ScienceoftheTotalEnvironment610–611(2018)678–690 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Assessing urban populationvulnerability andenvironmental risks across an urban area during heatwaves – Implications for health protection H.L.Macintyrea,⁎,C.Heavisidea,b,c,J.Taylord,R.Picettib,P.Symondsd,X.-M.Caic,S.Vardoulakisb,c,e aChemicalandEnvironmentalEffectsDepartment,CentreforRadiationChemicalandEnvironmentalHazards,PublicHealthEngland,Chilton,OxonOX110RQ,UK bDepartmentofSocialandEnvironmentalHealthResearch,LondonSchoolofHygieneandTropicalMedicine,KeppelStreet,LondonWC1E7HT,UK cSchoolofGeography,EarthandEnvironmentalSciences,UniversityofBirmingham,Edgbaston,BirminghamB152TT,UK dUniversityCollegeLondon,InstituteforEnvironmentalDesignandEngineering,CentralHouse,14UpperWoburnPlace,LondonWC1H0NN,UK eInstituteofOccupationalMedicine,ResearchAvenueNorth,Riccarton,Edinburgh,MidlothianEH144AP,UK H I G H L I G H T S G R A P H I C A L A B S T R A C T • Multiple factors are associated with healtheffectsofheatexposure. • CitiesintheWestMidlandshaveapro- nouncedUHI. • Carehomesandhospitalsareexposed tohigherambienttemperaturesthan average. • Housingtypesmorelikelytooverheat arelocatedinthewarmestpartsofthe city. Spatialdistributionoffactorsthatmayrelatetorisksassociatedwithheat-healtheffectsacrosstheWestMidlands. a r t i c l e i n f o a b s t r a c t Articlehistory: Heatwavescanleadtoarangeofadverseimpactsincludingincreasedriskofillnessandmortality;theheatwave Received23May2017 inAugust2003hasbeenassociatedwith~70,000deathsacrossEurope.Duetoclimatechange,heatwavesare Receivedinrevisedform7August2017 likelytobecomemoreintense,morefrequentandlastlongerinthefuture.Anumberoffactorsmayinfluence Accepted7August2017 risksassociatedwithheatexposure,suchaspopulationage,housingtype,andlocationwithintheUrbanHeatIs- Availableonline17August2017 land,andsuchfactorsmaynotbeevenlydistributedspatiallyacrossaregion.Wesimulatedandanalysedtwo majorheatwavesintheUK,inAugust2003andJuly2006,toassessspatialvulnerabilitytoheatexposureacross Editor:D.Barcelo theWestMidlands,anareacontaining~5millionpeople,andhowambienttemperaturevariesinrelationtofac- Keywords: torsthatinfluenceheat-relatedhealtheffects,throughweightingofambienttemperaturesaccordingtodistribu- UrbanHeatIsland tionsofthesefactorsacrossanurbanarea.Additionallywepresentquantificationofhowparticularcentressuch Spatialvulnerability ashospitalsareexposedtotheUHI,bycomparingtemperaturesattheselocationswithaveragetemperatures Heatwaves acrosstheregion,andpresentingtheseresultsforbothdayandnighttimes.WefindthatUHIintensitywassub- Healtheffects stantialduringbothheatwaves,reachingamaximumof+9.6°CinBirminghaminJuly2006.Previousworkhas shownsomehousingtypes,suchasflatsandterracedhouses,areassociatedwithincreasedriskofoverheating, andourresultsshowthatthesehousingtypesaregenerallylocatedwithinthewarmestpartsofthecity.Older agegroupsaremoresusceptibletotheeffectsofheat.Ouranalysisofdistributionofpopulationbasedonage groupshowedthereisonlysmallspatialvariationinambienttemperaturethatdifferentagegroupsareexposed ⁎ Correspondingauthor. E-mailaddress:[email protected](H.L.Macintyre). http://dx.doi.org/10.1016/j.scitotenv.2017.08.062 0048-9697/©2017ElsevierB.V.Allrightsreserved. H.L.Macintyreetal./ScienceoftheTotalEnvironment610–611(2018)678–690 679 to.Analysisofrelativedeprivationacrosstheregionindicatesmoredeprivedpopulationsarelocatedinthe warmestpartsofthecity. ©2017ElsevierB.V.Allrightsreserved. 1.Introduction providemultiplesurfacestoreflectandabsorbsunlight,increasing urbanheating,andimpedingaircirculation.Heatfromhumanactivities 1.1.Heatexposureandhealth (suchasairconditioning,vehicles,andindustrialprocesses)canalso addtotheUHIeffect.TheUHIeffectisoftenmostextremeduringanti- Heatwaves,orextendedperiodsofhotweather,areassociatedwith cyclonic summer weather conditions, which are associated with variousriskstohealthincludingheatexhaustion,heatstroke,emergen- heatwaves. In England and Wales, 82% of the population reside in cyhospitalisations,anddeath.AsevereheatwaveinAugust2003has urbanareas(ONS,2011),leavingthemvulnerabletotheimpactsof been associated with up to 70,000 excess deaths across Europe heatexposureduetotheUHIeffect.TheWestMidlandsisahighly (Robineetal.,2008),withover2000excessdeathsestimatedinEngland urbanisedareaoftheUK,whichincludesthecityofBirminghamwith (Johnsonetal.,2005),andarecordbreakingmaximumtemperatureof apopulationof1.1million,andhasanotableUHI(Bassettetal.,2016; 38.5°CreachedinsoutheastEngland.Hightemperatureswerealsore- Heavisideetal.,2015;Tomlinsonetal.,2012).Ahealthimpactassess- cordedthroughoutmuchoftheUKduringthesummerof2006.Inthe mentfortheheatwaveof2003basedonhighresolutionmeteorological WestMidlands,thetwoheatwaveeventsof2003and2006werecom- modellingsuggestedthatintheWestMidlands,aroundhalfoftheheat- parableintermsofestimatedexcessmortality,beingaround10%higher relatedmortalityduringtheheatwavecouldbeattributedtotheUHI thanbaselineratesatthistimeofyearinbothcases(HealthStatistics (Heavisideetal.,2016).TheUHIintensityisoftendefinedasthediffer- Quarterly,2006;Johnsonetal.,2005).Inthefuture,heatwavesare enceintemperaturebetweenurbanandruralareas,andcanbequanti- projectedtobecomemorefrequent,moreintense,andlastlonger,due fiedbycomparingambientairtemperatureobservationsatalocationin toclimatechange(Kirtmanetal.,2013),whichwilllikelyleadtoin- thecentreofanurbanarea,andatalocationinsurroundingruralareas creasesinheat-relatedmortality(Hajatetal.,2014;Mitchelletal., (Bassettetal.,2016;Hatchettetal.,2016;KettererandMatzarakis, 2016;Vardoulakisetal.,2014).Someevidencesuggeststhereisan 2015;KimandBaik,2002;Oke,1973,1982),orfromsatellitemeasure- upperlimittowhichhumanscanadapttotemperature(Arbuthnott ments(Azevedoetal.,2016;Benzetal.,2017;Duetal.,2016).However, etal.,2016;SherwoodandHuber,2010). observationstationsarelimitedinnumber,areoftennotsitedwithin IntheUK,theriskoftemperature-relatedmortalityisprojectedto urbancentres,andmayonlycovercertaintimeperiods,whilesatellite increasesteeplyintheUKoverthe21stcenturyunderclimatechange measurementsrecordlandsurfacetemperature(ratherthanairtem- anddemographicchangescenarios,reaching260%by2050,and540% perature), and are often temporally limited and may have missing by2080(comparedwiththe2000sheat-relatedmortalitybaselineof dataifitiscloudy.Theuseofmeteorologicalcomputersimulations around2000prematuredeaths),withtheelderlybeingmostatrisk makesitpossibletoinvestigatespatialvariationsintemperatureacross (Hajatetal.,2014;HPA,2012). urbanareas,andtoquantifytheUHIintensity,bycomparingtempera- Futureclimateprojectionsareoftenproducedatrelativelycoarse turessimulatedbothwithandwithouturbansurfacessuchasbuildings spatialresolution,duetothecostofcomputingpowerrequired.Factors androads. relevantforthestudyofheat-exposureandhumanhealth,including populationage,socioeconomicfactors,andthebuiltenvironmentsuch 1.3.Mappingspatialvariationinheat-exposureandrisk asdwellingtypeandtheUrbanHeatIsland,areatamuchfinerspatial scale. Our study aims to simulate ambient temperature across an Heatexposureforurbanpopulationswillvaryacrossurbanisedareas, urbanareaduringaheatwaveperiod,andsubsequentlyquantifythe duetospatialvariationsinphysicalinfrastructurethatinfluencestheUHI. variationinambienttemperaturewithotherfactorsthatrelatetoand Susceptibilitytohealthrisksassociatedwithheatexposureisalsoinflu- influence heat-related health effects. This includes population- encedbyotherfactors,includingpopulationage,housingtype,socio- weightingofambienttemperatures,aswellascalculatingtheambient economicfactors,pre-existinghealthconditions,andlocationwithin temperatureweightedaccordingtodistributionsofdifferenthousing theUHI(Tayloretal.,2015;WolfandMcGregor,2013).Itisthereforeim- types,populationage,anddeprivationscore,allfactorsthatinfluence portantintermsofhealthprotectiontounderstandthepatternofrisk heat-healthrelationships.Usingenvironmentalmodellingtechniques acrossaregion,whichmayhelptargetresourcestoreduceheatriskin inthiswaytolookathumanhealthinrelationtoheatexposureduring themostvulnerableareas,sinceitispossiblethatenvironmentalrisks heatwaves(whichwillbecomeincreasinglyimportantinthefuture andvulnerablepopulationgroupsareco-locatedwithinurbanareas. withclimatechange)isanovelwayofanalysingspatialdistributionof AnumberofstudieshaveinvestigatedheatriskacrosstheGreater risksacrossalargeurbanisedregion.Whilewehaveusedadetailed Londonarea.WolfandMcGregor(2013)developedaHeatVulnerability casestudyhere,thetechniqueandmetricsareapplicabletoanyscenar- Index(HVI)forLondonbasedonprincipalcomponentanalysisofsocio- io,whichwefeelisusefulforawiderscientificcommunity. demographicfactorsrelatingtoheatvulnerability,combinedwithland surfacetemperatures(derivedfromasatellitemeasurement),finding 1.2.TheUrbanHeatIsland(UHI) clusteringofhighvulnerabilityintheeastandcentralareasofthecity. HeatriskhasalsobeenmappedacrossLondonusingabuildingphysics PopulationsmaybeparticularlyatriskfromheatduetotheUrban model and monitored weather data, together with information on HeatIsland(UHI)effect(Heavisideetal.,2017),wherebyambienttem- modelledUHI,housingtypeandpopulationage,findingthatbuilding peraturesareoftenobservedtobehigherthanthoseinsurrounding typeandUHIhaveasignificantinfluenceonthedistributionofriskacross less-urbanisedareas,particularlyatnight.ThemaincauseoftheUHI thecityforsummer2006(Tayloretal.,2015).Buildingfabrictypesand isthemodificationoflandsurfaces,forexample,replacingnaturalsur- characteristics,andthusthermalproperties,willdependontheageof faces(e.g.vegetationwhichprovidenaturalshadingandcoolingvia thebuilding,andmaybeanimportantmodifierforthermalcomfort evaporation)bypavingorconstructionofbuildings.Urbanconstruction andenergyefficiency,inadditiontobehaviouralaspectsofbuildingoccu- materials(suchasconcrete,tarmacandasphalt)generallyabsorb,re- pancythatcanalsomodifyheatexposurerisk(Vardoulakisetal.,2015). tain and re-radiate heat more than natural surfaces. Buildings also An existing spatial heat risk assessment of Birmingham combined 680 H.L.Macintyreetal./ScienceoftheTotalEnvironment610–611(2018)678–690 informationderivedfromcreditreferenceagenciesongroupssuch shownthatwarmerclassrooms(25°Ccomparedto20°C)aredetri- astheelderly,thosewithillhealth,highpopulationdensity,and mentaltoeducationalattainment(WargockiandWyon,2007),and high-riseliving,findingthatpopulationsub-groupswithillhealth, schoolchildrenfeellethargicwhentemperatureandrelativehumidity and who residein flats were located in the overall warmest and arehigh(Salthammeretal.,2016).Urbanisationandclimatechangead- thereforehighestheatriskareasofBirmingham(Tomlinsonetal., verselyaffectthermalcomfortandairqualityinschools,andtheimpact 2011).Thisstudyusedremotesatellitesensingofthelandsurface ofsuchexposuremaygobeyonddiscomfortorillhealth,leadingtoa temperatureathighspatialresolution(1km),althoughonlyasingle lifelongburdenofdisease(Salthammeretal.,2016). snapshotoveronenightduringaheatwaveisused,andassuch,does Relationshipsbetweenheat-relatedmortalityandsocio-economic notfullyrepresenttherangeoftemperaturesthatpopulationisex- anddemographicfactorsvaryregionallyacrosstheglobe.Relationships posedtoduringtheheatwaveperiod.Similarstudiesinlargeurban havebeenfoundinsomeregionsbetweenheat-relatedmortalityand areasworldwidehavefoundspatialoverlapofsensitivepopulations factorssuchasage,gender,thoseclassedasurban-poor,andareas andinequityinexposuretotheUHI,accordingtoage,occupation,in- with a lack of high-income earners (with income believed to be a come,andothersocio-demographicindicators,andthatmapping goodproxyforaccesstoairconditioning),however,theseareoften canhelptargeteffortstoreduceheatrisk(e.g.viaplanningtheloca- notconsistentbetweencountries,insomecasesshowingnoclearrela- tionofparks,coolorgreenroofs,andsocialcareefforts)(Mitchell tionshipforothersocio-economicindicators(HondulaandBarnett, andChakraborty,2015;Weberetal.,2015;Wongetal.,2016). 2014;JohnsonandWilson,2009;Yuetal.,2010).IntheUK,regional Whilemappingofriskscanbeausefultoolforraisingpublicaware- longtime-seriesanalysisshowedthestrongestheat-mortalityeffects nessofrisks,itisnotclearifproducingmapsinthiswayleadstopolicy wereinLondon,andthestrongestcoldeffectsintheEastofEngland. ormitigationactions,possiblyduetouncertaintyinrelationtopolicy Astrongerheateffectwasfoundforthoselivinginurbanareas,with anddecisionmakingthataredifficulttoaddressinsuchstudies(Wolf nodifferenceforcoldeffects.Indicesofdeprivationwerenotfoundto etal.,2015).Thereisanincreasingamountoftemperaturedataavail- beamodifierforheateffects,andonlyslightlyforcoldeffectsinsome ablefromsatellitemeasurements,butthisdatasetonlygivesthetem- ruralareas,thoughthisisinfluencedbyhowwellindividualcircum- peratureofthesurfacethesatellitedetects(e.g.theground,treetops stancesarerepresentedbyarea-levelindicators(Hajatetal.,2007). or building roofs and walls), rather than air temperature which is TheWorldHealthOrganization(WHO)identifiedcommonheatrisk morerelevantforhealth,whiletherelationshipbetweengroundand factorsincludingbeingelderly,havingpre-existingcardiovascularorre- air temperatureis difficulttoquantify.Weaddresstheseissuesby spiratorydisease,livingalone,workingoutdoorsorbeinginvolvedin usingsimulatedtemperaturesandquantifyingheatexposuredueto heavylabourindoorsclosetoindustrialheatsources(WorldHealth theUHIforpopulationswhichcouldbeseentobeatrisk. Organization,2015).Insomeplaces,gender,natureofdwelling(e.g. hospitalorcarehome),beingurbanandpoor,andhavingcertainmed- 1.4.Centresforhealthandsocialcare ical conditions such as diabetes may also be linked with greater temperature-healtheffects,thoughcausalityiscomplextodetermine Carehomesandhospitalsareplaceswheresensitivepopulationsmay ascertaintypesoffactorsmayinteractwithotherdeterminantsof reside.Duringthe2003heatwaveacrossEurope,oftherecordedthere- health, as well as access to health-care systems (World Health cordedmortalityamongtheunder75sintheUK,moreoftheexcess Organization,2015).Someindicatorsofsocioeconomicstatusmaybe deathsweredistributedinresidentialandnursinghomesthanwould associated with heat-related health effects, though inconsistencies havebeenexpected,andamongtheover75s,moreoftheexcessdeaths existbetweenstudies,withdifferentassociationsreportedbetween weredistributedinhospitalsandnursinghomes(Kovatsetal.,2006).In countries,regionsandcitieswithin.Thereisalsosomeevidencethat thesesettingstheremaybeissuessurroundingdependencyoncare- temperaturemodifiesthehealtheffectsofsomeairpollutants,suchas giversinnursingandresidentialhomes,andtheimpactthismayhave ozone(Jerrettetal.,2009;WorldHealthOrganization,2015). onpatients'andresidents'behaviourinrespondingtoenvironmental changes(e.g.disempowermentorlossofautonomy),aswellasavailabil- ityofassistancefordailylivingtasksininstitutions(Belminetal.,2007; 1.6.Summaryandaims BrownandWalker,2008).Reportssuggestcareschemeshavea‘culture ofwarmth’,aperceptionthattheelderlyarevulnerableonlytocold Wehaveidentifiedawiderangeoffactorsthatarelikelytoinfluence (notexcessiveheat),andthatdesignforoverheatingisrare,withlow theriskofheat-relatedhealtheffects,includinghousingtype,popula- prioritisationforfutureclimatechangeandoverheating(Guptaetal., tionage,deprivationindices,andthoseresidingincareandhealthfacil- 2016). ities. People who experience multiple risk factors may be more Thoseinprisonsorcustodialfacilitiesarenotabletodirectlyaccess vulnerableduringperiodsofhotweather.Ananalysisofthespatialdis- healthcareservices,andeffectivewaystoreduceexposuretoheatmay tributionofmultipleriskfactorsacrossaregionmayrevealco-location belimited.Whiletherearefewstudiesexaminingheatriskinprisons, ofsuchfactors,andidentifyplaceswhenstrategiestomitigateheatrisk lawsuitsweresuccessfullybroughtagainstprisonsinTexasandLouisi- mightbemosteffective. anaintheUS,whereinmateshaddiedorsufferedasaresultofheatex- Weaddresstheseissuesaspartofanurbancasestudyfortwore- posure(HumanRightsClinic,2015;ThePromiseofJusticeInitiative, centsignificantheatwaveevents.Weinvestigatefirstlyvariationsin 2013).ThepopulationintheUKisageing,asistheprisonpopulation. environmentalriskfactorsacrossthecity(temperature,UHIintensi- NotonlyhastheprisonpopulationintheUKincreasedfrom56,000to ty,andthermalcomfortindices),andsecondly,distributionofother over85,000inthelasttenyears,thenumberofthoseaged60and factorswhichmayrelatetovulnerabilityfromenvironmentalrisks over in custody are the fastest growing group, increasing by 120% (age,housingtype,anddeprivationindex).Aspatialanalysisallows from2002to2013(HouseofCommons,2013;Offendermanagement ustodeterminewhetherthesesetsofrisksareco-locatedwithinour statisticsquarterly,2016).Otherfactorssuchasdruguse,aswellas studycityofBirminghamandtheWestMidlandsregionoftheUK. prevalenceofmentalhealthconditionsamongthoseincustodymay Thirdly,weinvestigatethepositionofspecificlocationswheresensi- alsocontributetohealthriskfromexposuretoheat. tivepopulationsarelikelytobebased,suchashospitals,care-homes, schools,andprisons,withrespecttotheintensityandpositionofthe 1.5.Socialanddemographicfactors UHI,withthehypothesisthatsincethesetypesofinstitutionsare oftensituatedinurbancentres,populationsmaybeatriskfromex- Aswellastheelderly,babiesandyoungchildrenarealsovulnerable posuretohightemperaturesasaconsequenceoftheeffectsofthe toeffectsassociatedwithheatexposure(PHE,2015).Studieshave UHI. H.L.Macintyreetal./ScienceoftheTotalEnvironment610–611(2018)678–690 681 Fig.1.(a)ThedomainscoveredbytheWRFmodelsimulation.Thecentraldomain(redbox)isexpandedinFig.1(b);(b)UrbanclassificationsusedintheurbancanopyschemeintheWRF modelinthecentraldomain.Theareashowncoversapproximately80×80km. 2.Methodsanddata temperaturebecomesmoresensitivetosurfacemoistureproperties, whichcanbedifficultforthemodeltocapture.Soilmoisturewasadjust- Inthisstudywefirstmodelledtheambientairtemperatureata edinthemodeltobetteraccountfortheunusuallydryconditions,which heightof2macrosstheWestMidlands,andquantifiedtheUHIintensi- ledtoimprovementsinthemodelperformance(Fig.2andTable2). tyacrosstheregionfortheheatwaveperiods(August2003andJuly Weranthemodelfortwoheatwaveperiods(2nd–10thAugust2003, 2006)usingamesoscalemeteorologicalmodel.UsingGIStechniques and16th–27thJuly2006),andinordertoquantifytheUHIintensity,two wethenextracted(fromthemodelleddata)andanalysedtheambient simulationswererunforeachheatwaveperiod.An‘urban’simulation temperaturesthatcorrespondtodifferentriskfactorssuchaspopula- was run as described above, using the urban categories shown in tionage,dwellingtype,anddeprivationindices. Fig.1b,andisintendedtorepresenttheurbanmorphologyofBirming- hamandtheWestMidlands.Thesimulationisthenrunagain,butwith 2.1.Modellingtemperature urbanlandcoverreplacedbyruralcroplandandpastureintheinnermost domain,asatheoretical‘rural’case.Bycomparingresultsbetweenthe TheWeatherResearchandForecasting(WRF)modelisaregional ‘urban’and‘rural’simulations,theUHIintensitycanbequantified. weathermodelthatcanberunathighresolution(1km)tosimulate Thetemperaturethatpeopleexperienceor‘feel’canbeinfluenced themeteorologyacrossaregion(Chenetal.,2011).WeusedtheWRF byanumberoffactorssuchashumidity,windspeed,exposuretodirect modelwithfournesteddomains(Fig.1a)eachwithgridresolutionsof solarradiation,andtheamountofclothingtheyarewearing(Höppe, 36km,12km,3km,and1kminthesmallest(central)domain,with 1999;Steadman,1984).Nationalweatherservicessometimesprovide feedbackofvariables fromsmallergridstoparentgrids. Themodel a‘heatindex’or‘apparenttemperature’aspartofweatherforecasts time-stepwas180,60,20and5sforthefourdomains,respectively, duringperiodsofwarmerweather,toaccountfortheeffectofhumidity, withoutputeveryhour.Initialandlateralboundarymeteorologicalcon- withassumptionsabouthumanbodymass,height,clothing,amountof ditionswereprovidedbytheEuropeanCentreforMedium-rangeWeath- physicalactivity,sunlightandultravioletradiationexposure,andthe erForecasts(ECMWF)ERA-interimreanalysis(Deeetal.,2011)ata windspeed.Theheatindexiscalculatedfromtemperatureandrelative spatialresolutionof0.5°every6h.Therewere39pressurelevelsabove humidityfollowingthemethodoftheNOAAWeatherPredictionCenter thesurfaceto1hPa.Weusedanurbancanopyscheme,BuildingEnergy (www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml).Thiscalcu- Parameterisation(BEP),whichmodelstheeffectofbuildingsonenergy lationisarefinementofaresultobtainedbymultipleregressionde- andmomentumfluxesinsideandimmediatelyabovetheurbanstreet tailedinNationalWeatherService(NWS)TechnicalAttachment(SR canyons(Heavisideetal.,2015;Martillietal.,2002).Informationon 90–23).Accountingforthehumidityonlysignificantlyinfluencesthe buildingandroadproperties(e.g.buildingheight,streetcanyonwidth, heatindexaboveabout26°C,andthiscalculationisnotvalidforex- materialpropertiessuchasalbedo,thermalconductivityandheatcapac- tremesoftemperatureorhumidity(Steadman,1984). ity)isincludedforthreeurbancategories:Industrial/commercial,high- intensityresidential,andlow-intensityresidentialacrosstheWestMid- 2.2.Populationandbuiltenvironmentcharacteristics landsregion(Fig.1b).Detailsofparametersusedforeachurbancategory aregiveninTable1a.Land-surfacedatausedasaninputtoWRFforall PopulationdataaretakenfromtheNationalPopulationDatabase domainswerebasedontheUSGeologicalSurvey(USGS)24-category (2015)griddedat100mresolution,whichgivestotalpopulationat land-usedata,andfortheinnerdomainweusedtwolocaldatasetsto eachgridpoint.InformationonagegroupsisavailableatOutputArea1 generatetheurbancategories.WeusedtheNoahLandSurfaceModel,a (OA)levelfromthemostrecentcensus(2011),andattachedtoeach relativelycomplexcommunitymodel,whichisoftencoupledwithan 100mpopulationpointbasedonwhichOAthepointfallswithin.The urbancanopyscheme,andhasfourlayersofsoilmoistureandtempera- informationisthensummedacrosseachWRF1kmgridbox. ture(Tewarietal.,2004). DataonhousingtypewasobtainedatLowerSuperOutputArea2 ThemodelhasbeenpreviouslyrunforthisregionfortheAugust (LSOA)levelfromthemostrecentcensus(2011,availablefrominfuse. 2003heatwave;detailsofthemodelsimulationandvalidationarede- tailedinHeavisideetal.(2015).Wehaveextendedtheanalysisbyre- 1 OutputAreasarethelowestgeographicallevelatwhichcensusestimatesareprovid- runningthe2003heatwaveusinganupdatedversionofWRF(v3.6.1), ed.Thereare181,408OutputAreasinEnglandandWales.TheaveragepopulationperOA andincludingafurthersimulationrunduringaheatwaveperiodin is309. 2 LowerSuperOutputAreashaveanaverageof~1500residentsand650households. July2006.Inordertotestperformance,themodeloutputiscompared Measuresofproximity(togiveareasonablycompactshape)andsocialhomogeneity(to withobservationsfromMIDASobservationalweatherstationsacross encourageareasofsimilarsocialbackground)arealsoincluded.Thereare34,753LSOAs theWestMidlands(MetOffice,2012).Duringheatwaveperiods,air inEnglandandWales.http://neighbourhood.statistics.gov.uk/. 682 H.L.Macintyreetal./ScienceoftheTotalEnvironment610–611(2018)678–690 Table1 (a)DetailsofurbancategoriesusedinBEP.(b)GeneralWRFmodelsetupdetails. (a) Category 1:Industrial/commercial 2:High-intensityresidential 3:Low-intensityresidential Albedo Roof 0.1989 0.1997 0.2027 Wall 0.1989 0.1997 0.2027 Ground 0.1989 0.1997 0.2027 Surfaceemissivity Roof 0.9239 0.9274 0.9292 Wall 0.9239 0.9274 0.9292 Ground 0.9239 0.9274 0.9292 Averagebuildingheight 25m 15m 10m (b) Modelsetting Option Reference Longwaveradiation RapidRadiativeTransferModel(RRTM) Mlaweretal.(1997) Short-waveradiation Dudhiascheme Dudhia(1989) Boundarylayerphysics Bougeault–Lacarrere(designedforusewithBPEurbanscheme) BougeaultandLacarrere(1989) Urbanphysics BEPurbanscheme Martillietal.(2002) ukdataservice.ac.uk).Dataisavailableonthenumberofdwellingsof disability,education,skillsandtraining,barrierstohousingandservices, eachtypewithineachLSOA.Thenumberofdwellingsofeachhousing livingenvironment,andcrime,whicharethenweightedandcombined typeineachWRFmodelgridboxiscalculatedbysummingthefractions tocreatetheoverallIMDscoresforeachLSOA(ONS,2007).Forthis ofeachLSOAthatintersectwitheachgridbox,withhousingassumedto work,IMDsfor2007wereused,asthisistheclosestavailableyearto bedistributedevenlyacrosseachLSOA.Thisiscombinedwiththe2m thosemodelledusingWRF.TheIMDscoreatLSOAlevelisattachedto airtemperaturesimulatedinthemodelduringtheheatwavesof2003 each100mpopulationgridpoint,andthentheseareusedtocalculate and2006,toestimatetheaverageambienttemperaturethatdifferent population-weightedIMDscoresforeachWRF1kmgrid-box.Once housingtypesacrosstheWestMidlandsareco-locatedwith.Informa- theIMDscoresforeachWRFgridboxarecalculated,thesearethenas- tiononhousingtypewasavailable(e.g.detached,terrace,flat,etc.) sociatedwiththetemperaturesfromtheWRFmodel,andrankedrela- butinformationonhousingagewasnotrecordedspatially. tivetoeachother,fromleast-tomost-deprived.Thedataisthensplit Thelocationsofhospitals,carehomes,childcarecentres,schools, intopopulationdeciles(inorderofleasttomostdeprived),andtheas- andprisonswereconsideredwhere‘sensitivepopulations’aremore sociatedtemperaturesplotted. likelytoreside.TheNationalPopulationDatabaseprovidesinformation ontheselocationsastheymayhavehighdensitiesofresidents,manyof whommaynotbeabletoprotectthemselves(othershaveadutyofcare 3.Results towardsthem).Peopleattheselocationsmaybemorevulnerableto harmandpotentiallyhardertoevacuateinanemergencysituation. 3.1.Environmentalrisks Thetemperatureatthelocationofeachofthecentresofinterestisex- tractedfromthe(hourly)modeloutputusingbilinearinterpolationto 3.1.1.Temperature/heatindex thenearestmodelledgridpoints.Themeantemperatureanomalyfor Fig.3ashowsthemodelledmean2mairtemperaturefrom2nd– eachlocationiscalculatedbytakingthemeantemperatureattheselect- 10thAugust2003,andFig.3bshowsthesamefor16th–27thJuly edlocationovertheheatwaveperiod,andsubtractingthemeantem- 2006.Theobservedaverageandtheoverallminimumtemperatures peratureacrosstheentiredomainforthesameperiod. arehigherby1.3°Cin2006comparedwith2003.Averagedailymax- TheEnglishIndicesofMultipleDeprivation(IMD)scoresandranks imum ambient temperatures are similar (difference of 0.3 °C), areproducedperiodicallybytheDepartmentforCommunitiesand thoughtemperaturesreachedatleast30°Conmoredaysin2006 LocalGovernment,andaretheofficialmeasureofrelativedeprivation than2003(seeFig.S1inSupplementarymaterial).Comparisonof forsmallareas(LSOAbasedonthe2011census)inEngland.TheIMD Fig.3withthelanduseinFig.1bshowsthaturbanareasaregener- bringstogether37differentindicatorswhichcoverspecificaspectsor allywarmerthanthesurroundingruralareasintheWestMidlands dimensionsofdeprivation,suchasincome,employment,healthand modelleddomain. Fig.2.(a)ModelledandobservedambienttemperaturesatMIDASsitesacrosstheWestMidlandsinJuly2006.(b)Taylordiagramshowingstatisticalcomparisonbetweenadjustedand unadjustedmodel.Unadjustedsimulationisshowninred,andsimulationwithreducedinitialmoistureisshowninblue.Abettercomparisonwithobservationsisindicatedbyproximity to‘REF’onthehorizontalaxis. H.L.Macintyreetal./ScienceoftheTotalEnvironment610–611(2018)678–690 683 Table2 Statisticalcomparisonbetweenobservedairtemperature,andmodelledtemperatures(withsoilmoistureadjustment). Edgbaston Coventry Coleshill ChurchLawford Observed Modelled Observed Modelled Observed Modelled Observed Modelled Mean(°C) 22.54 22.59 22.31 22.64 22.12 22.44 22.32 22.24 Standarddeviation(°C) 4.54 4.95 4.78 5.11 5.19 5.15 5.21 5.40 RMSD(°C) – 1.62 – 1.81 – 1.79 – 1.79 Correlation – 0.94 – 0.94 – 0.94 – 0.94 Theaveragecalculatedheatindexforeachoftheheatwaveperiods surroundingair.Overalltheaverageimpactofurbansurfaceson2mtem- isshowninSupplementaryFig.S2.Thepatternandmagnitudeare peratureandtheaverageimpactontheheatindexarealmostidentical verysimilartothe2mtemperaturesshowninFig.3.Additionaldiscus- (Fig.5andFig.S3). sionoftheheatindexmaybefoundintheSupplementarymaterial. 3.2.Socialfactors 3.1.2.UrbanHeatIsland TheaverageUHIintensityacrossthewholeperiod(definedasthe 3.2.1.Housing differencein2mtemperaturebetweenasimulationwithurbanland Buildingsareanimportantmodifiertopopulationexposuretoheat, coverandasimulationwithrurallandcover)forbothheatwavepe- with different types of housing being more or less susceptible to riodsisshowninFig.4.Statisticsforthetwoheatwavesareshownin overheating,forexampletop-floorflatsaremorelikelytooverheat Table3. than detached houses (Beizaee et al., 2013; Symonds et al., 2017; Whilehigheraveragetemperatureswerereachedacrossthedo- Tayloretal.,2015).Fig.6showstheaverage2mairtemperaturethat mainduringthe2006heatwavethanthe2003heatwave(Fig.3), differenthousingtypesacrosstheWestMidlandsareco-locatedwith themagnitudeandspatialdistributionoftheUHIintensityremains duringheatwaveperiods,comparedtotheaveragetemperatureacross remarkablysimilar(Fig.4).Therearebroadsimilaritiesinthespatial thewholeregion.Theanomalyrepresentsthedifferencefromtheaver- andtemporaldiurnalpatternsoftheUHIintensitybetweenthetwo agetemperatureacrosstheentireregionforthetimeperiodconsidered heatwaves(Fig.4,Fig.S2),althoughsomelocaliseddifferencesexist. (thistemperature,representingzeroanomaly,islabelledatthebaseof TheaverageUHIintensityinthecitycentrewasslightlyhigherin theverticalaxisontheright).Theaveragetemperatureacrossallhous- 2003(+2.2°Cin2003comparedwith+2.0°Cin2006),butthe ingtypesintheregionisshownbythehorizontalbar(againwithabso- UHIintensityatnighttimewaslargerin2006(+3.1°Cin2006com- lutevaluelabelledattherightaxis).Detachedhouses,whichtendtobe paredwith+2.5°Cin2003). locatedtowardsmoresuburbanareas,areco-locatedwithambient Bycombiningthedatafromthetwoheatwaveperiods,wehavea temperatures almost 0.2 °C lower than the average for all housing largerdatasetavailabletoanalysethedistributionoftemperatures, types.Bycontrast,terracedhousesandflatsareco-locatedwithambient andtheUHIeffectstypicalduringheatwavesacrosstheregion.Fig.5 temperaturesover0.1°Chigherthantheaverageforallhousingtypesin showsthespatialdistributionoftheUHIintensityacrosstheWestMid- theregion,and0.6°Cwarmerthanthewholedomainaveragetemper- lands,determinedfromboththeAugust2003andJuly2006heatwaves ature.Ouranalysisshowsthathousingtypeswhicharemorelikelyto combined,andillustratesthemoreintenseUHIeffectatnighttimecom- overheat(e.g.flats)areoftenlocatedinthewarmestpartsofthecity, paredwithduringtheday. andtheeffectsaremuchlargeratnight(Fig.6b).Thedifferencesbe- Theheatindexandthedifferenceinheatindexbetweenurbanand tweenambienttemperaturesforeachhousingcategoryareallstatisti- ruralsimulationsareshowninSupplementarymaterial(Figs.S2and callysignificant(pb0.05;seeSupplementarymaterialfordetails). S3),andverysimilarpatternstotheUHIareshown.Thespecifichumidity Whilethetemperaturevariationbetweendifferenthousingtypesis (i.e.watervapourmixingratio)islowerintheurbansimulation(Supple- b1°C,itshouldbenotedthattheaverageUHIintensityfortheregion mentaryFig.S4)duetothepresenceofurbansurfacesreplacingvegetat- wasabout0.6to0.7°C(andjustover2°Cinthecentreoftheurban ed ones that would otherwise provide a supply of moisture to the area)duringheatwaves. Fig.3.Mean2mairtemperaturessimulatedacrosstheWestMidlandsduring(a)heatwaveperiodfrom2nd–10thAugust2003,and(b)fortheheatwaveperiodduring16th–27thJuly 2006.Letteredpointsshowmonitoringstationsusedformodelvalidation.EB=Edgbaston;CH=Coleshill;CV=Coventry;CL=ChurchLawford. 684 H.L.Macintyreetal./ScienceoftheTotalEnvironment610–611(2018)678–690 Fig.4.MeanUHIintensityforthewholetime-periodacrosstheWestMidlands(a)2nd–10thAugust2003,and(b)16th–27thJuly2006.SnapshotsofhighUHIintensityforeachperiodare shownin(c)11pm5thAugust2003,and(d)11pm17thJuly2006.Letteredpointsshowmonitoringstationsusedformodelvalidation.EB=Edgbaston;CH=Coleshill;CV=Coventry; CL=ChurchLawford.Notethatthecolourscalesarenotallequal. 3.2.2.Populationage 75yearoldsresideinareas+0.5°C).Duringthedaytime,thereis Fig.7showstheaverageoutdoortemperatureanomaliesdiffer- onlyamodestdifferenceinambienttemperaturesexposureincom- entagegroupsareexposedto,basedonresidentialaddress.The parisontotheregionalaverage;howeveratnighttime,population- anomalyrepresentsthedifferencefromtheaveragetemperature weightedtemperaturesareover1°Chigherthantheregionalaver- acrosstheentireregionforthetimeperiodconsidered(thistemper- age(Fig.7b,c).Itshouldbenotedthatthesefiguresarebasedonres- ature,representingzeroanomaly,islabelledatthebaseoftheverti- identialpopulation,sothosepresentinhealthandcarecentresare calaxisontheright).Theaverageacrossallagegroupsisshownby notconsideredhere.Overall,thedifferencesinexposuretoambient thehorizontalbar(againwithabsolutevaluelabelledattheright temperaturesfordifferentpopulationgroupsaremodest,likelya axis).ThewholeWestMidlandspopulationisexposedtotempera- reflectionthatpopulationagegroupsarelessheterogeneouslydis- turesabout+0.6°Chigherthantheregionalaverage(aspopulations tributedacrossthisregion.Thedifferencesbetweenambienttem- resideinmoreurbanisedareas)(Fig.9a).Youngadultsandthevery peratures for each age group are all statistically significant (p b youngareexposedtoslightlyhighertemperaturesthanthepopula- 0.05;seeSupplementarymaterialfordetails),withtheexception tionaverage(e.g.20–24yearoldsresideinareas+0.7°Cwarmer ofthe15andthe16–17yearoldagegroups(p=0.25),the60–64 thantheregionalaverageof+0.6°C),whiletheelderlyareexposed and 65–69 year old age groups (p = 0.069), and the 85–89 and toslightlylowertemperaturesthanthepopulationaverage(e.g.65– 90+yearoldagegroups(p=0.055). Table3 StatisticsformodelledtemperatureandtheUHIintensityforthetwoheatwaveperiodsinAugust2003andJuly2006. Averagetemp(°C) AverageUHI(°C) DaytimeaaverageUHI(°C) NighttimeaaverageUHI(°C) MaxUHI(°C) Aug2003 Regionalb 20.5 +0.7 +0.5 +1.0 +6.1(5pm10th;11pm5th;9pm9th) Citycentrec 21.7 +2.2 +2.0 +2.7 July2006 Regionalb 21.7 +0.6 +0.1 +1.2 +9.6(11pm17th) Citycentrec 23.0 +2.0 +1.0 +3.1 a Daytimeisdefinedas08:00–19:59;Nighttimeis20:00–07:59. b RegionalisthewholeareashowninFig.1a. c CitycentreisapointinthecentreofBirminghamcity. H.L.Macintyreetal./ScienceoftheTotalEnvironment610–611(2018)678–690 685 Fig.5.(a)AverageUHIintensityduringheatwaveperiods(2–10Aug2003and16–27July2006)acrosstheWestMidlands;Averagesover(b)daytimeand(c)nighttime.AverageUHI intensitywas+2.1°C(+1.4°Cindaytime,+2.9°Catnighttime). 3.2.3.Deprivation representsthedifferencefromtheaveragetemperatureacrosstheen- Fig.8showstheaverageambienttemperatureexposureforincreas- tireregionforthetimeperiodconsidered(i.e.day,night,oralltimes). inglydeprivedpopulationdeciles,calculatedfrompopulationweighted Thehorizontallineshowsthepopulationweightedtemperaturefor scoresacrossthedomainrankedrelativetoeachother.Theanomaly thetimeperiod.Themostdepriveddecileofpopulationacrossthe Fig.6.(a)Averageoutdoortemperatureanomaly(comparedwiththeaverageacrossthedomainduringtheheatwaveperiod)withstandarddeviationsplottedoverthebars.Theanalysis isalsobrokendowninto(b)nighttimeand(c)daytime. 686 H.L.Macintyreetal./ScienceoftheTotalEnvironment610–611(2018)678–690 Fig.7.(a)Averageoutdoortemperatureanomaly(comparedwiththeaverageacrossthedomainduringtheheatwaveperiod)fordifferentagegroupsacrosstheWestMidlands,with standarddeviationsplotted.Theanalysisisalsobrokendowninto(b)nighttimeand(c)daytime. regionisexposedtotemperatures+1.0°Chigherthantheaveragefor deprivationscoresforallLSOAsinEnglandrangefrom0.37to85.46. theregion(+0.5°Cduringtheday,and+1.5°Catnight).Themostde- Forcomparison,thedeprivationscorescalculatedforeachdecilein priveddecileofpopulationfortheregionexperiencestemperatures Fig.8rangefrom6.08to56.17,placingthemaroundthe12%and96% consistentlyhigherthantheaveragefortheregion,evenduringthe mostdeprivedrelativetoEngland.Thedifferencesbetweenambient daytime (each decile represents ~0.5 million people). The overall temperaturesforeachdeprivationdecileareallstatisticallysignificant Fig.8.(a)Averageoutdoortemperatureanomaly(comparedwiththeaverageacrossthedomainduringtheheatwaveperiod)forpopulationdecilesrankedbydeprivationacrossthe WestMidlands,withstandarddeviationsplotted.Theanalysisisalsobrokendowninto(b)nighttimeand(c)daytime. H.L.Macintyreetal./ScienceoftheTotalEnvironment610–611(2018)678–690 687 (pb0.05;seeSupplementarymaterialfordetails),withtheexceptionof alsoincludecentreswithspecialisedfacilitiesforthosewithmental deciles4and5(p=0.989). healthissues,sensoryimpairment,learningdifficulties,andthosewho misusedrugsandalcohol.Childcarecentreshaveadutyofcaretopro- 3.3.Locationbasedassessmentofvulnerabilityfromheat tectpeoplewhocannotprotectthemselves,withpotentiallyhighpop- ulations, including nurseries, crèches, toddler groups, afterschool Sensitivereceptorssuchashospitals,carehomes,childcarefacilities, clubs,holidayschemes,andyouthclubs.Schoollocationsareunlikely schools,andprisonstendtobelocatedinthemosthighlyurbanised tobeoccupiedatnight,whentemperatureanomaliesarehigher,and areasoftheregion,withtheexceptionofprisonswhichareoftenlocat- thoseofschoolageareexposedtoambienttemperaturesclosetothe edontheoutskirtsofthecity.Thedistributionoftemperatureanoma- average for the population (though still above regional average). liesforeachlocationtypeisshowninFig.9.Theanomaliesarebased Whilecollegeshaveveryhighpopulations,theyagainareunlikelyto onthenumberofreceptors(i.e.buildings),andnotthepopulationat beoccupiedatnight. each location, as this will fluctuate. The majority of hospitals, care Theanomaliespresentedherearebasedonambienttemperature, homes,schools and childcare centresare locatedin areas warmer althoughbuildingsplayanimportantroleindeterminingactualexpo- thanthedomainaverage(94%ofhospitals,90%ofcarehomes,87%of sure,particularlyatnighttime.Studiesusingbuildingsimulationstoes- schools,and88%ofchildcarecentres).Therearesevenprisonslocated timate indoor temperatures find a significant influence of building withinthestudyarea,withonlytwoofthesebeingwarmeronaverage characteristicsonindoortemperatures(Tayloretal.,2015).However (Fig.9e). thesestudiesoftenuseasingleambienttemperatureacrossalldwelling types,whereasthisstudyshowsthatdifferentbuildingtypesarelikely 4.Discussion tobeexposedtodifferentambienttemperaturesacrossaregion.Our studycouldhelpinformdevelopmentofinputstobuildingmodelsby Inthisstudyweusedhourlyambienttemperaturedataathighspa- providingamodifiertoambienttemperaturebasedonthelikelyout- tialresolution(1km)acrossadenselypopulatedregionoftheUK,cap- doortemperaturesforaparticularbuildingtype. turing temperature variation across the period of two different Whilewehaveincludedthehighestspatiallyresolveddatathatwas heatwaveepisodes.Weemployenvironmentalmodellingtechniques availableatthetime,theanalysismakessomeassumptionsaboutdistri- to examine human health in relation to heat exposure during butionofcertainfactors.DataforhousingtypesatLSOAlevel,andpop- heatwaves,whichwillbecomeincreasinglyimportantinthefutureas ulationagesatOAlevelwasthefinestlevelofdatathatwasavailable. climatechangeisprojectedtoincreaseheat-healthimpacts.Previous AnyvariationsthatmayexistwithinanindividualLSOAorOArespec- studieshaveexaminedthespatialdistributionofvulnerabilitytoheat tively could not be captured by this analysis. The BEP multi-layer riskacrossaregion,oftenusingambienttemperaturesthataretime- urbancanopyschemeusedwithWRFcancapturetheeffectsofthe varyingbuthavenospatialvariation,orthatarewellrepresentedspa- builtenvironmentonenergyandmomentumfluxes(accountingfor tiallybutonlyforasingleorlimitedtimeframe(Tayloretal.,2015; shadingandreflectionsbybuildings)atsub-gridscale,providingasuit- Tomlinson et al., 2011; Wolf and McGregor, 2013). By using well- ablerepresentationofhowurbanareasinfluencemeteorologyina validatedmeteorologicalmodellingtechniques,wehavegeneratedan weathermodelsuchasWRF.However,microclimaticeffectsatindivid- ambienttemperaturedataset,basedonmodelledoutput,athightem- ual building level are not explicitly captured, as regional weather poralandspatialresolutionfromwhichtocalculateambienttempera- modelscanonlyberundownto1kmhorizontalgridscaleconstrained turesexposureco-locatedwithvariousriskfactorsthatrelatetoand bythevalidsub-gridscaleturbulenceschemes,andthereforeresultsfor influence heat-related health effects. These include population- individuallocationsinterpolatedfromthe1kmgridmayhaveaddition- weightedtemperatureexposureandtherelationshipbetweenUHIin- alvariation.TheIMDsareameasureofrelativedeprivation,calculated tensityanddemographicfactorssuchasagegroup.Previousstudies byweightingdataondifferentindicatorsthatcanbeusedasmeasures havemappedsuchrisks,butourworkextendsthisanalysisbycalculat- ofdeprivation.TheIMDsarecalculatedperiodically,andalthoughitis ingtheambienttemperatureweightedaccordingtodistributionsofdif- agoodmeasureforcomparingareaswitheachother,thismeasurecan- ferenthousingtypes,population(includingage),anddeprivationscore, notbeeasilycomparedwithotheryearsorusedtoidentifytrends,as allbeingfactorsthatinfluenceheat-healtheffects.Wehavealsobroken therankingisperformedseparatelyeachtimeanewdatasetisreleased. downtheanalysisbydayandnight;whilethewholeregioniswarmest Thisstudyfocusesprimarilyontheeffectsofheat,althoughother duringthedaytime(andurbanareasarestillwarmerthanruralonesat environmentalorsocioeconomicfactorsincitiesthatmayimpacthealth thistime),thespatialvariationintemperatureacrosstheregionismuch couldbeconsideredinfuturestudies.Suchfactorsmayincludeairpol- greateratnight,duetotheinfluenceoftheUHI(Fig.5).Whilethereis lution,floodrisk,socialisolationorgreenspace.Coldeffectscouldalso noclearindicatorofwhichtemperaturemetricismoststronglycorre- beinvestigated.Theseandotherfactorsidentifiedasinfluencinghealth latedwithmortality,andthereisvariationbetweencountriesandcities maybeincludedinfuturestudiestodevelopandoverallenvironmental (Davisetal.,2016),highmortalityratioshavebeenassociatedwithhigh riskmapforcities.Finally,thisstudyexaminespastheatwaveeventsin nighttimelandsurfacetemperaturesduringtheAugust2003heatwave twoyearsacrosstheUK,allowingmodelvalidationagainstobserva- inParis(Doussetetal.,2011),andthereisevidencethathighernight tions.Futurescenariosunderclimatechangecouldbeconsideredinfur- timetemperatureshaveadetrimentalimpactonsleepquality,which therwork. islinkedwithothernegativehealthoutcomes(Lacketal.,2008). Wefoundthatalmostalllocationswheresensitivepopulationsare 5.Conclusions likely to be located (hospitals, care homes, schools, colleges) were warmerthantheregionalaveragebyupto2°C,andthenumberthat PreviousresearchsuggeststhattheUHImaycontributearoundhalf arewarmerisgreateratnighttime(Fig.9).Ofthesevenprisonlocations oftheheatrelatedmortalityexperiencedduringheatwaves(Heaviside withinthestudyarea,mostwerelocatedinmoreruralorsuburban etal.,2016).Increasingurbanisationandclimatechangewillincrease areas,andthereforewerenotexposedtohigheraverageambienttem- heatrelatedhealthrisksinurbanareas.Wehavedevelopedanovel peraturesforthisregion. risk mapping methodology that combines high spatial resolution Locationsclassifiedashospitalshereincludeafewsmalltreatment modellingoftemperature,populationage,andbuildingtypestoidentify centressuchasfamilyplanning,dialysiscentres,etc.,andthereforedo locations and population sub-groups at higher health risk during notnecessarilyhaveresidentpopulationswhomightbeexposedto heatwaves.Wehavesimulatedandquantifiedthemagnitudeandchar- thelargertemperatureanomaliesatnight.Locationsclassedascare acteristicsoftheUHIintheWestMidlandsduringtwoheatwavepe- homeshaveahighdensityofresidents,presentdayandnight,and riods(August2003andJuly2006),usingtheWRF-BEPmodel.The