ebook img

Assessment of trawlable and untrawlable seafloor using multibeam-derived metrics PDF

18 Pages·2015·1.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Assessment of trawlable and untrawlable seafloor using multibeam-derived metrics

MethodsinOceanography12(2015)18–35 ContentslistsavailableatScienceDirect Methods in Oceanography journalhomepage:www.elsevier.com/locate/mio Fulllengtharticle Assessment of trawlable and untrawlable seafloor using multibeam-derived metrics JodiL.Pirtlea,∗,1,ThomasC.Webera,ChristopherD.Wilsonb, ChristopherN.Rooperb aUniversityofNewHampshire,CenterforCoastalandOceanMapping,24ColovosRoad,Durham,NH, 03824,USA bNationalOceanicandAtmosphericAdministration,NationalMarineFisheriesService,AlaskaFisheries ScienceCenter,7600SandPointWayNE,Seattle,WA,98115,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Groundfishthatassociatewithruggedseafloortypesaredifficult Received28January2015 toassesswithbottom-trawlsamplinggear.SimradME70multi- Receivedinrevisedform beamechosounder(MBES)dataandvideoimagerywerecollected 22May2015 tocharacterizetrawlableanduntrawlableareas,andtoultimately Accepted5June2015 improveeffortstodeterminehabitat-specificgroundfishbiomass. Availableonline1July2015 Thedatawerecollectedduringtwoacoustic-trawlsurveysofthe GulfofAlaska(GOA)during2011and2012byNOAAAlaskaFish- Keywords: eriesScienceCenter(AFSC)researchers.MBESdatawerecollected Acousticbackscatter Multibeamechosounder continuouslyalongthetrackline,whichincludedparalleltransects Terrainanalysis (1–20nmispacing)andfine-scalesurveylocationsin2011.Video Seafloorcharacterization datawerecollectedatcamerastationsusingadeployedcamera Bottom-trawlsurvey system. Multibeam-derived seafloor metrics were overlaid with Groundfishhabitat thelocationsofpreviouslyconductedAFSCbottom-trawl(BT)sur- Trawlable vey hauls and 2011 camera stations. Generalized linear models Untrawlable wereusedtoidentifythebestcombinationofmultibeammetrics GulfofAlaska todiscriminatebetweentrawlableanduntrawlableseafloorforthe regionofoverlapbetweenthecamerastationsorhaulpathsand theMBESdata.Thetwobestmodelsweredevelopedusingdatacol- lectedatcamerastationswitheitherobliqueincidencebackscatter strength(S )ormosaicS incombinationwithbathymetricposi- b b ∗ Correspondingauthor.Tel.:+19077896603;fax:+19077896094. E-mailaddress:[email protected](J.L.Pirtle). 1 Presentaddress:NationalAcademyofSciences,NationalResearchCouncil,VisitingScientistatNationalOceanicand AtmosphericAdministration,NationalMarineFisheriesService,AlaskaFisheriesScienceCenter,17109PointLenaLoopRoad, Juneau,AK,99801,USA. http://dx.doi.org/10.1016/j.mio.2015.06.001 2211-1220/©2015ElsevierB.V.Allrightsreserved. J.L.Pirtleetal./MethodsinOceanography12(2015)18–35 19 tionindexandseafloorruggedness;thesedescribedover54%of thevariationbetweentrawlableanduntrawlableseafloortypes.A mapofpredictedseafloortrawlabilityproducedfromthemodelus- ingmosaicS andbenthic-terrainmetricsdemonstratedthat58% b of the area mapped (5987 km2) had ≥50% probability of being trawlableand42%ofbeinguntrawlable.Themodelcorrectlypre- dicted69%oftrawlableanduntrawlablehaullocations.Success- fulhaulsoccurredinareaswith62%probabilityofbeingtrawlable andgeardamageoccurredinareaswitha38%probabilityofbeing trawlable.Thismodelandmapproducedfrommultibeam-derived seafloormetricsmaybeusedtorefineseafloorinterpretationfor the AFSC BT surveys and to advance efforts to develop habitat- specificbiomassestimatesforGOAgroundfishpopulations. ©2015ElsevierB.V.Allrightsreserved. 1. Introduction Multi-species bottom-trawl surveys are a common fishery-independent assessment method to obtainbiomassestimatesfordemersalfishpopulations.Inherentintrawlsurveybiomassestimatesis theissueofcatchability,whichisinfluencedbytherelativeproportionoftrawlableanduntrawlable ground in a survey area, or the area accessible by the survey (Cordue, 2007). Management areas like the Gulf of Alaska and US West Coast have a mix of trawlable and untrawlable seafloor types(Zimmermann,2003;VonSzalayetal.,2010).Certaingroundfishspecies,suchasrockfishes (Sebastesspp.)havemixeddistributionintrawlableanduntrawlablehabitatorpreferruggedhabitat inaccessible to bottom-trawl gear (Stein et al., 1992; Clausen and Heifetz, 2002; Jagielo et al., 2003;Rooperetal.,2007).Consequently,theproportionofthepopulationinuntrawlablehabitatis undersampledornotsampledatall,andthesampledpopulationisassumedtoberepresentativeofthe entirepopulationforthepurposeofthestockassessment.Disproportionatesurveyaccesstoallareas occupiedbytheharvestedpopulationcanintroducenon-randomerrortobiomassestimatesfrom trawlsurveytime-series(Cordue,2007).Thus,moreaccurateaccountingoftheextentoftrawlableand untrawlablesurveyareaisneededasafirststeptowardassessingandcorrectingthispotentialbias. NationalOceanicandAtmosphericAdministration(NOAA)AlaskaFisheriesScienceCenter(AFSC) Resource Assessment and Conservation Engineering (RACE) Division researchers conduct a bien- nial area-wide bottom-trawl survey (BT survey) for groundfish in the Gulf of Alaska (GOA), from theIslandsofFourMountains(169°59′0′′W52°43′11′′N)intheAleutianIslandstoDixonEntrance (133°13′53′′W54°30′38′′N)(VonSzalayetal.,2010).TheRACEBTsurveyisconductedaboardchar- teredcommercialfishingvessels.Stationsin59surveystrataareallocatedfromasamplinggridina stratified-randomdesign.Asurveyvesselskippersearchestolocatetrawlablegroundwithinasta- tiongridcellforaminimumoftwohours,orabandonsthatcellandsearcheswithinanotheruntil trawlablegroundislocated.Thesamplinggridispopulatedwiththelocationsofknowntrawlable anduntrawlablefeatures.However,knowledgeofseafloortrawlabilityisnotcomprehensiveacrossa surveygridcellandisqualitativeatbest.Untrawlableseafloorisoftenencounteredinareasthought tobetrawlable,whichcanresultinconsiderablegeardamageandlossofthesampleandsurveytime. Giventhedifficultiesinselectingtrawlableseafloor,weknowthattherearesimilardifficultiesas- sociatedwithidentifyinguntrawlableseafloor.Abetterestimateofthearealextentoftrawlableand untrawlablegroundintheGOAwillimprovebiomassestimatesforgroundfish,increasesurveyeffi- ciency,andreducedamagetogearandbenthichabitat.Inthisstudy,wetestmetricsderivedfrom multibeam echo sounder (MBES) data for their ability to discriminate between trawlable and un- trawlableseafloortypesintheRACEBTsurveyarea. 20 J.L.Pirtleetal./MethodsinOceanography12(2015)18–35 MBESsurveyscanacquirehigh-resolutionbathymetryandbackscatterdataconcurrentlytopro- ducedetailedimagesoftheseafloor.SeveralquantitativemetricscanbederivedfromMBESdatato distinguishseafloorfeaturesofvariedmorphology(e.g., Wilsonetal.,2007).Whencombinedwith groundtruthdataofsimilarspatialscale,itispossibletomodelandmapseafloortypesandlandscape featuresthatinfluencemarinespeciesdistribution(Dolanetal.,2008;Buhl-Mortensenetal.,2009; Reynoldsetal.,2012),includinghabitatforharvestedspecies(Shotwelletal.,2008;ToddandKostylev, 2011).MetricsextractedfromMBESdatathatmaybeusefulpredictorstodiscriminatebetweenar- easoftrawlableanduntrawlableseafloorincludethosederivedfromangle-dependentbackscatter strength,backscattermosaics,andbathymetry. Seafloorbackscatterstrength(S )isdependentontheincidentangleofsoundwiththeseafloor.For b example,thepredictedS (decibels;dB)ofacobbleseafloorisquitesimilartofinesandandsiltwhen b examinedatanglesnearnormalincidence(0°).Incontrast,theS ofcobbleispredictedtobewellsep- b aratedfromsedimentsoffinergrainsizesatobliqueincidenceanglesbetween30°and50°(APL,1994; Weberetal.,2013).Studieshaveusedmultibeam-derivedangle-dependentS metricstodescribethe b natureofseafloorsediments(FonsecaandMayer,2007;Fonsecaetal.,2009),terrainfeatures(Weber etal.,2013),andbenthichabitat(Hasanetal.,2012).Theabilityofangle-dependentS metricstodis- b criminatebetweentrawlableanduntrawlableseafloorhasbeentestedforasmallregioncontaining asubsetoftheseafloortypespresentintheGOA(Weberetal.,2013). Mosaics are a commonly used form of backscatter data. Mosaics are generated by normalizing S valuesacrossthemultibeamswathtotherangeofobservedvaluesatobliqueincidenceangles b (e.g., Rzhanovetal.,2012).Onecaveattoworkingwithmosaicsistheassumptionthatnormalinci- dencebackscatterstrengthhasthesamediscriminatorypowerasbackscatterstrengthfromoblique incidence angles. Some angular resolution of the S data is also lost when mosaics are produced. b However,backscattermosaicshavethepotentialtosimplifyinterpretationofseafloorproperties,as opposedtoretainingandanalyzingthefullangle-dependentS .Greaterspatialresolutionisalsoavail- b ablefrombackscattermosaics,asopposedtoangle-dependentS metricsthatapplytodiscretesec- b tionsofthemultibeamswath. Severalbenthicterrainmetricscanbederivedfromhigh-resolutionmultibeambathymetrydata thatdescribeattributesofseafloormorphology.Seafloorslope,curvature,andbathymetricposition indexaremeasuresofterrainvariability.Seafloorslopeistherateofchangeinbathymetryovera definedarea(Horn,1981).Seafloorcurvaturehighlightsconcaveandconvexslopesanddefinesslop- ingterrainalongfeatures(Evans,1980;Schmidtetal.,2003).Bathymetricpositionindex(BPI)isthe equivalentoftopographicpositionindex,whichdescribestheelevationofonelocationrelativetothe meanofneighboringlocations(Guisanetal.,1999;Weiss,2001).BPIwillemphasizefeaturesthatare shallowerordeeperthanthesurroundingarea,suchasridgesandvalleys.Seafloorruggednessisa measureofterraincomplexitythathighlightsthepresenceofroughandbathymetricallyuneventer- rain(Sappingtonetal.,2007).Examiningtheseterrainmetricsatfineandbroadspatialscalesmaybe meaningfultodeterminetherelativeinfluenceoffeaturesofdifferentscaletodistinguishbetween trawlableanduntrawlableseafloortypes. WederivedseveralmetricsthatdescribetheseafloorintheGOAfromdatacollectedopportunis- ticallywithaSimradME70MBES,duringongoingfisheryresourcesurveys.TheME70isacalibrated MBESdesignedtocollectquantitativeacousticdataontargetsthroughoutthewatercolumn(Trenkel etal.,2008;Cutteretal.,2010).Bathymetryandbackscatterdataareacquiredconcurrentlywhenthe ME70isoperatedinthestandardfisherymode.Userconfigurationispossibleandbottomdetections canbeextractedfromthedatawithcustomizedsoftwaredesignedtocharacterizetheseafloorinthe areaofstudy(Weberetal.,2013). Inthiswork,wedemonstratethevalueofmultibeammetricsaspredictorvariablestodiscrimi- natebetweentrawlableanduntrawlableseafloortypesintheGOA,extendingthepreliminarystudy byWeberetal.(2013).Ourobjectiveswereto(1)determinewhetherornottrawlableanduntrawlable groundcanbedistinguishedusingavarietyofmultibeam-derivedbackscatterandbathymetrymet- rics;(2)identifywhichmultibeammetrics,singularlyorincombination,aremostusefultodiscrim- inatebetweentrawlableanduntrawlablelocations;and(3)generateprobabilitymapsofpredicted seafloortrawlabilitywithintheGOA. J.L.Pirtleetal./MethodsinOceanography12(2015)18–35 21 2. Methods 2.1. Multibeamsurvey NOAAAFSCRACEresearchersconductacoustic-trawlsurveys(ATsurveys)withtheNOAAship OscarDysontoassesssemi-demersalwalleyepollock(Gaduschalcogrammus)biomassanddistribution during summer and winter in the GOA (Jones and Guttormsen, 2012; Jones et al., 2015). ME70 data were collected during the summer 2011 GOA-wide biennial AT survey from 14 June to 12 AugustfromtheIslandsofFourMountainsintheAleutianIslands(169°59′0′′W52°43′11′′N)tothe easternsideofKodiakIsland(151°5′25′′W57°20′46′′N).AdditionalME70datawerecollectedduring thesmaller-scalewinter2012ATsurveyduring13–22Februaryand17–27MarchbetweenSanak Island (163°14′42′′W 54°48′37′′N) and the eastern side of Kodiak Island. Survey activities for the pollockassessmentweregenerallyconductedduringdaylighthoursinthesummerandbothdayand nightduringthewinterpre-spawningpollockATsurveys.Nominalunderwayfree-running(versus trawling)vesselspeedwas5.5–6ms−1(10.7–11.7kt),butvarieddependingonweatherandseastate. TheME70wasoperatedinfisherymode,usingacustomconfigurationof31-beamsatfrequencies from73–117kHz,withbeamopeninganglesfrom2.8°–11.0°,steeredto0°inthealongshipdirection and−66°to+66°intheathwartshipdirection,withthelowestfrequenciessteeredtothehighest beamangles,andapulsedurationof1.5ms−1(sensuWeberetal.,2013).TheME70wascalibrated inThreeSaintsBay,KodiakIsland(153°30′54′′W57°10′30′′N),priortothestartofthesummer2011 survey,usingthestandardspherecalibrationmethod(Footeetal.,1987). ME70datawerecollectedduringthesurveysalongparalleltransectsspaced2–20nmiapartover 20–500mbottomdepths.Fine-scalemultibeamsurveyswith100%bottomcoveragewereconducted duringeveninghoursofthesummer2011surveytotargetbothtrawlableanduntrawlableseafloor types.AnApplanixPOS/MVV4systemoutputdynamicmotionandpositiondatadirectlytotheME70 tocompensatethebeamdirectionsforpitchandrolloftheshipandtogeoreferencethemultibeam data.AC-NavMBX-4systemapplieddifferentialcorrectiondatatothePOS/MVtoimproveposition accuracy.Expendablebathythermograph(XBT)profileswereconductedapproximatelyevery3–6h during the survey and conductivity temperature and depth (CTD) sensor profiles were conducted nightlyatfine-scalesurveylocationstomeasuresoundspeedthroughthewatercolumnandcorrect fortheeffectofsoundrefraction.Conductivityandtemperaturewerealsocontinuouslymeasured nearthetransducerbytheME70system. 2.2. Camerastations Videoimagerywascollectedatcamerastationstocharacterizetheseafloorastrawlableorun- trawlableforcomparisonwiththeME70data.Camerastationsweresampledduringeveninghoursof thesummer2011surveywithinthefine-scalemultibeamsurveyareas.Camerastationswerelocated inapatternthatsampledacentrallocationandthentargetedtheremainingfine-scalesurveyarea equally.Onecameradeploymentwasconductedateachcamerastation.Atleastoneandasmanyas fivecamerastationsweresampledduringeachfine-scalesurvey. Videoimagerywascollectedatcamerastationsusingoneoftwocamerasystems,includingasingle camera(DC)andstereocamera(SDC)system.TheDCwasfittedwithonedigitalvideorecorderand twolightsplacedabovethecamerahousingforillumination.TheSDChadtwo-SonyTRD-900progres- sivescancamcorderswith1280×720pixelresolution(SonyCorp.,Tokyo,Japan)andtwolightsplaced abovethecamerahousings(Williamsetal.,2010).Bothsystemsweremountedinaluminumcages. EachDCdeploymentviastandardshipboardwinchincluded5minoftotalbottomtimeprovidinga visualassessmentoftheseafloor.EachSDCdeploymentincluded30mintotalbottomtime.Unlikethe DC,theSDCusedareal-timevideofeedandadedicatedwinchwhichallowedverticalmaneuverability inthewatercolumnandoverthebenthicterrain.Thissystemwasoptimalforgreaterspatialcoverage andwasusedwhenmoreshiptimewasavailable. Seafloor substrate was classified from video, using a two-code system with the following > . categories: rock with vertical relief (R), flat bedrock (F), boulder (B; 255 cm), cobble (C; 6.5–25.5cm),pebble(P;2–6.5cm),gravel(G;2–4mm),sand(S;grainsdistinguishable),andmud 22 J.L.Pirtleetal./MethodsinOceanography12(2015)18–35 (M)(Wentworth,1922;Steinetal.,1992).Grainsizewasestimatedfromatetheredweight(28cm diameter)inthefieldofview(DC),ordirectlyfromthehorizontalfieldofview(2.4m;SDC).The firstcodewiththissystemrepresented50%–80%ofthesubstratecomposition,andthesecondcode represented20%–50%(e.g.,MBisatleast50%mudandatleast20%boulder,andBBis≥80%boulder). Anewcodewasassignedwhenachangeinsubstratewasencounteredforanarealastinggreaterthan 10sofvideoduration. The seafloor substrate and overall benthic terrain at camera stations was further classified as trawlableoruntrawlable.AstandardPoly-Nor’eastern4-seambottom-trawlisusedintheGOABT survey(Stauffer,2004).Untrawlableareasforthisstudyweredefinedasanysubstratecontaining > . boulders( 255cmatthegreatestdimension)reachinghigherthan20cmoffbottom,orbedrock withverticalreliefand–orruggednessthatwouldlikelypreventthebottom-trawlfrompassingover itwithoutdamagefromseafloorcontact. 2.3. Haullocations HistoricBTsurveyhaullocationsweresampledwiththeME70wheneverpossibleduringtheAT surveys.Becausethebottom-trawlhaullocationsoccurredinareasthatwereassumedtobetrawlable by the BT survey, the haul locations represent only a subset of the seafloor types in the GOA. In contrast,thecamerastationssampledduringthemultibeamsurveycapturedavarietyoftrawlable anduntrawlableseafloortypesthatwerecharacterizedfromvideo.Duetothisdifference,thehaul locationsandcamerastationswerecomparedtotheME70dataasseparatedatasets. Haullocationsampleswereconstrainedtosurveyyears1996–2011,duetopositionalprecision andreliabletrawlgeardamagereporting.HaulperformanceischaracterizedbyRACEassuccessful, marginally-successful(hereaftermarginal),orfailed,basedonthelevelofgeardamagesustainedfrom seafloorcontact.Successfulhaulsdonotsustaingeardamageandprovideanacceptablecatchsample. Marginalhaulsarethosewithsomegeardamage,butwherethedamagewasjudgedtonotaffectthe catch.Failedhaulshaveextensivegeardamage,orthedamagewaslocatedinanareaofthenetwhere thecatchwasjudgedtobeaffected.Bottom-trawlhaulsusedinouranalysisincurredseveraltypes offailureresultingingear-damage,includinggearhang-ups(i.e.,gearwassnaggedorentangledon theseafloor),havingtohaul-backearlyduetohangs,majorhangsthatstoppedtheforwardprogress ofthevessel,andontwooccasionsthenetwasdestroyed.Successfulhaulswereassumedtooccur inareasoftrawlableseafloorandfailedhaulsinareasofuntrawlableseafloor.Marginalhaulswere pooledwithfailedhaulsfortheanalysisbecauseallhaulswithgeardamagewereassumedtooccur inlocationswithuntrawlablefeatures. 2.4. Multibeamdata 2.4.1. Multibeamdataprocessing TheSimradME70datacollectionandprocessingworkflowforthisstudyisshowninFig.S1(see AppendixA).RawacousticdatafilesweregeneratedbytheME70workstationduringdatacollection. BathymetryandS datawereextractedfromtherawME70filesusingalgorithmsthatperformbottom b detectionsandapplyuncertaintycorrections(sensuWeberetal.,2013).Thebottomdetectionswere then used to calculate angle-dependent S metrics for data analysis, or written to Generic Sensor b Format(GSF)filesforfurtherprocessing. 2.4.2. Angle-dependentS b Threedifferentangle-dependentS metricswerederivedfromtheseafloorbackscatterstrength. b These were based on the predicted S at incidence angles (Jackson and Richardson, 2007). These b metricswerenormal-incidenceS (0°–1°),obliqueincidenceS (30°–50°),andtheslopeoftheangle- b b dependentbackscatterwithin10°ofnormalincidence(S -slope). b 2.4.3. Backscattermosaicsandbathymetrygrids BottomdetectionsfromtheME70datawereinputasGSFfilesintothehydrographicdatapro- cessingsoftwareCARISHIPS(version7.2,CARIS).Soundingswerecorrectedforvesseloffsets,sound J.L.Pirtleetal./MethodsinOceanography12(2015)18–35 23 refraction,andtides,andmergedtogeneratea6m2resolutionsurface,usingtheCombinedUncer- taintyandBathymetricEstimatoralgorithms(CUBE).Cursorycleaningwasconductedtoremoveobvi- oussoundingerrorsaffectingthesurface.ProcessedGSFfileswereexportedtoFledermausGeocoder Tools(FMGT)andDMagictogeneratebackscattermosaics(Sb,dB)andbathymetrygrids(m-depth), eachat6m2resolution(version4.0,IVS). 2.4.4. Benthicterrainanalysis Benthicterrainmetricswerederivedfrombathymetrygrids(6m2)inArcGIS(version10.1,ESRI). CalculationsforseafloorslopeandcurvaturewereperformedusingDEMSurfaceTools(Jenness,2013). SeafloorruggednessandBPIwerecalculatedusingfeaturesoftheBenthicTerrainModeler(Wright etal.,2012).Seafloorslope,curvature,andruggednesswerecalculatedfromamovinganalysiswin- dowofa3×3arrayofgridcells,whichusesthebathymetryofeachcelland8surroundingneighbors. Ruggednesswasalsocalculatedusing11and21cellarrays.Thesespatialscaleswereselectedbased onthescaleofterrainfeaturesderivedbythesemetricsthatarelikelyencounteredbyabottom-trawl haulpath(16mwidth).Slopewascalculatedalongeast–westandnorth–southgradients,usingHorn’s directionalmethod(Horn,1981).Twomeasuresofcurvaturewerecalculated.Profilecurvatureisthe curvatureofthesurfaceinthemaximumdirectionofslope,andisusefultohighlightconcaveandcon- vexslopes.Plancurvatureisthecurvatureperpendiculartothemaximumdirectionofslope,andis usefultodefineslopingterrainalongfeatures(Evans,1980;Schmidtetal.,2003).Seafloorruggedness wascalculatedusingavectorruggednessmeasure(VRM)thatquantifiesthe3-dimensionaldisper- sionofvectorsorthogonaltotheplanarterrainsurfaceandaccountsforvariabilityinbothslopeand aspect(Sappingtonetal.,2007).BPIcomparesthebathymetricpositionofagridcelltothemean ofneighboringcellsinradialdirections(Guisanetal.,1999;Weiss,2001).BPIwascalculatedfrom neighborhoodswitharadiusof20,50,100,and200cells. 2.5. Dataanalysis 2.5.1. Extractmultibeammetrics Twosetsofsamplelocationswereusedforthisanalysis.Theseincludedthecamerastationswithin theME70fine-scalesurveyareasandBTsurveytrawlhaullocations.Multibeam-derivedseafloormet- rics were overlaid with the location of camera stations and haul path locations to extract metrics thatcouldpotentiallydiscriminatebetweentrawlableanduntrawlableseafloortypesandtogener- atemodelsandprobabilitymapsofpredictedseafloortrawlability.Multibeammetricswereextracted fromanareawithin20mofthecamerastations.Multibeammetricswereextractedathaullocations fortheareaofoverlapbetweentheME70swathandbottom-trawlpathwherethenetwasincontact withtheseafloor,takingintoaccountthedistanceofwireout,trawlwarplength,trawlwidth(16m), andthepositionaluncertaintyofthesurveyvessel.A28mbufferaroundthehaulpathswasappliedto additionallyincludeonehalfofthetrawlnetwidth(8m).Haulpathstargetedduringthemultibeam surveyweresampledwith100%coverage.Occasionally,onlytheedgeorasectionofahaulpathwas sampledbecauseoftheopportunisticnatureofME70operationsduringtheATsurveys.Multibeam surveycoverageofindividualhaulpathlocationswasdeterminedbasedontheproportionofthehaul pathareasampledbythemultibeamswath.Analysiswaslimitedtohaullocationswheretheregion > ofoverlapbetweenthemultibeamdataandbottom-trawlhaulpathlocationwas 10%ofthehaul patharea. The multibeam data extracted for analysis with the camera and haul data sets included angle- dependentS metrics,backscatterandbathymetrymetricsaswellastheirassociatedmeanandstan- b darddeviation(SD).ThesecalculationswereperformedforS metrics(dB)byfirstconvertingthose b values to intensities. Metrics used in data analysis are listed in Table 1. To determine whether a multibeam-derivedmetriccoulddiscriminatebetweentrawlableanduntrawlableareas,themetric valuesofcamerastationsandhaullocationsthatwerecharacterizedastrawlableoruntrawlablewere firstcomparedusinga2-samplet-test(α =0.05). 24 J.L.Pirtleetal./MethodsinOceanography12(2015)18–35 Table1 SeafloormetricsderivedfromdatacollectedwiththeME70MBESduringcruisesin2011 and2012aboardtheNOAAshipOscarDysonintheGulfofAlaska.Metricsderivedfrom theangle-dependentseafloorbackscatterstrength(Sb)werenormal-incidenceseafloorSb, obliqueincidenceSb,andtheslopeoftheangle-dependentbackscatterwithin10°ofnormal incidence (Sb-slope). The mean mosaic value (mosaic Sb) was derived from backscatter mosaics.Metricsderivedfromgriddedbathymetrydatawereseafloorslope,plancurvature, profilecurvature,ruggedness(VRM),andbathymetricpositionindex(BPI). Multibeammetric Angleofincidenceorscale Angle-dependentSb Rawdataresolution NormalincidenceSb 0°–1° ObliqueincidenceSb 30°–50° Sb-slope 0°–10° Backscattermosaic 6m2 Mosaicvalue Swathnormalizedtovaluesfrom30°–50° Bathymetrygrid 6m2 Slope 3×3cells Profilecurvature 3×3cells Plancurvature 3×3cells VRM 3×3,11×11,21×21cells BPI 20,50,100,200cellradius 2.5.2. Modelseafloortrawlability Theabilityofeachmultibeam-derivedmetrictodiscriminatebetweentrawlableanduntrawlable areaswastestedwithpredictivemodels.Seafloortrawlabilitywasmodeledseparatelyforcamera stationsandhaullocationswithlogisticregressionusingageneralizedlinearmodel(GLM)Y = ∝ +β X + βX + E and the logit link function p(Y) = exp(Y)/(1 + exp(Y)) for binary response 1 1 i i data(McCullaghandNelder,1983).GLMcanaccommodatedatathatarenotnormallydistributed andthemodelresultscanbeimplementedasprobabilitymapsforprediction(Guisanetal.,1999; Duff,2008).Theresponseforthesemodelswasthetrawlableoruntrawlablecharacterizationforeach samplelocation.Predictorvariableswerethemultibeam-derivedseafloormetricsatthesampleloca- tions(Table1).Multibeammetricswerestandardizedpriortoanalysisbysubtractingthemeanand dividingbytheSDofthemetric.Best-fittingmodelsweredeterminedinaforwardstep-wisefashion beginningwiththecamerastations. Modelswithmetricsasindividualpredictorswereexaminedfirst.Commondiagnosticsforlogis- ticregressionwereevaluated,includingtheproportionofdevianceexplained(D2)andananalysis ofdeviancetest.AnanalysisofdeviancetestisalikelihoodratiotestforGLMsusedtoevaluatethe performanceofeachmodelcomparedtoanullmodel(α = 0.05).Themostdiscriminatorymodels werechosenbasedontheAkaikeinformationcriterion(AIC).ModelswithAICvalueswithin2digits arenotconsidereddifferentwithregardtothepredictedresponse(BurnhamandAnderson,2002). Modelswithmorethanonepredictorwereexaminednext,usingcombinationsofthebestindivid- ualpredictormodels.Multi-collinearityamongmultibeammetricswasexaminedpriortochoosing metricsformodelswithmorethanonepredictor,sothatcollinearmetrics(|r| > 0.7)werenotin- cludedinthesamemodel(e.g., Dormannetal.,2013).Predictorswereaddedonebyoneaslongas themodelfitimproved.Thebestmodelswithmorethanonepredictorwereevaluatedandcompared totheresultsofthesinglepredictormodels.AllanalysiswasconductedinR(RDevelopmentCore Team,2013). 2.5.3. Mapseafloortrawlability PredictedprobabilityofseafloortrawlabilityfortheGOAmultibeamsurveyareawasmappedus- ingthemodelcoefficientsandmultibeammetricsfromthebestmodel.Amodelprobabilitythreshold of0.5wasusedtodiscriminatebetweentrawlableanduntrawlableareas.Theabilityofthemodelto correctlypredictthepresenceoftrawlableanduntrawlableseafloorfeatureswasevaluatedforeither camerastationsorhaullocations,dependingonwhichdatasetwasusedwiththeMBESsurveydata todevelopthebestmodel.Thiscross-validationanalysiswasconductedinArcGISbyextractingthe J.L.Pirtleetal./MethodsinOceanography12(2015)18–35 25 Fig. 1. Distribution of angle-dependent seafloor backscatter strength values (Sb; dB) for the range of incidence angles (−55°–+55°)sampledbythemultibeamswathatcamerastationsclassifiedastrawlableoruntrawlable.Camerastations (n=47)weresampledduringthe2011ME70MBESsurveyaboardtheNOAAshipOscarDysonintheGOA. modelvaluesofpredictedseafloortrawlabilityfromtheregionofoverlapwithsamplelocationsthat wereclassifiedastrawlableoruntrawlable. 3. Results Atotalof47camerastationsweresampledatfine-scaleME70surveylocationsduringthe2011AT survey.Trawlableseafloorwasidentifiedat27camerastationsanduntrawlableseafloorat20stations (TableS1;seeAppendixA). Seafloorsubstrateattrawlablecamerastationsincludedpoorlysorted,fine-grainsediments,which weredifficulttodistinguishfromoneanotherinthevideodata(e.g.,mixedsandandmudwithsilt). Othersubstratetypesatthetrawlablecamerastationsweremorereadilydiscernibleandincluded areasoffine-grainsedimentswithscatteredgravel,pebbles,cobbles,andtheoccasionalembedded smallboulder,orcontinuousareasofgravelandpebbleswithscatteredcobblesofvariedsize.Un- trawlablestationsincludedareasoffine-grainsedimentwithbouldersandrockoutcrops,areasof continuousgravel,pebbles,andcobblewithisolatedbouldersandrock,orareasofcontinuousboul- derandrock. ThetotalareamappedwiththeME70duringtheATsurveyswas5987km2,whichcorresponded withthelocationof450historicbottom-trawlhaulpathsacrosstheBTsurveyarea.Theseincluded 373 successful hauls and 77 marginal and failed hauls. The range of spatial overlap between the multibeamdata(swath)andindividualhaullocationswas10%–100%withmeanoverlapof55%(±26% SD). Examining the distribution of seafloor scattering strength data at the range of angles across the multibeam swath demonstrated that areas of trawlable seafloor generally exhibited lower S b valuesthanareaswithuntrawlableseafloor.Areasoftrawlableseaflooratcamerastationsgenerally had lower S values at all incidence angles than untrawlable seafloor (Fig. 1). The BT survey haul b performancecategories,successful,marginal,andfailed,showseparationinS valuesacrossincidence b anglesathaullocations,withsuccessfulhaullocationshavinglowervaluesoverall(Fig.2).Marginal andfailedhaullocationsgroupedtogetherintherangeofhigherS valuesacrossthemultibeamswath. b MeanS valuesatmarginalandfailedhaullocationswerenotsignificantlydifferent. b 3.1. Multibeammetricsandcamerastations Angle-dependentS metricvalues(Table1)forcamerastationsclassifiedastrawlableweresig- b nificantlylowerthanthoseclassifiedasuntrawlable(Fig.3).Similarresultswereobtainedforvalues 26 J.L.Pirtleetal./MethodsinOceanography12(2015)18–35 Fig. 2. Distribution of angle-dependent seafloor backscatter strength values (Sb; dB) for the range of incidence angles (−55°–+55°)sampledbythemultibeamswathathaullocationswheretrawlperformancewasclassifiedassuccessful, marginal,orfailed.Haullocationssampled(n=450)wereconductedduringthesummer1996–2011RACEBTsurveys. Fig.3. Multibeam-derivedseafloormetrics(mean,+SD)comparedbetweentrawlableanduntrawlablecamerastations (t-test,α = 0.05).Metricsderivedfromtheangle-dependentseafloorbackscatterstrength(Sb)arenormal-incidenceSb, obliqueincidenceSb,andSb-slope.MosaicSb isderivedfrombackscattermosaics(6m2).Metricsderivedfromgridded bathymetrydata(6m2)areseafloorslope,profilecurvature,andplancurvature,calculatedfrom3×3cellarrays.Seafloor ruggedness(VRM)iscalculatedfrom3×3,11×11,and21×21cells,andbathymetricpositionindex(BPI)iscalculated from20,50,100,and200cellradiusanalysiswindows.Significancelevelsareasfollows:*(p < 0.05),**(p < 0.001),*** (p<0.0001). derivedfrombackscattermosaics.MosaicS valuesweresignificantlylowerattrawlablecamerasta- b tions. Differencesweredetectablebetweentrawlableanduntrawlablecamerastationsforonlysomeof thebenthicterrainmetricsderivedfromthebathymetrygrids(Fig.3).AllBPIvaluesweresignifi- cantlylessattrawlablecamerastations.Measuresofseafloorslopeandcurvaturedidnotdistinguish betweentrawlableanduntrawlablestations.Differenceswerealsonotdetectablebetweentrawlable J.L.Pirtleetal./MethodsinOceanography12(2015)18–35 27 Fig.4. Multibeam-derivedseafloormetrics(mean,+SD)comparedbetweentrawlableanduntrawlablehistoricbottom-trawl haullocations(t-test,α = 0.05).Metricsderivedfromtheangle-dependentseafloorbackscatterstrength(Sb)arenormal- incidenceSb,obliqueincidenceSb,andSb-slope.MosaicSbisderivedfrombackscattermosaics(6m2).Metricsderivedfrom griddedbathymetrydata(6m2)areseafloorruggedness(VRM)calculatedfroma21×21cellarray,andbathymetricposition index(BPI)calculatedfromananalysiswindowof200cellradius.Significancelevelsareasfollows:*(p<0.05),**(p<0.001), ***(p<0.0001). anduntrawlablestationsforseafloorruggednesscalculatedfrom3×3and11×11cellarrays.How- ever,broad-scaleruggedness(VRM21×21cells)wassignificantlylowerattrawlablestations. There was a significant difference between oblique incidence S and mosaic S normalized to b b < . obliqueincidenceangles(p 00001),demonstratingthatthemeansofthesemetricsweredifferent. Thesemetricswerecorrelatedforcamerastations(r =0.78). 3.2. Multibeammetricsandhaullocations Allangle-dependentS metricvaluesforbottom-trawlhaullocationsclassifiedastrawlablewere b significantlylessthanvaluesatuntrawlablelocations(Fig.4).TheseincludednormalincidenceS , b obliqueincidenceS ,andS slopenearnormalincidence.MosaicS valuesattrawlablehaullocations b b b werealsosignificantlylowerthanuntrawlablehaullocations. Onlybenthicterrainmetricsthatcoulddiscriminatebetweentrawlableanduntrawlablecamera stations were evaluated in the analysis for haul locations, including VRM and BPI at one derived spatialscale.Althoughthesemetricswerediscriminatoryatcamerastations,whichsampledabroader rangeofseafloortypesthantheBThaullocations,theydidnotdiscriminatebetweentrawlableand untrawlablehaullocations(Fig.4). There was a significant difference between oblique incidence S and mosaic S normalized to b b < . obliqueincidenceangles(p 00001),demonstratingthatthemeansofthesemetricsweredifferent. Thesemetricswerecorrelatedforhaullocations(r =0.95). 3.3. Trawlabilitymodels ThemostdiscriminatorysinglemetricmodelsforcamerastationsbasedonAICvaluesweremosaic S (AIC = 37.2,D2 = 0.38)andobliqueincidenceS (AIC = 42.5,D2 = 0.28).Thebestmodelsfor b b camerastationswithmorethanonepredictorweremodelsthatincludedbroad-scalebathymetric positionindex(BPI200cells)andseafloorruggedness(VRM21cells)withobliqueincidenceS (AIC= b

Description:
the locations of previously conducted AFSC bottom-trawl (BT) sur- .. Benthic terrain metrics were derived from bathymetry grids (6 m2) in ArcGIS
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.