RESEARCHARTICLE Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling 1 with H-NMR spectroscopy, a novel translational approach on a patient-specific basis MartinaPalomino-Scha¨tzlein1*,HermenegildoGarc´ıa2,PatriciaGutie´rrez-Carcedo3, a1111111111 AntonioPineda-Lucena1,4,Jose´RaulHerance3* a1111111111 a1111111111 1 LaboratoriodeBioqu´ımicaEstructural,CentrodeInvestigacio´nPr´ıncipeFelipe,Valencia,Spain,2 Instituto UniversitariodeTecnolog´ıaQu´ımicaCSIC-UPV,Valencia,Spain,3 GrupdeRecercaenImatgeMèdica a1111111111 Molecular,Valld’HebronResearchInstitute,CIBBIM-Nanomedicine,DepartamentdeMedicina,Universitat a1111111111 AutònomadeBarcelona,Barcelona,Spain,4 UnidaddeDescubrimientodeFa´rmacos,Institutode Investigacio´nSanitariaLaFe,HospitalUniversitarioiPolite´cnicoLaFe,Valencia,Spain *[email protected](JRH);[email protected](MPS) OPENACCESS Abstract Citation:Palomino-Scha¨tzleinM,Garc´ıaH, Gutie´rrez-CarcedoP,Pineda-LucenaA,HeranceJR (2017)Assessmentofgoldnanoparticleson Humanperipheralbloodcellsarerelevantexvivomodelsforcharacterizingdiseasesandeval- humanperipheralbloodcellsbymetabolicprofiling uatingthepharmacologicaleffectsoftherapeuticinterventions,astheyprovideaclosereflec- with1H-NMRspectroscopy,anoveltranslational tionofanindividualpathophysiologicalstate.Inthiswork,anewapproachtoevaluatethe approachonapatient-specificbasis.PLoSONE12 impactofnanoparticlesonthethreemainfractionsofhumanperipheralbloodcellsbynuclear (8):e0182985.https://doi.org/10.1371/journal. pone.0182985 magneticresonancespectroscopyisshown.Thus,acomprehensiveprotocolhasbeenset-up includingtheseparationofbloodcells,theirinvitrotreatmentwithnanoparticlesandtheextrac- Editor:AbhijitDe,AdvancedCentreforTreatment ResearchandEducationinCancer,INDIA tionandcharacterizationofmetabolitesbynuclearmagneticresonance.Thismethodwas appliedtoassesstheeffectofgoldnanoparticles,eithercoatedwithchitosanorsupportedon Received:March15,2017 ceria,onperipheralbloodcellsfromhealthyindividuals.Aclearantioxidanteffectwasobserved Accepted:July27,2017 forchitosan-coatedgoldnanoparticlesbyasignificantincreaseinreducedglutathione,that Published:August9,2017 wasmuchlesspronouncedforgold-ceriumnanoparticles.Inaddition,theanalysisrevealed Copyright:©2017Palomino-Scha¨tzleinetal.This significantalterationsofseveralotherpathways,whichwerestrongerforgold-ceriumnanopar- isanopenaccessarticledistributedunderthe ticles.Theseresultsareinaccordancewiththetoxicologicaldatapreviouslyreportedforthese termsoftheCreativeCommonsAttribution materials,confirmingthevalueofthecurrentmethodology. License,whichpermitsunrestricteduse, distribution,andreproductioninanymedium, providedtheoriginalauthorandsourceare credited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation Introduction files. Bloodcellsareinterestingexvivomodelstostudythepathophysiologicalstateofdiseases,and Funding:Thepresentworkwassupportedby topredictthebeneficialortoxiceffectpromotedbynewtherapies,withahightranslationality grantsCP13/00252andPI16/02064fromCarlosIII toclinicalstudiesbyconsideringthepatient’sspecificcharacteristics.Thereasonisthefact HealthInstituteandbytheEuropeanRegional thatbloodcellsarealteredindiseaseandcanreflecttheconditionandstateofdifferentorgans DevelopmentFund(ERDF)andthegrantSAF2014- 53977-RfromtheMinistryofEconomy,Industry andtissues[1].Thus,thestudyoftheinteractionofbloodcellswithmedicinescanprovideus PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 1/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach andCompetitiveness.Inaddition,JRHisrecipient withanearlyindicationoftheeffectofacertaintherapyonthehumanbody.Forinstance, ofaMiguelServetIcontractfromtheMinistryof erythrocytesorredbloodcells(RBCs)havebeenusedasdiseasemodelsforassessingdrugsas HealthoftheCarlosIIIHealthInstitute.Thefunders theyaresensitivetomanydisorders,includingdiabetes,Wilson’sdiseaseandAlzheimer’sdis- hadnoroleinstudydesign,datacollectionand ease[2–5].Moreover,neutrophilshavebeenanalysedtoobtaininformationaboutthediagno- analysis,decisiontopublish,orpreparationofthe sis,mechanismofactionandtherapyofdifferentdiseases,suchastuberculosis,malaria, manuscript”insteadof“Thepresentworkwas supportedbygrantsCP13/00252andPI16/02064 allergicreactionsortumours[6–12].Furthermore,lymphocyteshaveshowntobealteredin fromCarlosIIIHealthInstitute,andbythe lungdiseases,inflammatoryprocessesleadingtoallergicdiseases,duringatheroscleroticpla- EuropeanRegionalDevelopmentFund(ERDF).In quedevelopment,incardiovasculardiseasesandduringtumourprogression[13–20]. addition,JRHisrecipientofacontractfromthe Metabolomicprofilingisacomprehensivemethodthatallowsthequantificationofalarge MinistryofHealthoftheCarlosIIIHealthInstitute. numberofdifferentmetabolitesinasingleanalysisinanon-targetedwaythatcanprovideuse- Thefundershadnoroleinstudydesign,data collectionandanalysis,decisiontopublish,or fulinformationtostudydiseaseandtheeffectoftreatments.[21–24]Protonnuclearmagnetic preparationofthemanuscript. resonance(1H-NMR)spectroscopyhasprovenfastandreproducibleforobtaininggoodqual- itystructuralandsemi-quantitativeinformationaboutthemetabolomeofcells[21,25].Meta- Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. bolicprofilingofcellshasbeenpreviouslyappliedtoawiderangeofinvitromodelstohelp gaininsightintobasicanddiseasemetabolisms,especiallyincombinationwithgenomicsand/ orproteomicsdata[26].Althoughsomestudiesaboutthemetabolicprofileofbloodcellscan befound,toourknowledge,verylimiteddataaboutbloodcellanalysisbyNMRspectroscopy frompatientsavailable[27–35].Theanalysisofthemetabolicprofileofbloodcellscouldnot onlyprovideamethodforidentifyingnewbiomarkersfordiseasediagnosis,butalsoforin vivoevaluatingtheeffectsofnewtherapeutictreatments(e.g.,nanomedicines)atapatient level[22–24]. Nanomedicineistheapplicationofnanotechnologicalsystemstomedicine.Theimpactof thistechnologyhasaugmenteddramaticallyoverthelastfewyearsduetoitsapplications (drugdelivery,preventionofdrugmetabolisation,diagnosticagent,etc.)[36,37].Thankstoits advantages,todateseveralnanometricsystemshavebeenapprovedforhumanuse,andmore than240areindifferentclinicaltrialphases.Thissituationcreatestheneedtoimplementa widerrangeofmethodologicaltoolstooptimizethedesignofnewnanomaterialsinearly stagesoftheirdevelopmentandtoassesstheireffectduringclinicaltrials[38].Bloodisoneof thefirstenvironmentsthatcomesintocontactwithananomedicinewhenitisinjectedor whenitentersthebloodstreamviaotheradministrationtypes,whichmakesthestudyofthe interactionofnanoparticleswithdifferentbloodcomponentshighlyrelevant.Comprehensive studieshavebeenreportedontheeffectofnanomaterialsonboththeimmuneandcoagulating systems.Theyincludetheanalysisoftheimpactofthesecompoundsonthemorphology,cell cycleandproliferationofdifferenttypesofbloodcells[39–44].Indeed,newnanomaterialsare designedtomakethisinteractionascontrolledandadvantageousaspossible,andbloodcells haveevenbeenemployedascarriercellsfornanoparticlestoreachtheirdestinymoreeffi- ciently[45,46].Inthiscontext,thefocusofourstudywastoevaluatethepotentialofmetabolo- micsbyNMRtocharacterizethemetabolicprofileofperipheralbloodcellsbeforeandafter treatmentwithnanoparticles.Totestourapproach,wehavechosengoldnanoparticlesas modelsystems,becausetheyareoneofthemostpromisingnanomedicines,thathavebeen suggestedforawiderangeofdifferentapplications;e.g.,medicalimagingandtherapiesincan- cer,neurodegenerativediseasesordiabetes[47–58].Oneofitsmostpromisingpropertiesisits capacitytoeliminateanexcessofoxidantspeciesgeneratedinstresssituations(antioxidant behavior),whichisbeneficialformanybiomedicalapplications.Mostoftheseapplications involveadirectcontactwithperipheralblood,whoseimpactcanbeevaluatedbyourmethod. Severalapproacheshavebeenproposedtomaintainthestructureofgoldasnanoparticles andtopreventagglomerationbyadjustingtheirpropertiesforbiomedicalapplications.For instance,toincreasetheirbiocompatibilityandactivityagainstoxidativestress,goldnanopar- ticleshavebeensupportedonceriananoparticlesorassembledinchitosan[59–63].Awide PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 2/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach rangeofdifferentmedicalapplications,includingglucosesensors,antifilarialandantibacterial agents,havebeenproposedforthesemodifiedgoldnanoparticles,howevernoneofthemhas enteredclinicaltrialsyet.Bothmaterialshavetheiradvantagesanddisadvantages,forinstance, ceriaparticlesaresolubleatphysiologicalpH,whichisnotalwaysthecaseformaterialscoated withchitosan,thatsometimesneedanacidpHathigherconcentrations.Ontheotherhand, ceriamaterialscanagglomerateorformcrownswithproteins,compromisingtheirbio-distri- bution,withisminimizedinchitosanderivedmaterials.Toourknowledge,noapoptotictoxic- ityhasbeendescribedforeitherofthesegoldnanoparticles.However,nocoherentinformation canbefoundabouttheireffectoncellviabilityandproliferation.Whilesomeworkshavefound noimpactinthisregard,otherstudieshavedescribedasignificantreductionincellviability andproliferationforbothmaterials[59,64–68].Thereasonforthesedivergentresultsmaybe variationinthesize,shapeornetchargeofnanoparticles,importantfeaturesthanhavebeen welldescribedtocausedifferenteffectsoncells[69].Inthiscontext,thedevelopmentofnew biomedicalmethodologiestomonitoreffectsofnanoparticles,whichcanprovideabetter understandingofthemechanismrelatedtocertaintherapeuticand/ortoxiceffects,maycon- tributetotheoptimizeddesignofthesematerials.Specifically,inthecaseoffunctionalizedgold nanoparticles,forwhichawiderangeclinicalapplicationshavebeenproposedthatarewaiting tobetransferredtoclinics,apreviousevaluationstepoftheireffectonperipheralbloodcells couldprovideafastandeffectivefilterbeforestartinganyclinicaltrial. Inourwork,wefirstoptimizedaglobalprotocoltoanalyzethemetabolicprofileofthe threemaintypesofbloodcells(erythrocytes,polymorphonuclearleukocytes(PMNs)and mononuclearleukocytes(PBMCs))thatcanbeisolatedinparallelfromonepatientsample. Thecellfractionsfromdifferenthealthyvolunteers(n=4)werethenseparatelyexposedto nanoparticlesbasedongold,andstabilisedonceriananoparticlesorchitosan,withantioxidant properties.Themetabolomicprofileofthetreatedcellswasthereuponcomparedwiththepro- fileoftheuntreatedcontrolcells.Withthisproofofconcept,weintendedtoshowthatsystem- aticmetabolicchangescanbedetectedinperipheralhumanbloodcellsaftertreatmentwith nanoparticles.Thisinformationcancontribute,togetherwithothertoxicologicalstudiesor therapeuticdata,toevaluatenewnanomedicinesinpreclinicalphasesfromatranslational pointofview,establishingaprecedentinthisfield. Materialsandmethods Chemicalsandmaterials Solventsandreagentswerepurchasedfrom:Sigma-Aldrich(Ficoll-PaquePlus,Ficoll-Paque Plus,PBS,fetalbovineserum,penicillin,streptomycin,amphotericinB,L-glutamine,chitosan, HAuCl ,sodiumcitrate,AgNO ,sodiumphosphatedibasicdihydrate),Scharlab(methanol, 4 3 chloroform,acetone,sodiumhydroxide),Gibco(RPMI1640medium),Rhodia(CeO ),and 2 Eurisotop(deuteratedwater,deuteratedchloroform,deuteratedtrimethylsilylpropanoicacid, trimethylsilane).MaterialswerepurchasedfromScharlab,LifeTechnologies,andFalconBD. GasesweresuppliedbyAir-Liquide. Humansubjects Theinclusioncriteriawereasfollows:Caucasianhealthymales(2)andfemales(2),35–40 years,noalcoholics,nosmoker,andnofamiliarwithpreviouschronicdiseases.Allpartici- pantswererecruitedattheOutpatient’sDepartmentoftheEndocrinologyServiceatVall d’HebronUniversityHospital.Thestudywasconductedaccordingtotheguidelineslaiddown intheDeclarationofHelsinki,andallprocedureswereapprovedbytheEthicsCommitteeof PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 3/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach Valld’HebronUniversityHospital.Subjectshavebeenproperlyinstructedandhaveindicated thattheyconsenttoparticipatebysigningtheappropriateinformedconsentpaperwork. Humanperipheralbloodcellsisolation Theisolationoferythrocytes,PMNsandPBMCsleukocyteswascarriedoutusingaFicoll- Paquegradientmethod[70].20mLofperipheralbloodfreshlyextractedfromhealthyvolun- teerswascarefullypouredintoatubewith40mLofFicollandletstandforapproximately20 min,obtaining3phases.Theupperringconsistedofleukocyteswhileerythrocytesconcen- tratedasapelletatthebottom.Theleukocyteringwascarefullytransferredinatubewiththe samevolumeofFicoll,avoidingmixingand,subsequently,centrifugedat300gfor25minat 20˚C.ApelletofPMNscellsandanintermediateringwithPBMCscellswereisolatedsepa- ratelythroughthefollowingmethodology.FortheisolationofPBMCs,thePBMCsringwas transferredtoatubewiththesamevolumeofPBSandcentrifugedat300gfor5minat20˚C during5min.ThesupernatantwasdiscardedandthepelletcontainingthePBMCswaskept onice.FortheisolationofPMNs,thepelletofPMNs,containingremaindersoferythrocytes, wastreatedfor5minwith1mLoferythrocytelysisbuffer.Subsequently,themixturewascen- trifugedat300gfor5minat20˚Candthesupernatantwasdiscarded.Theresultingpelletwas resuspendedinthesamevolumeofPBSandcentrifugedat300gfor5minat20˚C.Thesuper- natantwasdiscardedandthepelletcontainingthePMNswaskeptonice.Fortheisolationof erythrocytes,theerythrocytepelletwastransferredtoatubewiththesamevolumeofPBSand centrifugedat200gfor5minat4˚Cwithoutaccelerationandbrake.Thesupernatantwasdis- cardedandtheerythrocytepelletwaswashedwithPBSagain.Finally,afterdiscardingthe supernatant,thepelletcontainingtheerythrocyteswaskeptonice. Theresultantpelletofalltheperipheralbloodcellswere:i)fordirectmetabolomicanalysis, washedwithPBSagainandfinallystoredat-80˚Cafteradding0.5mLofice-coldmethanol (for20millioncells)orii)fortreatmentwithnanoparticles,resuspendedin1mLofcomplete RPMI1640mediumforcellcountinganddilutedinmoreRPMI1640untilobtainingasolu- tionof5millioncells/mL(M/mL) Treatmentofbloodcellswithnanoparticles TwentymillionPMNsandPBMCs,and40millionerythrocytesweretransferredtocellculture flasksataconcentrationof5M/mLinaTelstarBIOLaminarflowcabinet.Cellswerecultured inaRPMI1640mediumconsistingof10%fetalbovineserum(FBS),1%ofantibioticmixture (50μg/mLPenicillin,50μg/mLStreptomycin),1%(2.5μg/mL)AmphotericinBand2.05% L-Glutamine.Toaddthenanomaterials,thefollowingprocedureswerecarriedout:a)AuCeO : 2 a1mg/mLdispersionofAuCeO inwaterwasprepared,andthendilutedto20μg/mLwith 2 medium.ThepHwasreadjustedto6.5with0.1Mofaceticacid.b)AuChi:a1mg/mLsolution ofAuChiin0.1%aceticacidwasprepared,andthendilutedto20μg/mLwithmedium.ThepH wasreadjustedto6.5with0.1MofNaOH.Forcontrolsamples,thepHofthemediumwas directlyadjustedto6.5with0.1Mofaceticacid.FlaskswerethenincubatedinanIGO150 (Jouan,Saint-Herblain,France)incubatorduring24hwithoutstirringat37˚Cand5%ofCO . 2 Afterincubationwiththedifferenttreatments,thecontentofeachflaskofcellswastransferred toafalcontubeandtheremainingcellswerescrapedoffinPBSandaddedtothetube.Leuko- cytecellswerecentrifugedat300gand20˚Cduring5minanderythrocytesat200gand4˚C during10minwithoutaccelerationandbrake.Supernatantswerethendiscarded,thepellets resuspendedinthesamevolumeofPBSandcentrifugedagainunderthesameconditions. Then,leukocytescellswerecentrifugedat11000gand20˚Cduring5minanderythrocytesat 200gand4˚Cduring10min.Supernatantswerediscarded,0.5mLofice-coldmethanolwas PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 4/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach addedtothepellets,thatwerestoredat-80˚Cuntilperformingtheextractionfor1H-NMR analysis. Extractionofpolarandnonpolarmetabolitesfor1H-NMRexperiments Frozensampleswereplacedonice,allowedtothatfor5min,andthensubjectedtoanextrac- tionprocedure.Then,250μlofchloroformat4˚Cper20millioncellswereaddedtothecorre- spondingpelletsandletstandfor30min.Sampleswerethenhomogenizedwithavortex,cells resuspendedwithapipetteandtransferredtoa1.5mltube.Foruniformcellbreakage,samples weresubmittedtothreefreeze-thawcycleswithliquidnitrogen.Then,400μLofdistilledwater and400μLofchloroformwereaddedtoeachsamplewhichthenwasvortexed.Sampleswere thencentrifugedat13000gfor20minat4˚Ctoseparatephases.Thesolutionwasseparated intoanupperwater/methanolphase(withpolarmetabolites,aqueousphase),aninterphase containingmainlyproteins,DNA/RNAandcellmembranes,andalowerchloroform/metha- nolphase(withlipophiliccompounds,organicphase).Toobtaindryextracts,theaqueous phasewaslyophilizedovernightandtheorganicphaseremovedusingaspeedvacuumconcen- trator.Extractswerestoredat-80˚Cuntilsamplepreparationforthe1H-NMRexperiments. 1H-NMRexperiments Frozencellpelletswereplacedoniceandallowedtothawfor5min.Totheaqueousphasewas solubilisedin550μLofphosphatebuffer(100mMNa HPO pH7.4,inD O)containing0.1 2 4 2 mMofdeuteratedtrimethylsilylpropanoicacid(TSP-D4).Theorganicextractwasdissolved in550μLofcolddeuteratedchloroform(CDCl with0.03%trimethylsilylpropanoicacid, 3 TMS).Sampleswerestoredat4˚C,equilibratedatRTfor15minbeforeanalysisandanalysed thesameday.1H-NMRspectraofextractswererecordedat27˚ConaBrukerAVII600MHz spectrometerusinga5mmTCIcryoprobeandprocessedusingTopspin3.2software(Bruker GmbH,Karlsruhe,Germany).1H1DnoesyNMRspectrawereacquiredwith256freeinduc- tiondecays(FIDs),64kdatapoints,aspectralwidthof30ppmandarelaxationdelayof4s. Waterpresaturationwasappliedforaqueoussamples.TheFIDvaluesweremultipliedbyan exponentialfunctionwitha0.5Hzlinebroadeningfactor.TotalCorrelationSpectroscopy (TOCSY)andmultiplicityHeteronuclearSingleQuantumCorrelation(HSQC)wereper- formedonrepresentativesampleswith256–512t1increments,32–96transientsandarelaxa- tiondelayof1.5s.TOCSYspectrawererecordedusingastandardMLEV-17pulsesequence withmixingtimes(spin-lock)of65ms. Synthesisandcharacterizationofgold-chitosannanoparticles(AuChi) AuChinanoparticlesweresynthesizedaspreviouslyreported[60].Briefly,200mgoflow molecularweightchitosanwereaddedto100mLofmiliQwatercontaining1%ofaceticacid. Then,themixturewasheatedat90˚Cwithvigorousstirringuntilcompletedissolutionofchit- osan.Subsequently,1.3mLofa9.6mMHAuCl x3H Oaqueoussolutionwasaddedslowly 4 2 tothechitosansolutionandthemixturewasstirredfor5min.Afterward,250μLofa0.1M sodiumcitratesolutionwasaddedandthemixturewasstirredforanother5min.Later,the mixturewasquicklycooledinawater-icebath.Then,thesolutionwasfilteredthrougha 0.22μmcellulosefilterandcharacterized.Thehydrodynamicsizeandthezetapotentialwere determinedbydynamiclightscattering(DLS)(ZetasizerNanoZS(MalvernInstrument, UK)).Thegoldnanoparticlesizewasdeterminedbyhighresolutiontransmissionelectron microscopy(HR-TEM)(PhilipsCM300FEG100kV).Finally,thecontentofgoldwasdeter- minedbyinductivelycoupledplasma(ICP)(Varian715-ESICP-Plasma). PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 5/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach Synthesisandcharacterizationofgold-ceriananoparticles(AuCeO ) 2 AuCeO nanoparticlesweresynthesizedfollowingaprotocolpreviouslydescribedbyour 2 group[59].Briefly,200mgofHAuCl x3H Oweredissolvedin40mLofdistilledwaterat 4 2 RT.Then,asolutionof0.2MNaOHwasaddeduntilpH=10whilethemixturewasstirred vigorously.OncethepHwasstable,asuspensionof1.0gCeO in13mLofdistilledwaterwas 2 addedslowly,adjustingthepHofthemixtureto10with0.2MNaOH.WhenthepHwassta- ble,themixturewasstirredvigorouslyovernight.Afterthat,thedispersionwasfilteredand washedwithseverallitresofdistilledwateruntilnotracesofchloridesweredetectedbythe AgNO test.Then,thesolidwaswashedwith2x100mLofacetone,driedandplacedinafur- 3 nace.ThesamplewasthenheatedfromRTto300˚Catarateof8˚C/minduring4.5h,inpres- enceofH .Afterthat,thefurnacewasshutdownuntilreachingroomtemperature.Then, 2 nanoparticlesweredissolvedonPBSandtheresultantsolutionwasfilteredthrougha0.22μm cellulosefilter.ThegoldnanoparticlesizewasdeterminedbyHR-TEM(PhilipsCM300FEG 100kV).ThehydrodynamicsizeandzetapotentialofthesolidwereanalyzedbyDLS(Zetasi- zerNanoZS(MalvernInstrument,UK)).Finally,thecontentofgoldwasdeterminedbyICP (Varian715-ESICP-Plasma). Dataanalysisandstatistics 1H-NMRspectraweretransformedwitha0.5line-broadening,andmanuallybaselineand phasecorrectedwithTopspin3.2.NMRsignalsofTSP-D (polarspectra)andTMS(non-polar 4 spectra)werereferencedto0ppm.Formetaboliteidentification,the1Hand13Cchemicalshift valuesandmultiplicityofthesignalswerecomparedwithreferencedatafromthespectraldata- basesHumanMetabolomeDatabaseandtheBiologicalMagneticResonanceBankandseveral literaturereports[29,71,72].TheassignmentNAD,NADH,NADP,NADPH,ATP,ADP,acet- oacetateandsarcosine,wasconfirmedbyspikingthesamplewithreferencecompounds.Spec- trawerenormalizedtototalintensitytominimizethedifferencesinconcentrationand experimentalerrorduringtheextractionprocess.Optimalintegrationregionsweredefinedfor eachmetabolite,tryingtoselectsignalswithoutoverlapping.Integrationwasperformedwith MestreNova8.1utilizationtheGSDdeconvolutionoption.Inthestudywithgold-nanoparticle treatments,p-valueswerecalculatedwiththenon-parametricMann-WhitneyUtestwithIBN SPSSstatistics21.PathwayanalysiswasperformedwithMetaboanalyst[73]. Resultsanddiscussion Optimisationofbloodcellisolation,treatmentandmetaboliteextraction Aprotocolfortheisolationofthedifferenthumanbloodcelltypesandtheirmetaboliteswas initiallyoptimized.Tothisend,peripheralbloodwasextractedfromhealthyindividualsand thethreemayorbloodcellfractions(RBCs,PMNsandPBMCs)wereseparated.Twodifferent methodsweretestedforevaluatingtheseparationofthedifferentfractions:theFicoll-Paque gradientmethod,anddextranfollowedbytheFicoll-Paquegradientmethod.Nosignificant differencesinthequalityofthemetabolomicprofileobtainedusingbothprocedureswere found.Therefore,theFicoll-Paquegradientmethodwasselectedforitssimplicityandminimal samplehandling.Anotherimportantfactortoconsideristhaterythrocytesareparticularly fragile,sotheymustbecentrifugedatalowerspeedwithoutaccelerationorbraking. Afterachievingphaseseparation,cellsweresubmittedtotreatmentwithnanoparticles(see detailsintheSupplementaryInformation).Threedifferentconcentrationsofcellsweretested: 30,15and5M/mL.Agglomerationandcelldeathwasobservedatthetwohigherconcentra- tions(30and15M/mL),butnotatthelowestconcentration(5M/mL).Finally,cellswere PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 6/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach harvestedandsubjectedtoanextractionprocesswithmethanol,chloroformandwater,a methodthathadbeensuccessfullyappliedinpreviousmetabolomicsstudies[74].Thisprocess isextremelysensitivetotheeliminationofmetabolitesfromthemediumthatcouldinterfere withtheanalysis,aprocessthatwasachievedbywashingwithPBS.Furthermore,coldmetha- nol(-20˚C)wasaddedtoeffectivelyquenchthemetabolismofcells.Solventamountswere optimisedto500μLmethanol(addeddirectlyaftercellharvesting),650μLofchloroform (addedintwotimes,beforeandaftercellbreakage)and400μLofwater(addedaftercell breakage,toavoidice-buildingduringthefreeze-thawcycles)per20millioncells.Smallersol- ventvolumesproducedpoorerextractionsyieldsandalessefficientphaseseparation,while biggervolumesshowednoimprovement.Asaresultoftheextraction,twodifferent,aqueous andorganic,fractionswereobtainedwithpolarandnon-polarmetabolites,respectively.For theNMRanalysis,cellextractsweredriedandlaterondissolvedindeuteratedsolventsto improvespectrumquality,whichcontainedinternalstandards(forquantification),andwere bufferedintheaqueousphase(forpHcontrol).ThewholeprocessissummarisedinFig1. MetabolicprofileofRBCs,PMNs,andPBMCsbloodcells 1H-NMRspectracorrespondingtotheaqueousandorganicextractsofthethreeperipheral bloodcelltypesareshowninFig2.Adetailedassignmentofthedifferentspectrawasper- formedbasedonthe1Dand2D-NMRspectraacquiredinthisstudy,aswellasthegeneral informationavailablefrompublicdatabases,sincenoexhaustiveinformationregardingthe metaboliccontentofthesebloodcellscouldbefoundintheliterature.Thus,itwaspossibleto identifymorethan80differentpolarandnon-polarmetabolites,orfunctionalgroups(Fig2). Themainmetabolitesidentifiedintheaqueousphasewereaminoacids,sugars,organicacids andnucleotides,whereasintheorganicfractionitwaspossibletoidentifydifferenttypesof lipids,suchasmonoandpolyunsaturatedlipids,di-andtriglycerols,phospholipids,aswellas cholesterol.Thisisthefirsttimethatthemetabolicprofileofdifferentkindofbloodcellshas beensystematicallydeterminedbyNMR,andtheresultsarecoherentwithdataobtainedin previousstudiesusingGC-MSandLC-MS[75,76]. Itshouldbestressedthateachcelltypehadaspecificmetabolomicprofile.RBCs,for instance,exhibitedlargeamountsoflactate,glucose,glutathione,ATP/ADP,ascorbicacid, creatineandphospholipids.Thepresenceofseveralofthesemetaboliteshasbeenpreviously describedinRBCsbyothertechniques,andtheirlevelalterationsareassociatedwithdiseases suchassicklecell,Alzheimer’sdisease,Wilson’sdiseaseoranaemia[77–81].BothPMNsand PBMCsleukocytescontainedverylargeamountsofglycerol,acompoundthat,amongother functions,isavitalosmoprotectiveagentforcellsinsuspension.Thelevelsofmetabolitessuch asglucose,pyruvateandsuccinatewerehigherinPBMCsthaninPMNs,perhapsreflecting theimportanceofoxidativebioenergeticmetabolismoflymphocytes(mainfractionof PBMCs)underbasalconditions[82].Moreover,ithasbeendemonstratedthatthebioener- geticmetabolismofneutrophils(mainfractionofPMNs)ismainlyglycolytic[82].Accord- ingly,lactateconcentrationsweresignificantlyhigherinthisbloodcelltype. Insummary,metabolomicsprofilesobtainedby1H-NMRproviderelevantinformationof thespecificmetabolismassociatedwitheachcelltype,thatcouldbeextremelyusefulfroma clinicalpointofview. EffectofnanoparticletreatmentonthemetabolicprofileofRBCs,PMNs, andPBMCs Onceareliableprotocolforevaluatingthemetabolomicprofileofeachcelltypewasestab- lished,weevaluateditspossibleapplicationinnanomedicine.Tothisend,theeffectscaused PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 7/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 8/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach Fig1.Strategyforperipheralbloodcellisolation(PBMCs,PMNsanderythrocytes),nanoparticletreatment,polarandno-polar metaboliteextraction,and1H-NMRanalysis.PBMCs,PMNsanderythrocytessampleswereisolatedfromperipheralbloodof healthyhumanindividuals.Samplesofeachcelltypeweresplitanaliquot(20millioncells)forcharacterization(a),andanotheraliquot (40millioncells)fornanoparticletreatments(b).Finally,polarandnonpolarwereextractedandthe1H-NMRmetabolicprofiles determined(c). https://doi.org/10.1371/journal.pone.0182985.g001 bychitosan-cappedgoldnanoparticles(AuChi)andgoldnanoparticlesstabilisedoncerianano- particles(AuCeO ),twopromisingtypeofgoldnanoparticlesforbiomedicine,wereassessed.A 2 detailedphysicalcharacterizationofbothnanoparticlesrevealedmeansizes,determinedby HR-TEM,of5.65nm(AuChi)and5.90nm(AuCeO )(S1File,FigAandD,respectively). 2 Moreover,zetapotentialsof+17mV(AuChi)and-19mV(AuCeO ),aswellashydrodynamic 2 sizesof205nm(AuChi)and133nm(AuCeO ),thatareoptimalvaluesforbiomedicalapplica- 2 tions,weredeterminedbyDLS(S1File,FigBandC,respectively).Finally,thegoldcontentof bothnanoparticles,characterizedbyICP,was1.2%(AuChi)and0.8(AuCeO ).Pictorialrepre- 2 sentationsofthetwo-particlesystemscanbefoundinFig3.Thenon-toxicityofthenanomater- ialswasconfirmedwithanMTT-assay(S2File). Apilotstudywasthenconductedtoevaluatetheimpactofbothnanoparticlesineachcell type.Thus,bloodwasextractedfromhealthyvolunteersandsubjectedtothepreviously describedprotocol(Fig1).Toevaluatetheeffectthatthecoatinghadonthebloodcells,con- trolexperimentswithcommercialchitosanandCeO werealsocarriedout.Therepresentative 2 1H-NMRspectraofRBCs,PMNsandPBMCsfromfreshlyperipheralhumanbloodafter beingexposedfor24htoAuChi,AuCeO andthevehicleareshowninFig3.Significantdif- 2 ferencesinthemetabolomicprofilesofbloodcellsaftertreatmentwithbothnanomaterials weredetected,asshowninTables1–3andTablesA–CinS3File.Togetanoverviewofthe affectedpathways,pathwayanalysiswasperformedwiththeprogrammetaboanalyst,using metabolitesthatchangesignificantlyasinputdata(FigAtoFinS4File).Ingeneral,itwas foundthatthemetabolicchangesinducedbyAuChiwerelesspronouncedthanthoseassoci- atedwithAuCeO .ThisresultisinagreementwithpreviousstudiesindicatingalowerAuChi 2 toxicitycomparedwithAuCeO [59,67,68].Interestingly,itwasalsofoundthatthemetabolic 2 impactofthenanoparticleswascell-typespecific,anindicationoftheexistenceofdifferent mechanismofactionsofthenanoparticlesineachbloodcelltype. Theantioxidanteffectofnanoparticles,asindicatedbyanincreaseintheGSH/GSSGratio aftertreatmentwithAuChinanoparticles,wasbetterreflectedinPMNcellsastheycontaina largenumberofmitochondriaasothercelltypes.Simultaneously,adropinlactatewas observed,probablyreflectingareducedglucoseconversion(mainenergysourceinneutro- phils)intolactate,inparallelwithanincreasedinsertionofpyruvateintotheoxidativecitric acidcycle.Thesecellshavebeenreportedtouseglycerol-phosphateforenergyproductionin mitochondria[83].Thus,antioxidantmaterialscouldhaveactivatedglycerol-phosphateoxida- tioninmitochondria,aprocessthatwouldexplaintheobservedreductionofglycerollevels.In thissituation,theobservedincreaseofbetainelevels,aknownosmolyte,couldcompensatethe decreaseofgycerollevels[84].Anotherimportantobservationwasthedecreaseinglutamine levels,revealinganalterationinglutaminolysis,aprocessthatoccursathighratesinimmune systemcells[83]. Ingeneral,theantioxidantimpactofthenanoparticleswaslesspronouncedinPBMCcells thaninPMNcells,anindicationperhapsofthefactthatlymphocytesalreadyrelyonanoxida- tivemetabolismforenergyproduction.Alsointhiscase,adropinglycerolandanincreasein betaineuponAuChitreatmentwereobserved,buttheseeffectsdidnottakeplaceforAuCeO . 2 Thedecreaseinphosphocholinederivatives,glycerides(AuChi)andMUFA,PUFAand PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 9/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach Fig2.1H-NMRspectraoferythrocytes,PMNsandPBMCs.Polar(a)andnonpolar(b)1H-NMRmetabolomic profilesofextractsofthemaintypesofperipheralbloodcells.Metaboliteassignmentsareindicatedwiththefollowing numbers:1)2-hydroxybutyrate,2)leucine,3)valine,4)ethanol,5)lactate,6)2-aminoisobutyrate,7)alanine,8)lysine,9) acetate,10)glutamate,11)reducedglutathione(GSH),12)oxidizedglutathione(GSSG),13)pyroglutamate,14) pyruvate,15)succinate,16)glutamine,17)creatine,18)phosphocreatine,19)malonate,20)spermidine/spermine,21) PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 10/19
Description: