ebook img

Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling with 1H PDF

19 Pages·2017·5.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling with 1H

RESEARCHARTICLE Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling 1 with H-NMR spectroscopy, a novel translational approach on a patient-specific basis MartinaPalomino-Scha¨tzlein1*,HermenegildoGarc´ıa2,PatriciaGutie´rrez-Carcedo3, a1111111111 AntonioPineda-Lucena1,4,Jose´RaulHerance3* a1111111111 a1111111111 1 LaboratoriodeBioqu´ımicaEstructural,CentrodeInvestigacio´nPr´ıncipeFelipe,Valencia,Spain,2 Instituto UniversitariodeTecnolog´ıaQu´ımicaCSIC-UPV,Valencia,Spain,3 GrupdeRecercaenImatgeMèdica a1111111111 Molecular,Valld’HebronResearchInstitute,CIBBIM-Nanomedicine,DepartamentdeMedicina,Universitat a1111111111 AutònomadeBarcelona,Barcelona,Spain,4 UnidaddeDescubrimientodeFa´rmacos,Institutode Investigacio´nSanitariaLaFe,HospitalUniversitarioiPolite´cnicoLaFe,Valencia,Spain *[email protected](JRH);[email protected](MPS) OPENACCESS Abstract Citation:Palomino-Scha¨tzleinM,Garc´ıaH, Gutie´rrez-CarcedoP,Pineda-LucenaA,HeranceJR (2017)Assessmentofgoldnanoparticleson Humanperipheralbloodcellsarerelevantexvivomodelsforcharacterizingdiseasesandeval- humanperipheralbloodcellsbymetabolicprofiling uatingthepharmacologicaleffectsoftherapeuticinterventions,astheyprovideaclosereflec- with1H-NMRspectroscopy,anoveltranslational tionofanindividualpathophysiologicalstate.Inthiswork,anewapproachtoevaluatethe approachonapatient-specificbasis.PLoSONE12 impactofnanoparticlesonthethreemainfractionsofhumanperipheralbloodcellsbynuclear (8):e0182985.https://doi.org/10.1371/journal. pone.0182985 magneticresonancespectroscopyisshown.Thus,acomprehensiveprotocolhasbeenset-up includingtheseparationofbloodcells,theirinvitrotreatmentwithnanoparticlesandtheextrac- Editor:AbhijitDe,AdvancedCentreforTreatment ResearchandEducationinCancer,INDIA tionandcharacterizationofmetabolitesbynuclearmagneticresonance.Thismethodwas appliedtoassesstheeffectofgoldnanoparticles,eithercoatedwithchitosanorsupportedon Received:March15,2017 ceria,onperipheralbloodcellsfromhealthyindividuals.Aclearantioxidanteffectwasobserved Accepted:July27,2017 forchitosan-coatedgoldnanoparticlesbyasignificantincreaseinreducedglutathione,that Published:August9,2017 wasmuchlesspronouncedforgold-ceriumnanoparticles.Inaddition,theanalysisrevealed Copyright:©2017Palomino-Scha¨tzleinetal.This significantalterationsofseveralotherpathways,whichwerestrongerforgold-ceriumnanopar- isanopenaccessarticledistributedunderthe ticles.Theseresultsareinaccordancewiththetoxicologicaldatapreviouslyreportedforthese termsoftheCreativeCommonsAttribution materials,confirmingthevalueofthecurrentmethodology. License,whichpermitsunrestricteduse, distribution,andreproductioninanymedium, providedtheoriginalauthorandsourceare credited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation Introduction files. Bloodcellsareinterestingexvivomodelstostudythepathophysiologicalstateofdiseases,and Funding:Thepresentworkwassupportedby topredictthebeneficialortoxiceffectpromotedbynewtherapies,withahightranslationality grantsCP13/00252andPI16/02064fromCarlosIII toclinicalstudiesbyconsideringthepatient’sspecificcharacteristics.Thereasonisthefact HealthInstituteandbytheEuropeanRegional thatbloodcellsarealteredindiseaseandcanreflecttheconditionandstateofdifferentorgans DevelopmentFund(ERDF)andthegrantSAF2014- 53977-RfromtheMinistryofEconomy,Industry andtissues[1].Thus,thestudyoftheinteractionofbloodcellswithmedicinescanprovideus PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 1/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach andCompetitiveness.Inaddition,JRHisrecipient withanearlyindicationoftheeffectofacertaintherapyonthehumanbody.Forinstance, ofaMiguelServetIcontractfromtheMinistryof erythrocytesorredbloodcells(RBCs)havebeenusedasdiseasemodelsforassessingdrugsas HealthoftheCarlosIIIHealthInstitute.Thefunders theyaresensitivetomanydisorders,includingdiabetes,Wilson’sdiseaseandAlzheimer’sdis- hadnoroleinstudydesign,datacollectionand ease[2–5].Moreover,neutrophilshavebeenanalysedtoobtaininformationaboutthediagno- analysis,decisiontopublish,orpreparationofthe sis,mechanismofactionandtherapyofdifferentdiseases,suchastuberculosis,malaria, manuscript”insteadof“Thepresentworkwas supportedbygrantsCP13/00252andPI16/02064 allergicreactionsortumours[6–12].Furthermore,lymphocyteshaveshowntobealteredin fromCarlosIIIHealthInstitute,andbythe lungdiseases,inflammatoryprocessesleadingtoallergicdiseases,duringatheroscleroticpla- EuropeanRegionalDevelopmentFund(ERDF).In quedevelopment,incardiovasculardiseasesandduringtumourprogression[13–20]. addition,JRHisrecipientofacontractfromthe Metabolomicprofilingisacomprehensivemethodthatallowsthequantificationofalarge MinistryofHealthoftheCarlosIIIHealthInstitute. numberofdifferentmetabolitesinasingleanalysisinanon-targetedwaythatcanprovideuse- Thefundershadnoroleinstudydesign,data collectionandanalysis,decisiontopublish,or fulinformationtostudydiseaseandtheeffectoftreatments.[21–24]Protonnuclearmagnetic preparationofthemanuscript. resonance(1H-NMR)spectroscopyhasprovenfastandreproducibleforobtaininggoodqual- itystructuralandsemi-quantitativeinformationaboutthemetabolomeofcells[21,25].Meta- Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. bolicprofilingofcellshasbeenpreviouslyappliedtoawiderangeofinvitromodelstohelp gaininsightintobasicanddiseasemetabolisms,especiallyincombinationwithgenomicsand/ orproteomicsdata[26].Althoughsomestudiesaboutthemetabolicprofileofbloodcellscan befound,toourknowledge,verylimiteddataaboutbloodcellanalysisbyNMRspectroscopy frompatientsavailable[27–35].Theanalysisofthemetabolicprofileofbloodcellscouldnot onlyprovideamethodforidentifyingnewbiomarkersfordiseasediagnosis,butalsoforin vivoevaluatingtheeffectsofnewtherapeutictreatments(e.g.,nanomedicines)atapatient level[22–24]. Nanomedicineistheapplicationofnanotechnologicalsystemstomedicine.Theimpactof thistechnologyhasaugmenteddramaticallyoverthelastfewyearsduetoitsapplications (drugdelivery,preventionofdrugmetabolisation,diagnosticagent,etc.)[36,37].Thankstoits advantages,todateseveralnanometricsystemshavebeenapprovedforhumanuse,andmore than240areindifferentclinicaltrialphases.Thissituationcreatestheneedtoimplementa widerrangeofmethodologicaltoolstooptimizethedesignofnewnanomaterialsinearly stagesoftheirdevelopmentandtoassesstheireffectduringclinicaltrials[38].Bloodisoneof thefirstenvironmentsthatcomesintocontactwithananomedicinewhenitisinjectedor whenitentersthebloodstreamviaotheradministrationtypes,whichmakesthestudyofthe interactionofnanoparticleswithdifferentbloodcomponentshighlyrelevant.Comprehensive studieshavebeenreportedontheeffectofnanomaterialsonboththeimmuneandcoagulating systems.Theyincludetheanalysisoftheimpactofthesecompoundsonthemorphology,cell cycleandproliferationofdifferenttypesofbloodcells[39–44].Indeed,newnanomaterialsare designedtomakethisinteractionascontrolledandadvantageousaspossible,andbloodcells haveevenbeenemployedascarriercellsfornanoparticlestoreachtheirdestinymoreeffi- ciently[45,46].Inthiscontext,thefocusofourstudywastoevaluatethepotentialofmetabolo- micsbyNMRtocharacterizethemetabolicprofileofperipheralbloodcellsbeforeandafter treatmentwithnanoparticles.Totestourapproach,wehavechosengoldnanoparticlesas modelsystems,becausetheyareoneofthemostpromisingnanomedicines,thathavebeen suggestedforawiderangeofdifferentapplications;e.g.,medicalimagingandtherapiesincan- cer,neurodegenerativediseasesordiabetes[47–58].Oneofitsmostpromisingpropertiesisits capacitytoeliminateanexcessofoxidantspeciesgeneratedinstresssituations(antioxidant behavior),whichisbeneficialformanybiomedicalapplications.Mostoftheseapplications involveadirectcontactwithperipheralblood,whoseimpactcanbeevaluatedbyourmethod. Severalapproacheshavebeenproposedtomaintainthestructureofgoldasnanoparticles andtopreventagglomerationbyadjustingtheirpropertiesforbiomedicalapplications.For instance,toincreasetheirbiocompatibilityandactivityagainstoxidativestress,goldnanopar- ticleshavebeensupportedonceriananoparticlesorassembledinchitosan[59–63].Awide PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 2/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach rangeofdifferentmedicalapplications,includingglucosesensors,antifilarialandantibacterial agents,havebeenproposedforthesemodifiedgoldnanoparticles,howevernoneofthemhas enteredclinicaltrialsyet.Bothmaterialshavetheiradvantagesanddisadvantages,forinstance, ceriaparticlesaresolubleatphysiologicalpH,whichisnotalwaysthecaseformaterialscoated withchitosan,thatsometimesneedanacidpHathigherconcentrations.Ontheotherhand, ceriamaterialscanagglomerateorformcrownswithproteins,compromisingtheirbio-distri- bution,withisminimizedinchitosanderivedmaterials.Toourknowledge,noapoptotictoxic- ityhasbeendescribedforeitherofthesegoldnanoparticles.However,nocoherentinformation canbefoundabouttheireffectoncellviabilityandproliferation.Whilesomeworkshavefound noimpactinthisregard,otherstudieshavedescribedasignificantreductionincellviability andproliferationforbothmaterials[59,64–68].Thereasonforthesedivergentresultsmaybe variationinthesize,shapeornetchargeofnanoparticles,importantfeaturesthanhavebeen welldescribedtocausedifferenteffectsoncells[69].Inthiscontext,thedevelopmentofnew biomedicalmethodologiestomonitoreffectsofnanoparticles,whichcanprovideabetter understandingofthemechanismrelatedtocertaintherapeuticand/ortoxiceffects,maycon- tributetotheoptimizeddesignofthesematerials.Specifically,inthecaseoffunctionalizedgold nanoparticles,forwhichawiderangeclinicalapplicationshavebeenproposedthatarewaiting tobetransferredtoclinics,apreviousevaluationstepoftheireffectonperipheralbloodcells couldprovideafastandeffectivefilterbeforestartinganyclinicaltrial. Inourwork,wefirstoptimizedaglobalprotocoltoanalyzethemetabolicprofileofthe threemaintypesofbloodcells(erythrocytes,polymorphonuclearleukocytes(PMNs)and mononuclearleukocytes(PBMCs))thatcanbeisolatedinparallelfromonepatientsample. Thecellfractionsfromdifferenthealthyvolunteers(n=4)werethenseparatelyexposedto nanoparticlesbasedongold,andstabilisedonceriananoparticlesorchitosan,withantioxidant properties.Themetabolomicprofileofthetreatedcellswasthereuponcomparedwiththepro- fileoftheuntreatedcontrolcells.Withthisproofofconcept,weintendedtoshowthatsystem- aticmetabolicchangescanbedetectedinperipheralhumanbloodcellsaftertreatmentwith nanoparticles.Thisinformationcancontribute,togetherwithothertoxicologicalstudiesor therapeuticdata,toevaluatenewnanomedicinesinpreclinicalphasesfromatranslational pointofview,establishingaprecedentinthisfield. Materialsandmethods Chemicalsandmaterials Solventsandreagentswerepurchasedfrom:Sigma-Aldrich(Ficoll-PaquePlus,Ficoll-Paque Plus,PBS,fetalbovineserum,penicillin,streptomycin,amphotericinB,L-glutamine,chitosan, HAuCl ,sodiumcitrate,AgNO ,sodiumphosphatedibasicdihydrate),Scharlab(methanol, 4 3 chloroform,acetone,sodiumhydroxide),Gibco(RPMI1640medium),Rhodia(CeO ),and 2 Eurisotop(deuteratedwater,deuteratedchloroform,deuteratedtrimethylsilylpropanoicacid, trimethylsilane).MaterialswerepurchasedfromScharlab,LifeTechnologies,andFalconBD. GasesweresuppliedbyAir-Liquide. Humansubjects Theinclusioncriteriawereasfollows:Caucasianhealthymales(2)andfemales(2),35–40 years,noalcoholics,nosmoker,andnofamiliarwithpreviouschronicdiseases.Allpartici- pantswererecruitedattheOutpatient’sDepartmentoftheEndocrinologyServiceatVall d’HebronUniversityHospital.Thestudywasconductedaccordingtotheguidelineslaiddown intheDeclarationofHelsinki,andallprocedureswereapprovedbytheEthicsCommitteeof PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 3/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach Valld’HebronUniversityHospital.Subjectshavebeenproperlyinstructedandhaveindicated thattheyconsenttoparticipatebysigningtheappropriateinformedconsentpaperwork. Humanperipheralbloodcellsisolation Theisolationoferythrocytes,PMNsandPBMCsleukocyteswascarriedoutusingaFicoll- Paquegradientmethod[70].20mLofperipheralbloodfreshlyextractedfromhealthyvolun- teerswascarefullypouredintoatubewith40mLofFicollandletstandforapproximately20 min,obtaining3phases.Theupperringconsistedofleukocyteswhileerythrocytesconcen- tratedasapelletatthebottom.Theleukocyteringwascarefullytransferredinatubewiththe samevolumeofFicoll,avoidingmixingand,subsequently,centrifugedat300gfor25minat 20˚C.ApelletofPMNscellsandanintermediateringwithPBMCscellswereisolatedsepa- ratelythroughthefollowingmethodology.FortheisolationofPBMCs,thePBMCsringwas transferredtoatubewiththesamevolumeofPBSandcentrifugedat300gfor5minat20˚C during5min.ThesupernatantwasdiscardedandthepelletcontainingthePBMCswaskept onice.FortheisolationofPMNs,thepelletofPMNs,containingremaindersoferythrocytes, wastreatedfor5minwith1mLoferythrocytelysisbuffer.Subsequently,themixturewascen- trifugedat300gfor5minat20˚Candthesupernatantwasdiscarded.Theresultingpelletwas resuspendedinthesamevolumeofPBSandcentrifugedat300gfor5minat20˚C.Thesuper- natantwasdiscardedandthepelletcontainingthePMNswaskeptonice.Fortheisolationof erythrocytes,theerythrocytepelletwastransferredtoatubewiththesamevolumeofPBSand centrifugedat200gfor5minat4˚Cwithoutaccelerationandbrake.Thesupernatantwasdis- cardedandtheerythrocytepelletwaswashedwithPBSagain.Finally,afterdiscardingthe supernatant,thepelletcontainingtheerythrocyteswaskeptonice. Theresultantpelletofalltheperipheralbloodcellswere:i)fordirectmetabolomicanalysis, washedwithPBSagainandfinallystoredat-80˚Cafteradding0.5mLofice-coldmethanol (for20millioncells)orii)fortreatmentwithnanoparticles,resuspendedin1mLofcomplete RPMI1640mediumforcellcountinganddilutedinmoreRPMI1640untilobtainingasolu- tionof5millioncells/mL(M/mL) Treatmentofbloodcellswithnanoparticles TwentymillionPMNsandPBMCs,and40millionerythrocytesweretransferredtocellculture flasksataconcentrationof5M/mLinaTelstarBIOLaminarflowcabinet.Cellswerecultured inaRPMI1640mediumconsistingof10%fetalbovineserum(FBS),1%ofantibioticmixture (50μg/mLPenicillin,50μg/mLStreptomycin),1%(2.5μg/mL)AmphotericinBand2.05% L-Glutamine.Toaddthenanomaterials,thefollowingprocedureswerecarriedout:a)AuCeO : 2 a1mg/mLdispersionofAuCeO inwaterwasprepared,andthendilutedto20μg/mLwith 2 medium.ThepHwasreadjustedto6.5with0.1Mofaceticacid.b)AuChi:a1mg/mLsolution ofAuChiin0.1%aceticacidwasprepared,andthendilutedto20μg/mLwithmedium.ThepH wasreadjustedto6.5with0.1MofNaOH.Forcontrolsamples,thepHofthemediumwas directlyadjustedto6.5with0.1Mofaceticacid.FlaskswerethenincubatedinanIGO150 (Jouan,Saint-Herblain,France)incubatorduring24hwithoutstirringat37˚Cand5%ofCO . 2 Afterincubationwiththedifferenttreatments,thecontentofeachflaskofcellswastransferred toafalcontubeandtheremainingcellswerescrapedoffinPBSandaddedtothetube.Leuko- cytecellswerecentrifugedat300gand20˚Cduring5minanderythrocytesat200gand4˚C during10minwithoutaccelerationandbrake.Supernatantswerethendiscarded,thepellets resuspendedinthesamevolumeofPBSandcentrifugedagainunderthesameconditions. Then,leukocytescellswerecentrifugedat11000gand20˚Cduring5minanderythrocytesat 200gand4˚Cduring10min.Supernatantswerediscarded,0.5mLofice-coldmethanolwas PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 4/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach addedtothepellets,thatwerestoredat-80˚Cuntilperformingtheextractionfor1H-NMR analysis. Extractionofpolarandnonpolarmetabolitesfor1H-NMRexperiments Frozensampleswereplacedonice,allowedtothatfor5min,andthensubjectedtoanextrac- tionprocedure.Then,250μlofchloroformat4˚Cper20millioncellswereaddedtothecorre- spondingpelletsandletstandfor30min.Sampleswerethenhomogenizedwithavortex,cells resuspendedwithapipetteandtransferredtoa1.5mltube.Foruniformcellbreakage,samples weresubmittedtothreefreeze-thawcycleswithliquidnitrogen.Then,400μLofdistilledwater and400μLofchloroformwereaddedtoeachsamplewhichthenwasvortexed.Sampleswere thencentrifugedat13000gfor20minat4˚Ctoseparatephases.Thesolutionwasseparated intoanupperwater/methanolphase(withpolarmetabolites,aqueousphase),aninterphase containingmainlyproteins,DNA/RNAandcellmembranes,andalowerchloroform/metha- nolphase(withlipophiliccompounds,organicphase).Toobtaindryextracts,theaqueous phasewaslyophilizedovernightandtheorganicphaseremovedusingaspeedvacuumconcen- trator.Extractswerestoredat-80˚Cuntilsamplepreparationforthe1H-NMRexperiments. 1H-NMRexperiments Frozencellpelletswereplacedoniceandallowedtothawfor5min.Totheaqueousphasewas solubilisedin550μLofphosphatebuffer(100mMNa HPO pH7.4,inD O)containing0.1 2 4 2 mMofdeuteratedtrimethylsilylpropanoicacid(TSP-D4).Theorganicextractwasdissolved in550μLofcolddeuteratedchloroform(CDCl with0.03%trimethylsilylpropanoicacid, 3 TMS).Sampleswerestoredat4˚C,equilibratedatRTfor15minbeforeanalysisandanalysed thesameday.1H-NMRspectraofextractswererecordedat27˚ConaBrukerAVII600MHz spectrometerusinga5mmTCIcryoprobeandprocessedusingTopspin3.2software(Bruker GmbH,Karlsruhe,Germany).1H1DnoesyNMRspectrawereacquiredwith256freeinduc- tiondecays(FIDs),64kdatapoints,aspectralwidthof30ppmandarelaxationdelayof4s. Waterpresaturationwasappliedforaqueoussamples.TheFIDvaluesweremultipliedbyan exponentialfunctionwitha0.5Hzlinebroadeningfactor.TotalCorrelationSpectroscopy (TOCSY)andmultiplicityHeteronuclearSingleQuantumCorrelation(HSQC)wereper- formedonrepresentativesampleswith256–512t1increments,32–96transientsandarelaxa- tiondelayof1.5s.TOCSYspectrawererecordedusingastandardMLEV-17pulsesequence withmixingtimes(spin-lock)of65ms. Synthesisandcharacterizationofgold-chitosannanoparticles(AuChi) AuChinanoparticlesweresynthesizedaspreviouslyreported[60].Briefly,200mgoflow molecularweightchitosanwereaddedto100mLofmiliQwatercontaining1%ofaceticacid. Then,themixturewasheatedat90˚Cwithvigorousstirringuntilcompletedissolutionofchit- osan.Subsequently,1.3mLofa9.6mMHAuCl x3H Oaqueoussolutionwasaddedslowly 4 2 tothechitosansolutionandthemixturewasstirredfor5min.Afterward,250μLofa0.1M sodiumcitratesolutionwasaddedandthemixturewasstirredforanother5min.Later,the mixturewasquicklycooledinawater-icebath.Then,thesolutionwasfilteredthrougha 0.22μmcellulosefilterandcharacterized.Thehydrodynamicsizeandthezetapotentialwere determinedbydynamiclightscattering(DLS)(ZetasizerNanoZS(MalvernInstrument, UK)).Thegoldnanoparticlesizewasdeterminedbyhighresolutiontransmissionelectron microscopy(HR-TEM)(PhilipsCM300FEG100kV).Finally,thecontentofgoldwasdeter- minedbyinductivelycoupledplasma(ICP)(Varian715-ESICP-Plasma). PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 5/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach Synthesisandcharacterizationofgold-ceriananoparticles(AuCeO ) 2 AuCeO nanoparticlesweresynthesizedfollowingaprotocolpreviouslydescribedbyour 2 group[59].Briefly,200mgofHAuCl x3H Oweredissolvedin40mLofdistilledwaterat 4 2 RT.Then,asolutionof0.2MNaOHwasaddeduntilpH=10whilethemixturewasstirred vigorously.OncethepHwasstable,asuspensionof1.0gCeO in13mLofdistilledwaterwas 2 addedslowly,adjustingthepHofthemixtureto10with0.2MNaOH.WhenthepHwassta- ble,themixturewasstirredvigorouslyovernight.Afterthat,thedispersionwasfilteredand washedwithseverallitresofdistilledwateruntilnotracesofchloridesweredetectedbythe AgNO test.Then,thesolidwaswashedwith2x100mLofacetone,driedandplacedinafur- 3 nace.ThesamplewasthenheatedfromRTto300˚Catarateof8˚C/minduring4.5h,inpres- enceofH .Afterthat,thefurnacewasshutdownuntilreachingroomtemperature.Then, 2 nanoparticlesweredissolvedonPBSandtheresultantsolutionwasfilteredthrougha0.22μm cellulosefilter.ThegoldnanoparticlesizewasdeterminedbyHR-TEM(PhilipsCM300FEG 100kV).ThehydrodynamicsizeandzetapotentialofthesolidwereanalyzedbyDLS(Zetasi- zerNanoZS(MalvernInstrument,UK)).Finally,thecontentofgoldwasdeterminedbyICP (Varian715-ESICP-Plasma). Dataanalysisandstatistics 1H-NMRspectraweretransformedwitha0.5line-broadening,andmanuallybaselineand phasecorrectedwithTopspin3.2.NMRsignalsofTSP-D (polarspectra)andTMS(non-polar 4 spectra)werereferencedto0ppm.Formetaboliteidentification,the1Hand13Cchemicalshift valuesandmultiplicityofthesignalswerecomparedwithreferencedatafromthespectraldata- basesHumanMetabolomeDatabaseandtheBiologicalMagneticResonanceBankandseveral literaturereports[29,71,72].TheassignmentNAD,NADH,NADP,NADPH,ATP,ADP,acet- oacetateandsarcosine,wasconfirmedbyspikingthesamplewithreferencecompounds.Spec- trawerenormalizedtototalintensitytominimizethedifferencesinconcentrationand experimentalerrorduringtheextractionprocess.Optimalintegrationregionsweredefinedfor eachmetabolite,tryingtoselectsignalswithoutoverlapping.Integrationwasperformedwith MestreNova8.1utilizationtheGSDdeconvolutionoption.Inthestudywithgold-nanoparticle treatments,p-valueswerecalculatedwiththenon-parametricMann-WhitneyUtestwithIBN SPSSstatistics21.PathwayanalysiswasperformedwithMetaboanalyst[73]. Resultsanddiscussion Optimisationofbloodcellisolation,treatmentandmetaboliteextraction Aprotocolfortheisolationofthedifferenthumanbloodcelltypesandtheirmetaboliteswas initiallyoptimized.Tothisend,peripheralbloodwasextractedfromhealthyindividualsand thethreemayorbloodcellfractions(RBCs,PMNsandPBMCs)wereseparated.Twodifferent methodsweretestedforevaluatingtheseparationofthedifferentfractions:theFicoll-Paque gradientmethod,anddextranfollowedbytheFicoll-Paquegradientmethod.Nosignificant differencesinthequalityofthemetabolomicprofileobtainedusingbothprocedureswere found.Therefore,theFicoll-Paquegradientmethodwasselectedforitssimplicityandminimal samplehandling.Anotherimportantfactortoconsideristhaterythrocytesareparticularly fragile,sotheymustbecentrifugedatalowerspeedwithoutaccelerationorbraking. Afterachievingphaseseparation,cellsweresubmittedtotreatmentwithnanoparticles(see detailsintheSupplementaryInformation).Threedifferentconcentrationsofcellsweretested: 30,15and5M/mL.Agglomerationandcelldeathwasobservedatthetwohigherconcentra- tions(30and15M/mL),butnotatthelowestconcentration(5M/mL).Finally,cellswere PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 6/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach harvestedandsubjectedtoanextractionprocesswithmethanol,chloroformandwater,a methodthathadbeensuccessfullyappliedinpreviousmetabolomicsstudies[74].Thisprocess isextremelysensitivetotheeliminationofmetabolitesfromthemediumthatcouldinterfere withtheanalysis,aprocessthatwasachievedbywashingwithPBS.Furthermore,coldmetha- nol(-20˚C)wasaddedtoeffectivelyquenchthemetabolismofcells.Solventamountswere optimisedto500μLmethanol(addeddirectlyaftercellharvesting),650μLofchloroform (addedintwotimes,beforeandaftercellbreakage)and400μLofwater(addedaftercell breakage,toavoidice-buildingduringthefreeze-thawcycles)per20millioncells.Smallersol- ventvolumesproducedpoorerextractionsyieldsandalessefficientphaseseparation,while biggervolumesshowednoimprovement.Asaresultoftheextraction,twodifferent,aqueous andorganic,fractionswereobtainedwithpolarandnon-polarmetabolites,respectively.For theNMRanalysis,cellextractsweredriedandlaterondissolvedindeuteratedsolventsto improvespectrumquality,whichcontainedinternalstandards(forquantification),andwere bufferedintheaqueousphase(forpHcontrol).ThewholeprocessissummarisedinFig1. MetabolicprofileofRBCs,PMNs,andPBMCsbloodcells 1H-NMRspectracorrespondingtotheaqueousandorganicextractsofthethreeperipheral bloodcelltypesareshowninFig2.Adetailedassignmentofthedifferentspectrawasper- formedbasedonthe1Dand2D-NMRspectraacquiredinthisstudy,aswellasthegeneral informationavailablefrompublicdatabases,sincenoexhaustiveinformationregardingthe metaboliccontentofthesebloodcellscouldbefoundintheliterature.Thus,itwaspossibleto identifymorethan80differentpolarandnon-polarmetabolites,orfunctionalgroups(Fig2). Themainmetabolitesidentifiedintheaqueousphasewereaminoacids,sugars,organicacids andnucleotides,whereasintheorganicfractionitwaspossibletoidentifydifferenttypesof lipids,suchasmonoandpolyunsaturatedlipids,di-andtriglycerols,phospholipids,aswellas cholesterol.Thisisthefirsttimethatthemetabolicprofileofdifferentkindofbloodcellshas beensystematicallydeterminedbyNMR,andtheresultsarecoherentwithdataobtainedin previousstudiesusingGC-MSandLC-MS[75,76]. Itshouldbestressedthateachcelltypehadaspecificmetabolomicprofile.RBCs,for instance,exhibitedlargeamountsoflactate,glucose,glutathione,ATP/ADP,ascorbicacid, creatineandphospholipids.Thepresenceofseveralofthesemetaboliteshasbeenpreviously describedinRBCsbyothertechniques,andtheirlevelalterationsareassociatedwithdiseases suchassicklecell,Alzheimer’sdisease,Wilson’sdiseaseoranaemia[77–81].BothPMNsand PBMCsleukocytescontainedverylargeamountsofglycerol,acompoundthat,amongother functions,isavitalosmoprotectiveagentforcellsinsuspension.Thelevelsofmetabolitessuch asglucose,pyruvateandsuccinatewerehigherinPBMCsthaninPMNs,perhapsreflecting theimportanceofoxidativebioenergeticmetabolismoflymphocytes(mainfractionof PBMCs)underbasalconditions[82].Moreover,ithasbeendemonstratedthatthebioener- geticmetabolismofneutrophils(mainfractionofPMNs)ismainlyglycolytic[82].Accord- ingly,lactateconcentrationsweresignificantlyhigherinthisbloodcelltype. Insummary,metabolomicsprofilesobtainedby1H-NMRproviderelevantinformationof thespecificmetabolismassociatedwitheachcelltype,thatcouldbeextremelyusefulfroma clinicalpointofview. EffectofnanoparticletreatmentonthemetabolicprofileofRBCs,PMNs, andPBMCs Onceareliableprotocolforevaluatingthemetabolomicprofileofeachcelltypewasestab- lished,weevaluateditspossibleapplicationinnanomedicine.Tothisend,theeffectscaused PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 7/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 8/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach Fig1.Strategyforperipheralbloodcellisolation(PBMCs,PMNsanderythrocytes),nanoparticletreatment,polarandno-polar metaboliteextraction,and1H-NMRanalysis.PBMCs,PMNsanderythrocytessampleswereisolatedfromperipheralbloodof healthyhumanindividuals.Samplesofeachcelltypeweresplitanaliquot(20millioncells)forcharacterization(a),andanotheraliquot (40millioncells)fornanoparticletreatments(b).Finally,polarandnonpolarwereextractedandthe1H-NMRmetabolicprofiles determined(c). https://doi.org/10.1371/journal.pone.0182985.g001 bychitosan-cappedgoldnanoparticles(AuChi)andgoldnanoparticlesstabilisedoncerianano- particles(AuCeO ),twopromisingtypeofgoldnanoparticlesforbiomedicine,wereassessed.A 2 detailedphysicalcharacterizationofbothnanoparticlesrevealedmeansizes,determinedby HR-TEM,of5.65nm(AuChi)and5.90nm(AuCeO )(S1File,FigAandD,respectively). 2 Moreover,zetapotentialsof+17mV(AuChi)and-19mV(AuCeO ),aswellashydrodynamic 2 sizesof205nm(AuChi)and133nm(AuCeO ),thatareoptimalvaluesforbiomedicalapplica- 2 tions,weredeterminedbyDLS(S1File,FigBandC,respectively).Finally,thegoldcontentof bothnanoparticles,characterizedbyICP,was1.2%(AuChi)and0.8(AuCeO ).Pictorialrepre- 2 sentationsofthetwo-particlesystemscanbefoundinFig3.Thenon-toxicityofthenanomater- ialswasconfirmedwithanMTT-assay(S2File). Apilotstudywasthenconductedtoevaluatetheimpactofbothnanoparticlesineachcell type.Thus,bloodwasextractedfromhealthyvolunteersandsubjectedtothepreviously describedprotocol(Fig1).Toevaluatetheeffectthatthecoatinghadonthebloodcells,con- trolexperimentswithcommercialchitosanandCeO werealsocarriedout.Therepresentative 2 1H-NMRspectraofRBCs,PMNsandPBMCsfromfreshlyperipheralhumanbloodafter beingexposedfor24htoAuChi,AuCeO andthevehicleareshowninFig3.Significantdif- 2 ferencesinthemetabolomicprofilesofbloodcellsaftertreatmentwithbothnanomaterials weredetected,asshowninTables1–3andTablesA–CinS3File.Togetanoverviewofthe affectedpathways,pathwayanalysiswasperformedwiththeprogrammetaboanalyst,using metabolitesthatchangesignificantlyasinputdata(FigAtoFinS4File).Ingeneral,itwas foundthatthemetabolicchangesinducedbyAuChiwerelesspronouncedthanthoseassoci- atedwithAuCeO .ThisresultisinagreementwithpreviousstudiesindicatingalowerAuChi 2 toxicitycomparedwithAuCeO [59,67,68].Interestingly,itwasalsofoundthatthemetabolic 2 impactofthenanoparticleswascell-typespecific,anindicationoftheexistenceofdifferent mechanismofactionsofthenanoparticlesineachbloodcelltype. Theantioxidanteffectofnanoparticles,asindicatedbyanincreaseintheGSH/GSSGratio aftertreatmentwithAuChinanoparticles,wasbetterreflectedinPMNcellsastheycontaina largenumberofmitochondriaasothercelltypes.Simultaneously,adropinlactatewas observed,probablyreflectingareducedglucoseconversion(mainenergysourceinneutro- phils)intolactate,inparallelwithanincreasedinsertionofpyruvateintotheoxidativecitric acidcycle.Thesecellshavebeenreportedtouseglycerol-phosphateforenergyproductionin mitochondria[83].Thus,antioxidantmaterialscouldhaveactivatedglycerol-phosphateoxida- tioninmitochondria,aprocessthatwouldexplaintheobservedreductionofglycerollevels.In thissituation,theobservedincreaseofbetainelevels,aknownosmolyte,couldcompensatethe decreaseofgycerollevels[84].Anotherimportantobservationwasthedecreaseinglutamine levels,revealinganalterationinglutaminolysis,aprocessthatoccursathighratesinimmune systemcells[83]. Ingeneral,theantioxidantimpactofthenanoparticleswaslesspronouncedinPBMCcells thaninPMNcells,anindicationperhapsofthefactthatlymphocytesalreadyrelyonanoxida- tivemetabolismforenergyproduction.Alsointhiscase,adropinglycerolandanincreasein betaineuponAuChitreatmentwereobserved,buttheseeffectsdidnottakeplaceforAuCeO . 2 Thedecreaseinphosphocholinederivatives,glycerides(AuChi)andMUFA,PUFAand PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 9/19 MetabolomicsofgoldnanoparticlesonhumanbloodcellsbyNMRastranslationalresearchapproach Fig2.1H-NMRspectraoferythrocytes,PMNsandPBMCs.Polar(a)andnonpolar(b)1H-NMRmetabolomic profilesofextractsofthemaintypesofperipheralbloodcells.Metaboliteassignmentsareindicatedwiththefollowing numbers:1)2-hydroxybutyrate,2)leucine,3)valine,4)ethanol,5)lactate,6)2-aminoisobutyrate,7)alanine,8)lysine,9) acetate,10)glutamate,11)reducedglutathione(GSH),12)oxidizedglutathione(GSSG),13)pyroglutamate,14) pyruvate,15)succinate,16)glutamine,17)creatine,18)phosphocreatine,19)malonate,20)spermidine/spermine,21) PLOSONE|https://doi.org/10.1371/journal.pone.0182985 August9,2017 10/19

Description:
1 Laboratorio de Bioquımica Estructural, Centro de Investigación Prıncipe Felipe, late ("Myocrisin") with human red blood cells in vitro.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.