ebook img

Asset Allocation under the Influence of Long-Run Relations PDF

134 Pages·2014·0.82 MB·German
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Asset Allocation under the Influence of Long-Run Relations

Band 71 Schriften zu Immobilienökonomie und Immobilienrecht Herausgeber: IREIBS International Real Estate Business School Prof. Dr. Sven Bienert Prof. Dr. Stephan Bone-Winkel Prof. Dr. Kristof Dascher Prof. Dr. Dr. Herbert Grziwotz Prof. Dr. Tobias Just Prof. Dr. Kurt Klein Prof. Dr. Jürgen Kühling, LL.M. Benedikt Fleischmann Prof. Gabriel Lee, Ph. D. Prof. Dr. Gerit Mannsen Asset Allocation Prof. Dr. Dr. h.c. Joachim Möller Prof. Dr. Wolfgang Schäfers Prof. Dr. Karl-Werner Schulte HonRICS under the Prof. Dr. Steffen Sebastian Prof. Dr. Wolfgang Servatius Influence of Prof. Dr. Frank Stellmann Prof. Dr. Martin Wentz Long-Run Relations Benedikt Fleischmann Asset Allocation under the Influence of Long-Run Relations Die Deutsche Bibliothek – CIP Einheitsaufnahme Fleischmann, Benedikt Asset Allocation under the Influence of Long-Run Relations Benedikt Fleischmann Regensburg: Universitätsbibliothek Regensburg 2014 (Schriften zu Immobilienökonomie und Immobilienrecht; Bd. 71) Zugl.: Regensburg, Univ. Regensburg, Diss., 2013 ISBN: beantragt ISBN: beantragt © IRE|BS International Real Estate Business School, Universität Regensburg Verlag: Universitätsbibliothek Regensburg, Regensburg 2014 Zugleich: Dissertation zur Erlangung des Grades eines Doktors der Wirtschaftswissenschaften, eingereicht an der Fakultät für Wirtschaftswissenschaften der Universität Regensburg Tag der mündlichen Prüfung: 24. Juli 2013 Berichterstatter: Prof. Dr. Steffen Sebastian Prof. Dr. Rolf Tschernig Contents 1 Research Objectives, Methods and Scientific Contributions 1 2 Inflation-Hedging, Asset Allocation and the Investment Horizon 6 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 VAR Model and Data . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 VAR Specification . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.3 VAR Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Horizon Effects in Risk and Return for Nominal and Real Returns . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1 The Term Structure of Risk . . . . . . . . . . . . . . . . . . . 18 2.4.2 Inflation-Hedging . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.3 The Term Structure of Expected Returns . . . . . . . . . . . . 25 2.5 Horizon-Dependent Portfolio Optimizations . . . . . . . . . . . . . . 27 2.5.1 Mean-Variance Optimization . . . . . . . . . . . . . . . . . . . 27 2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.A.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.A.2 Calculation of the Desmoothed Real Estate Returns . . . . . . 32 2.A.3 Robustness Regarding Different Unsmoothing Parameters . . . 33 2.A.4 Misspecification Tests . . . . . . . . . . . . . . . . . . . . . . . 35 I Contents 3 Modeling Asset Price Dynamics under a Multivariate Cointegra- tion Framework 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 VAR Specification . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 VEC Specification . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.3 Horizon Dependent Variance-Covariance . . . . . . . . . . . . 43 3.2.4 Portfolio Choice Problem . . . . . . . . . . . . . . . . . . . . . 45 3.3 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3.1 Data and Time Series Properties . . . . . . . . . . . . . . . . 47 3.3.2 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.3 Long Horizon Effects . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.4 Asset Allocation Decisions . . . . . . . . . . . . . . . . . . . . 67 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.A.1 Bootstrap Method . . . . . . . . . . . . . . . . . . . . . . . . 74 3.A.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Do Stock Prices and Cash Flows Drift Apart? The Influence of Macroeconomic Proxies 76 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.1 The Econometric Model . . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Hypotheses Testing . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2.3 Long-Run Analyses . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2.4 Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3.1 Data and Time Series Properties . . . . . . . . . . . . . . . . 85 4.3.2 Cointegration Rank Analysis . . . . . . . . . . . . . . . . . . . 90 4.3.3 Restriction Tests . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3.4 Testing the Financial Ratios . . . . . . . . . . . . . . . . . . . 96 4.3.5 Level Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 II Contents 4.3.6 Horizon-Dependent Analysis . . . . . . . . . . . . . . . . . . . 100 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.A.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.A.2 Univariate Stationarity of the Financial Ratios . . . . . . . . . 107 4.A.3 Stability of the Long-Run Matrices across the Models . . . . . 108 4.A.4 Bootstrap Method . . . . . . . . . . . . . . . . . . . . . . . . 110 Bibliography 111 III List of Figures 2.1 Conditional Standard Deviations of the Assets . . . . . . . . . . . . . 20 2.2 Conditional Standard Deviation of the Inflation . . . . . . . . . . . . 21 2.3 Conditional Correlations of Asset Returns and Inflation . . . . . . . . 24 4.1 Level Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2 Differenced Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.3 Impulse Response Functions . . . . . . . . . . . . . . . . . . . . . . . 101 4.4 Impulse Response Functions of Returns . . . . . . . . . . . . . . . . . 103 IV List of Tables 2.1 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 VAR Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Term Structure of Expected Returns . . . . . . . . . . . . . . . . . . 26 2.4 Portfolio Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Data Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Results Regarding Different Unsmoothing Parameters . . . . . . . . . 34 2.7 VAR Order Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.8 Residual Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1 Abbreviationsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 Simultaneous and Lagged Correlations . . . . . . . . . . . . . . . . . 50 3.4 Unit Root and Cointegration Rank Test . . . . . . . . . . . . . . . . 51 3.5 VAR Parameter Estimatesg . . . . . . . . . . . . . . . . . . . . . . . 52 3.6 VEC Parameter Estimatesg . . . . . . . . . . . . . . . . . . . . . . . 55 3.7 Term Structure of Risk and Correlationsg . . . . . . . . . . . . . . . . 60 3.8 Variance Decomposition for Treasury Bills . . . . . . . . . . . . . . . 62 3.9 Variance Decomposition for Stock Returns . . . . . . . . . . . . . . . 63 3.10 Variance Decomposition for Bond Returns . . . . . . . . . . . . . . . 66 3.11 Global Minimum Variance Portfoliosg . . . . . . . . . . . . . . . . . . 69 3.12 Optimal Portfolio Holdings for γ = 20 . . . . . . . . . . . . . . . . . . 70 3.13 Lag Length Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.1 Univariate Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 V Tables 4.3 Cointegration Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4 β Restriction Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.5 α Restriction Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.6 Financial Ratio Stationarity Tests . . . . . . . . . . . . . . . . . . . . 97 4.7 Π Matrix of Model M and r = 4 . . . . . . . . . . . . . . . . . . . 99 r 6 4.8 Lag Length Selection and Cointegration Rank Stability . . . . . . . . 106 4.9 Univariate Stationarity of Financial Ratios . . . . . . . . . . . . . . . 107 4.10 Stability Analysis of the Long-Run Matrices . . . . . . . . . . . . . . 109 VI Chapter 1 Research Objectives, Methods and Scientific Contributions Inflation-Hedging, Asset Allocation and the Invest- ment Horizon Most of the empirical studies falsify the inflation-hedging hypothesis of stocks and realestate, buttheytypicallyestablishtheirresearchmethodsonquarterlytoannual returns and, therefore, contrast with the fact that most investors have much longer investment horizons. Additionally, the perverse inflation-hedging characteristics of stocks and real estate run contrary to the general economic theory that these assets should be a good hedge against inflation. The residual claims of the investors are the cash flows and retained earnings, and these are derived from real assets. In our paper ’Inflation-Hedging, Asset Allocation and the Investment Horizon’, my coauthors, Christian Rehring and Steffen Sebastian, and I link the inflation- hedging analysis to the mixed asset allocation analysis focusing on the role of the investment horizon for a buy-and-hold investor. Using a vector auto-regression (VAR) for the UK market, we estimate correlations of nominal returns with infla- tion to analyze how the inflation-hedging abilities of cash, bonds, stocks and direct commercial real estate change with the investment horizon. In doing so, we find that the inflation-hedging characteristics of all assets improve with the investment horizon. Cash is clearly the best inflation hedge at short and medium horizons. For 1

Description:
eingereicht an der Fakultät für Wirtschaftswissenschaften der Universität Regensburg. Tag der . 3.10 Variance Decomposition for Bond Returns .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.