionsfor59(21longitudinal, 38cross-sectional)participants. BCdataat9monthsoflactationismissingfortwolongitudinalparticipants. Missingdataalso occurredforallmilkcomponentsduetoinsufficientmilksamplevolumes. Missingdatawasdealt with using complete case (regression models) or available case (descriptive statistics) approaches. Milksampleswerenotpooledforbiochemicalanalysis;thus,measureswerenotaveraged. Sample sizesarepresentedinTable1. Table1.Samplesizesusedinstatisticalanalyses. MonthofLactation 2 5 9 12 Total Participants* Cross-sectional - - - - 38 Longitudinal - - - - 21 Total - - - - 59 Sessions Cross-sectional 8 8 13 9 38 Longitudinal 15 21 19 18 73 Total 23 29 32 27 111 Samples(completecases) Cross-sectional 19 21 33 27 100 Longitudinal 41 55 47 40 183 Total 60 76 80 67 283 Samples(availablecases)** Wholemilkadiponectin 66 79 86 72 303 Wholemilkleptin 66 79 86 72 303 Skimmilkleptin 62 77 85 71 295 Totalprotein 64 78 87 69 298 Lactose 65 78 86 67 296 *Thenumberofparticipantsateachtimepointisthesameasthenumberofsessions,thusnotspecifiedinthetable; **Thenumberofsamples(includingpre-feedandpost-feed)analysed;thisdiffersbycomponent. LinearmodelswereusedtoinvestigateassociationsbetweenmaternalBMIor%FM(predictors) andeachofthecompositionvariables(responses),withandwithoutcontrollingformonthoflactation Nutrients2017,9,252 5of18 (four-level factor or linear predictor). Associations with month of lactation were assessed using omnibus F-tests and specific post-hoc tests comparing each of the subsequent time points with 2 months. Appropriate random effects were selected by comparing four models for each analysis usingalikelihoodratiotest. Modelswere(a)linearregression,andlinearmixedeffectsmodelswith randomeffectsofoneof:(b)effectofgeneralinter-individualvariationpresentinthestudypopulation; (c)effectofthemonthoflactationsampleswerecollectedat,inadditiontointer-individualvariation; and(d)theeffectofpre-andpost-feedsamplesalongwithinter-individualvariation. Whetherthe overalleffectofmaternaladiposityonHMcomponentconcentrationsdiffersbymonthoflactationwas alsoinvestigatedbyincludinginteractionsbetweenBMI/%FMandthemonthoflactation(factoronly). Toallowforrealisticinterpretationoftheinterceptvaluesinthemodeloutputs,maternalBMIand %FMhavebeencentredattheupperboundsofthe‘healthy’range(25kg/m2forBMI,and33%for %FM)[52,53]. Wheresignificantoutliervalueswereidentifiedfromakerneldensityplot,modelswere runwithandwithoutthesevaluestodeterminehowtheymightbeinfluencingthefindings. Anintercept-onlylinearmixedeffectsmodelwasusedtocalculatethecoefficientofvariationfor maternal%FMmeasurements(n=10,10measurementseach). 3. Results 3.1. Participants ParticipantadipositymeasuresandHMcomponents’concentrationsareshowninTable2. Mean maternalagewas33.4±4.2yearsandparitywas1.8±0.8atthestartofthestudy. Atthefirstsession attendedateither2,5,9or12monthspostpartumparticipantswereclassifiedasbeingunderweight (BMI<18.5,5%,n=3;%FM<21,7%,n=4),ofnormalweight(BMI18.5–24.9,54%,n=32;%FM21–32.9, 50%,n=29),overweight(BMI25–29.9,24%,n=14;%FM33–38.9,28%,n=16)orobese(BMI>30, 17%,n=10;%FM>39,15%,n=9)[53]. Infantmale/femaleratiowas33/26. Table2. Maternaladiposityandhumanmilkcomponentsconcentrationspresentedatthemonths after birth for combined subset (n = 59) expressed as mean ± standard deviation (SD, range). Someparticipants(n=21)contributedmilksamplesatmultipletimepoints. 2 5 9 12 Total MonthofLactation (n=23) (n=29) (n=32) (n=27) (n=111) 27.0±7.3 23.5±4.5 23.9±5.2 24.4±5.5 24.6±5.7 MaternalBMIa (20.1–51.3) (17.0–35.2) (16.9–37.2) (18.2–37.2) (16.9–51.3) 34.9±6.4 32.5±6.0 30.9±7.9 31.3±7.2 32.3±7.0 Maternalfatmass(%) (19.6–49.3) (23.2–47.2) (16.7–47.9) (19.4–45.3) (16.7–49.3) 0.55±0.29 0.50±0.17 0.53±0.15 0.54±0.13 0.53±0.19 Wholemilkleptin(ng/mL) (0.21–2.24) (0.20–0.85) (0.21–0.99) (0.24–0.89) (0.20–2.24) 0.34±0.21 0.27±0.07 0.26±0.09 0.26±0.08 0.28±0.12 Skimmilkleptin(ng/mL) (0.19–1.46) (0.20–0.48) (0.19–0.76) (0.19–0.54) (0.19–1.46) 11.12±4.39 9.30±3.94 8.46±2.26 11.07±7.88 9.88±5.05 Adiponectin(ng/mL) (5.62–25.62) (5.17–29.67) (4.56–20.29) (4.74–54.92) (4.56–54.92) 12.94±6.15 11.7±5.70 10.83±4.63 12.83±6.74 11.96±5.82 Totalprotein(g/L) (6.54–31.51) (7.00–34.76) (3.32–29.69) (6.60–36.89) (3.32–36.89) 67.54±9.05 68.07±8.10 68.37±8.83 69.70±9.11 68.41±8.75 Lactose(g/L) (50.35–89.06) (50.92–110.07) (51.81–100.05) (51.00–98.36) (50.35–110.07) Dataaremean±SDandranges. Concentrationsofcomponentsaremeasuredinbothpre-andpost-feedmilk samples.aBMI—bodymassindex. Nutrients2017,9,252 6of18 3.2. ChangesinComponents’ConcentrationwithFeeding(Pre-andPost-Feed) HM component concentrations did not differ between pre-feed and post-feed samples in univariatemodelsorafteraccountingforthemonthoflactationasalineareffectmodelorasafactor (Table3). Table3.Relativeconcentrationsofpre-feedhumanmilksamplescomparedtopost-feedsampleswith andwithoutaccountingforpossiblemonthoflactationeffects. AccountingforMonth AccountingforMonth Univariatea Predictor ofLactation(Linear)b ofLactation(Factor)b PE±SE p PE±SE p PE±SE p Adiponectin(ng/mL) 0.45±0.42 0.29 0.45±0.42 0.30 0.45±0.42 0.29c Leptin(ng/mL) Wholemilk −0.008±0.016 0.65 −0.008±0.017 0.65 0.007±0.016 0.66 Skimmilk −0.002±0.009 0.84 −0.002±0.009 0.86c −0.001±0.009 0.87c Protein(g/L) −0.14±0.32 0.68 −0.14±0.32 0.68 −0.14±0.32 0.68 Lactose(g/L) −0.36±0.91 0.69 −0.38±0.88 0.66 −0.39±0.88 0.66 Dataareparameterestimate±SE.Analyseswererunonpre-andpost-feedsamplesusingcompletecaseapproach. aEffectsofpredictorstakenfromunivariatelinearmixedeffectsmodels;bEffectsofpredictorstakenfromlinear mixedeffectsmodelsthataccountedforthemonthoflactationaslinearmaineffectorasafactor;c Monthof lactationissignificant(p<0.036).PE—parameterestimate;SE—standarderror. 3.3. AssociationsinCombinedSubset 3.3.1. DifferencesinConcentrationsofHumanMilkComponentsatDifferentMonthsofLactation Table4presentsthechangesinHMcomponents’concentrationsinthecombinedsubset(n=57) atfourtimepointsduringfirst12monthsoflactation. While component concentrations differed by the month of lactation within participants for all components (lactose: p = 0.031; adiponectin, whole and skim milk leptin, protein: p<0.001), noconsistentmonthoflactation-relatedpatternswereseenforwholemilkleptin(p>0.47),protein (p>0.37)andlactose(p>0.26). Skim milk leptin decreased non-linearly over the months of lactation (univariate: p=0.024). Post-hoctestsshowedthatadiponectinconcentrationat9monthswas−2.27±0.88ng/mLlower (p=0.013)thanthatat2monthsoflactation(univariate: p=0.042)(Table4). Table4. Associationsbetweenhumanmilkappetitehormonesandmaternaladiposity. Valuesare parameterestimates±standarderror(n=57).Someparticipants(n=21)contributedmilksamplesat multipletimepoints. Adiponectin(ng/mL) WholeMilkLeptin(ng/mL) SkimMilkLeptin(ng/mL) Predictor PE±SE p PE±SE p PE±SE p Univariatemodelsb BMI 0.10±0.07 0.17 0.01±0.003 <0.001 0.008±0.002 <0.001a %FM 0.01±0.06 0.81 0.006±0.002 0.008 0.005±0.002 0.007 Monthd - 0.042 - 0.52 - 0.024 Intercept 10.58±0.71 - 0.55±0.03 - 0.34±0.02 - 5e −1.39±0.87 0.12 −0.06±0.05 0.18 −0.07±0.03 0.038 9e −2.27±0.88 0.013 −0.01±0.05 0.75 −0.08±0.03 0.011 12e −0.26±0.93 0.78 −0.02±0.05 0.72 −0.10±0.03 0.005 Adjustedmodelfor%FM(monthoflactationaslinearmaineffect)c Intercept 9.76±0.61 - 0.52±0.03 - 0.32±0.02 - %FM 0.008±0.06 0.90 0.006±0.002 0.007 0.004±0.002 0.021 Monthd −0.05±0.09 0.57 0.003±0.004 0.47 −0.008±0.003 0.012 Nutrients2017,9,252 7of18 Table4.Cont. Adiponectin(ng/mL) WholeMilkLeptin(ng/mL) SkimMilkLeptin(ng/mL) Predictor PE±SE p PE±SE p PE±SE p Adjustedmodelfor%FM(monthoflactationasafactor)c Intercept 10.59±0.72 - 0.54±0.03 - 0.34±0.02 - %FM −0.01±0.06 0.86 0.006±0.002 0.009 0.004±0.002 0.028 Monthd - 0.044 - 0.51 - 0.063 5e −1.40±0.88 0.12 −0.04±0.04 0.34 −0.06±0.03 0.070 9e −2.30±0.90 0.014 0.01±0.05 0.76 −0.07±0.03 0.031 12e −0.29±0.95 0.77 0.007±0.05 0.88 −0.09±0.03 0.011 AdjustedmodelforBMI(monthoflactationaslinearmaineffect)c Intercept 9.76±0.60 - 0.52±0.03 - 0.33±0.02 - BMI 0.09±0.07 0.19 0.01±0.003 <0.001 0.008±0.002 <0.001 Monthd −0.04±0.09 0.62 0.002±0.004 0.59 −0.008±0.003 0.005 AdjustedmodelforBMI(monthoflactationasafactor)c Intercept 10.51±0.71 - 0.54±0.003 - 0.34±0.02 - BMI 0.07±0.07 0.33 0.01±0.003 <0.001 0.007±0.002 0.001 Monthd - 0.063 - 0.74 - 0.039 5e −1.23±0.89 0.17 −0.03±0.04 0.50 −0.05±0.03 0.13 9e −2.13±0.89 0.021 0.01±0.04 0.78 −0.07±0.03 0.025 12e −0.16±0.94 0.87 0.004±0.05 0.92 −0.09±0.03 0.007 Dataareparameterestimate±SE.Analyseswererunonpre-andpost-feedsamplesusingcompletecaseapproach. aSignificantp-valuesareinboldfont;bEffectsofpredictorstakenfromunivariatelinearmixedeffectsmodels; cEffectsofpredictorstakenfromlinearmixedeffectsmodelsthataccountedforthemonthoflactationaslinear maineffectorasafactor;dOmnibusF-test;ePost-hoctestwithreference2months.Abbreviations:BMI—body massindex;%FM—percentagefatmass;PE—parameterestimate;SE—standarderror. 3.3.2. AssociationsbetweenMaternalAdiposityandHMLeptin Table4presentsassociationsbetweenadiposityandHMcomponents’concentrationsseeninthe combinedsubset(n=57)atfourtimepointsduringfirst12monthsoflactation. AssociationsbetweenMaternalAdiposityandHMLeptin Higher%FMandBMIwereassociatedwithhigherconcentrationsofbothwhole(Figure1a,b) andskimmilk(Figure2a,b)leptin(Table4). Accountingforthemonthoflactationasamainlinear effect or as a factor did not change the associations with %FM and BMI for both whole and skim milk leptin. Significant negative interactions were seen between %FM and the month of lactation for whole milk leptin, (2 m: reference; 5 m: −0.02 ± 0.01, p = 0.023; 9 m: −0.02 ± 0.01, p = 0.003; 12 m: −0.03 ± 0.01, p < 0.001; month of lactation as a factor: p = 0.008), and for skim milk leptin (2 m: reference; 5 m: −0.02 ± 0.01, p < 0.001; 9 m: −0.02 ± 0.01, p < 0.001; 12 m: −0.02 ± 0.01, p=0.002;monthoflactationasafactor: p<0.001);andalsobetweenBMIandthemonthoflactation for whole milk leptin, (2 m: reference; 5 m: −0.02 ± 0.01, p = 0.026; 9 m: −0.03 ± 0.01, p < 0.001; 12m: −0.03±0.01,p<0.001;monthoflactationasafactor: p<0.001),andforskimmilkleptin(2m: reference;5m: −0.02±0.01,p<0.001;9m: −0.02±0.01,p<0.001;12m: −0.01±0.01,p=0.005; monthoflactationasafactor: p=0.001),indicatingthattheassociationbetweenadiposityandleptin weakensoverthefirst12monthsoflactation. Removing statistically significant outliers resulted in either weakening or an absence of the associationbetweeneither%FMorBMIandwholeandskimmilkleptinintheunivariatemodels (%FM: 0.004 ± 0.002 ng/mL, p = 0.066; 0.003 ± 0.001 ng/mL, p = 0.043, respectively; BMI: 0.004±0.002ng/mL,p=0.065;0.004±0.002ng/mL,p=0.066,respectively)andafteraccounting for the month of lactation as a linear effect (%FM: 0.004 ± 0.002 ng/mL, p = 0.039, age: p = 0.17; 0.002 ± 0.001 ng/mL, p = 0.12, age: p = 0.030, respectively; BMI: 0.005 ± 0.002 ng/mL, p = 0.053, age: p = 0.25; 0.004 ± 0.002 ng/mL, p = 0.039, age: p = 0.17, respectively) or as a factor (%FM: Nutrients2017,9,252 8of18 0.004±0.002ng/mL,p=0.044,age: p=0.37;0.002±0.001ng/mL,p=0.14,age: p=0.15,respectively; BMI: 0.004 ± 0.002 ng/mL, p = 0.072, age: p = 0.53; 0.004 ± 0.002 ng/mL, p = 0.044, age: p = 0.37, Nutrients 2017, 9, 252 8 of 18 respectively). Nointeractionbetweeneither%FMorBMIandthemonthoflactationasafactorwas Nutrients 2017, 9, 252 8 of 18 seen(%FM:wholemilkleptin: p=0.37;skimmilkleptin: p=0.13;BMI:wholemilkleptin: p=0.24; %FM or BMI and the month of lactation as a factor was seen (%FM: whole milk leptin: p = 0.37; skim skimm%FimlMki ll keoprl teBipnM:t ipIn a=:n p0d.=1 t3h0;e .B1 mM8)o.I:n wthh oofl ela mctialtki olenp atsin a: pfa =c t0o.r2 4w; assk ismee mn i(l%k FleMp:t iwn:h po l=e 0m.1i8lk). leptin: p = 0.37; skim milk leptin: p = 0.13; BMI: whole milk leptin: p = 0.24; skim milk leptin: p = 0.18). a b a b 2.0 2.0 2.0 2.0 mL) mL) Whole milk leptin (ng/Whole milk leptin (ng/mL) 1111....0505 Whole milk leptin (ng/Whole milk leptin (ng/mL) 1111....0505 00..55 00..55 00..55 00..55 0.0 0.0 0.0 2200 30 40 50 0.0 2200 30 40 50 2200 F3a0t mass (%) 40 50 2200 Body3 0mass index (kg/m402) 50 Fat mass (%) Body mass index (kg/m2) Figure 1. Associations between whole human milk (HM) leptin and (a) maternal percentage fat mass; Figure1.Associationsbetweenwholehumanmilk(HM)leptinand(a)maternalpercentagefatmass; aFnigdu (rbe) 1 m. Aastesornciaal tBioMnsI .b Cetowmebeinn wedh osuleb hseutm daanta m piolkin (tHs M(m) eleapsutirne dan idn (par) em‐ aatnedrn paol spte‐freceedn tsaagme pfalte sm) aasrse; and(b)maternalBMI.Combinedsubsetdatapoints(measuredinpre-andpost-feedsamples)are sahnodw (nb ) ams actreornssa‐ls eBcMtioI.n Calo m(pbailnee db lsuueb) saent dd altoan pgoitiundtsi n(aml e(adsaurrke db ilnu ep).r eL‐ iannesd aproes tf‐ifxeeedd seafmfecptlse sf)r oamre shownascross-sectional(paleblue)andlongitudinal(darkblue).Linesarefixedeffectsfromunivariate ushnoivwanri aatse lcirnoesasr‐ smecitxioedna el ff(epcatl em boldueel)s : apnadle lbolnugei tdudotitneadl l(idnaer—k cbolmueb)i.n eLdin ceosh aorret (fTixaebdle e4f)f;e cmtse dfiruomm linearmixedeffectmodels:palebluedottedline—combinedcohort(Table4);mediumbluedashed bulnuiev ardiaasteh eldin elairn em—ixceodm ebfifneecdt mcoodheolrst: pwailteh blouuet ldieortst edre lminoev—edco m(Sbeicnteiodn co3h.3o.r2t) ;( Tsaobllied 4d); amrke dbiulume line—combinedcohortwithoutliersremoved(Section3.3.2);soliddarkblueline—longitudinalcohort lbinluee— ldoansghietudd ilninael —cochoomrtb (iTnaebdl e cSo1h).o rt with outliers removed (Section 3.3.2); solid dark blue (TablilneeS—1)l.ongitudinal cohort (Table S1). a b a b 1.5 1.5 1.5 1.5 mL) mL) Skim milk leptin (ng/m milk leptin (ng/mL) 11..00 Skim milk leptin (ng/m milk leptin (ng/mL) 11..00 Ski 00..55 Ski 00..55 00..55 00..55 0.0 0.0 0.0 2200 30 40 50 0.0 2200 30 40 50 2200 F3a0t mass (%) 40 50 2200 Body3 0mass index (kg/m402) 50 Fat mass (%) Body mass index (kg/m2) Figure 2. Associations between skim human milk (HM) leptin and (a) maternal percentage fat mass; FiguaFnirgedu 2(rb.e)A 2 m.s sAaotscesrioanctaiialo tBnioMsnbIs.e bCtweotwmeeebneinnse ksdikm ismuhb husuemtm adanant mam piillokki n((HHts MMar))e ll eesphptotiiwnn naan nadsd (ca(ra)o )msmsa‐staeetcretnriaonlna pallep r(ecpreacnleetna pgtaueg rfpealtef am) taamnssda; ss; andlaon(nbdg) i(mtbu)ad mtienarantle ar(dlnBaarlM kB IMp.uCIr. opCmloe)mb. iLbniienndeedss uasrubebs esfietxtde ddaa tetaaffp epocotiisnn tftsrso aamrree ussnhhioovwwarnnia aatses clcirnrooessass‐rs- smeecitcxitoeiondan ela f(lfpe(acptlae m lpeoupdrupelrlsep:) l peaa)nladen d longploiuntrugpdilteiun ddaiolnt(atdel da( drlkianrpek—u prcuporlmpe)lbe.i)nL. eiLndine cseosah aroerretfi (fxTixeaedbdlee e f4fffe)e;c cmttsse fdfrriooummm uupnnuiirvvpaalreri iadattaees lhliinendeea larin rmem—ixixecodemd efbefifenfceetcd mt cmoodhoeodlrset: l wsp:aitplhea le puroppuuletrlpideloers td treoedtmteloidnv leeid—n e(c—Soecmcotibmoinbn i3en.d3e.dc2 o)c;h osohorolitrdt( Td(Taabarbklel pe4 u4)r;);pm mlee elddiniiuuem—m lppounugrrppitllueed ddinaasashlh ecedodh liolnirnet e—(—Tcaocbmolemb Sib1ni)en.d e dcochoohrto wrtiwthi th outliers removed (Section 3.3.2); solid dark purple line—longitudinal cohort (Table S1). outliersremoved(Section3.3.2);soliddarkpurpleline—longitudinalcohort(TableS1). 3.3.3. Associations between Maternal Adiposity and HM Adiponectin 3.3.3. Associations between Maternal Adiposity and HM Adiponectin HM adiponectin was not significantly associated with either %FM or BMI in the univariate HM adiponectin was not significantly associated with either %FM or BMI in the univariate models (Table 4) or after accounting for the month of lactation. No interactions were seen between models (Table 4) or after accounting for the month of lactation. No interactions were seen between the month of lactation as a factor and either %FM (p = 0.51) or BMI (p = 0.62). the month of lactation as a factor and either %FM (p = 0.51) or BMI (p = 0.62). Nutrients2017,9,252 9of18 3.3.3. AssociationsbetweenMaternalAdiposityandHMAdiponectin HMadiponectinwasnotsignificantlyassociatedwitheither%FMorBMIintheunivariatemodels (Table4)orafteraccountingforthemonthoflactation. Nointeractionswereseenbetweenthemonth oflactationasafactorandeither%FM(p=0.51)orBMI(p=0.62). Removingastatisticallysignificantoutlierdidnotchangetheconclusion(%FM:p≥0.50;BMI: p≥0.083) and no interaction between the month of lactation and either %FM (p = 0.54) or BMI (p=0.081)wasseen. 3.3.4. AssociationsbetweenMaternalAdiposityandHMProtein Higher%FMwasassociatedwithhigherconcentrationsofproteininHMinunivariatemodel (Table5;Figure3a). Accountingforthemonthoflactationmadetheassociationbetween%FMand proteinconcentrationsweakerbutstillsignificant. BMIwasnotassociatedwithconcentrationsof protein in HM in the univariate model (Figure 3b) or after accounting for the month of lactation. No interaction with the month of lactation as a factor was seen for both %FM (p = 0.21) and BMI (p=0.16). Table 5. Associations between human milk macronutrients and maternal adiposity. Values are parameterestimates±standarderror(n=57).Someparticipants(n=21)contributedmilksamplesat multipletimepoints. Predictor Lactose(g/L) Protein(g/L) PE±SE p PE±SE p Univariatemodelsb BMI 0.06±0.14 0.66 0.14±0.09 0.14 %FM 0.08±0.11 0.48 0.16±0.07 0.028a Monthd - 0.65 - 0.37 Intercept 67.32±1.43 - 12.90±1.11 - 5e 0.56±1.89 0.77 −1.39±1.48 0.35 9e 1.31±1.88 0.49 −2.47±1.47 0.10 12e 2.35±1.97 0.24 −0.63±1.55 0.69 Adjustedmodelfor%FM(monthoflactationaslinearmaineffect)c Intercept 68.89±1.13 - 11.93±0.87 - %FM 0.09±0.11 0.43 0.16±0.07 0.036 Monthd 0.08±0.15 0.59 −0.03±0.14 0.84 Adjustedmodelfor%FM(monthoflactationasafactor)c Intercept 67.58±1.44 - 12.54±1.11 - %FM 0.06±0.11 0.55 0.15±0.07 0.054 Monthd - 0.67 - 0.56 5e 0.60±1.85 0.75 −0.94±1.47 0.53 9e 1.37±1.87 0.50 −1.78±1.49 0.24 12e 2.27±1.96 0.25 −0.02±1.56 0.99 AdjustedmodelforBMI(monthoflactationaslinearmaineffect)c Intercept 67.71±2.92 - 12.10±0.88 - BMI 0.06±0.13 0.63 0.13±0.09 0.16 Monthd 0.20±0.17 0.26 −0.07±0.14 0.61 AdjustedmodelforBMI(monthoflactationasafactor)c Intercept 67.55±1.44 - 12.69±1.12 - BMI 0.06±0.13 0.66 0.12±0.09 0.21 Monthd - 0.69 - 0.48 5e 0.63±1.88 0.74 −1.01±1.50 0.50 9e 1.29±1.87 0.49 −2.14±1.49 0.16 12e 2.22±1.95 0.26 −0.36±1.56 0.82 Dataareparameterestimate±SE.Analyseswererunonpre-andpost-feedsamplesusingcompletecaseapproach. aSignificantp-valuesareinboldfont;bEffectsofpredictorstakenfromunivariatelinearmixedeffectsmodels; cEffectsofpredictorstakenfromlinearmixedeffectsmodelsthataccountedforthemonthoflactationaslinear maineffectorasafactor;dOmnibusF-test;ePost-hoctestwithreference2months.Abbreviations:BMI—body massindex;%FM—percentagefatmass;PE—parameterestimate;SE—standarderror. Nutrients2017,9,252 10of18 Nutrients 2017, 9, 252 10 of 18 a b 30 30 Protein (g/L) 20 Protein (g/L) 20 10 10 00 00 2200 30 40 50 2200 30 40 50 Fat mass (%) Body mass index (kg/m2) FigFuirgeur3e. 3. AAssssoocciiaattiioonnss bebtewtweeene pnroptreointe cionncceonntcraetniotrna atinodn (aa)n mdat(ear)naml apteerrcneanltapgee rfcaet nmtaagsse; afnadt (mb)a ss; maternal BMI. Combined subset data points are shown as cross‐sectional (pale orange) and and(b)maternalBMI.Combinedsubsetdatapointsareshownascross-sectional(paleorange)and longitudinal (dark orange). Lines are fixed effects from univariate linear mixed effect models: pale longitudinal(darkorange). Linesarefixedeffectsfromunivariatelinearmixedeffectmodels: pale orange dotted line—combined cohort (Table 5); solid dark red line—longitudinal cohort (Table S1). orangedottedline—combinedcohort(Table5);soliddarkredline—longitudinalcohort(TableS1). 3.3.5. Associations between Maternal Adiposity and HM Lactose 3.3.5. AssociationsbetweenMaternalAdiposityandHMLactose Neither %FM or BMI were associated with concentrations of lactose in HM in univariate model Neither%FMorBMIwereassociatedwithconcentrationsoflactoseinHMinunivariatemodel (Table 5) or after accounting for the month of lactation. No interaction with the month of lactation as (Taba lfeac5t)oor rwaafste sreeancc foour nBtMinIg (pf o=r 0t.h19e),m bount tah siogfnliafcictaantito pno.sNitiovein intetrearacctitoionnw wiaths steheenm beotnwtheeonf %laFcMta tainodn as afatchteo rmwonatshs oeef nlacfotartiBoMn (I2( pm=: r0e.f1e9r)e,nbcue;t 5a msi:g 0n.1ifi2 c±a 0n.t33p,o ps i=t i0v.7e1i;n 9t emra: c−t0io.1n4 w± 0a.s30s,e pe n= b0.e6t3w; 1e2e nm%: 0F.5M8 ±a nd the0m.31o,n pt h= 0o.f06la8c; tmatoinotnh (o2f mlac:traetifoenre ansc ae ;fa5ctmor:: 0p. =1 20.±0290).,3 i3n,dpic=at0in.7g1 t;h9atm as:s−oc0ia.1t4ion± b0e.t3w0e,epn= %0F.M63 ;an12d m: 0.58la±cto0s.e3 1st,rpen=gt0h.0e6n8s ;omveorn tthhe ofifrslta 1ct2a mtioonntahss aoff laaccttoarti:opn.= 0.029),indicatingthatassociationbetween %FMandlactosestrengthensoverthefirst12monthsoflactation. 3.4. Associations in the Longitudinal Subset 3.4. AssociationsintheLongitudinalSubset 3.4.1. Participants 3.4.1. Participants Longitudinal (n = 21) participants’ characteristics and HM components’ concentrations are shLoownng iitnu dTianbalel (Sn2=. P2a1r)tipcaiprtainctips ainn tlso’ncghiaturadcitnearli sstuicbsseatn wdeHreM gceonmerpalolyn elenatsn’ecro tnhcaenn itnra tthioen csoamrebisnheodw n inTsaubblseetS, 2b.uPt anrotnicei pwaenrets uinndleornwgeiitguhdt.i nAatl tshueb fsirestt wseesrseiogne tnheerya wllyerlee calnaessriftiheadn asin: ntohremcaolm wbeiinghedt (BsuMbIs et, but1n8o.5n–e24w.9e,r 6e7u%n, dne =r w14e;i %ghFtM. A 2t1t–h3e2.fi9,r s5t7%se,s nsi =o n12t)h, eoyvewrwereeigchlats (sBifiMeId 2a5–s:29n.o9r, m19a%l,w ne =ig 4h; t%(FBMM I331–83.58–.92,4 .9, 67%2,9n%=, n1 4=; 6%) FoMr o2b1e–se3 2(.B9M,5I7 >% 3,0n, =141%2), ,no =v e3r;w %eFigMh t>( B39M,1I42%5,– n2 9=. 93,)1 [95%3],. nIn=fa4n;t% mFaMle:3fe3m–3a8le.9 ,ra2t9io% w,nas= 6) 10:11. orobese(BMI>30,14%,n=3;%FM>39,14%,n=3)[53]. Infantmale:femaleratiowas10:11. 3.4.32..4L.2o. nLgonitguidtuindainlaCl hCahnagnegseisn inC Coonncecenntrtraattioionnss ooff HHuummaann MMiillkk CCoommppoonneenntst s Table S1 presents the changes in HM component concentrations in the longitudinal subset (n = TableS1presentsthechangesinHMcomponentconcentrationsinthelongitudinalsubset(n=21 21 participants, 73 sessions). While component concentrations differed by the month of lactation participants,73sessions). Whilecomponentconcentrationsdifferedbythemonthoflactationwithin within participants for all components (lactose: p = 0.020; adiponectin, whole and skim milk leptin, participantsforallcomponents(lactose: p=0.020;adiponectin,wholeandskimmilkleptin,protein: protein: p < 0.001), no consistent month of lactation‐related patterns were seen for adiponectin (p > p<0.001),noconsistentmonthoflactation-relatedpatternswereseenforadiponectin(p>0.32),whole 0.32), whole milk leptin (p > 0.11) or lactose (p > 0.46). Although the overall pattern for protein was milkleptin(p>0.11)orlactose(p>0.46). Althoughtheoverallpatternforproteinwasnotsignificant not significant (p > 0.10), post‐hoc tests showed that protein concentration at 9 months was 3.80 ± 1.65 (p>0.10),post-hoctestsshowedthatproteinconcentrationat9monthswas3.80±1.65g/Llower g/L lower than that at 2 months of lactation (univariate, p = 0.027). Skim milk leptin decreased thanthatat2monthsoflactation(univariate,p=0.027). Skimmilkleptindecreasednon-linearlyover non‐linearly over the months of lactation (univariate: p = 0.007). the monthsoflactation(univariate : p=0.007). 3.4.3. AssociationsbetweenMaternalBodyMassIndexandPercentageFatMass A strong relationship (p < 0.001) was observed between maternal BMI and %FM in the lon gitudinal subset, with a one-unit increase in BMI associated with a 1.07% ± 0.17% increase in
Description: