ebook img

Assessing and Governing Ecosystem Services Trade-Offs in Agrarian Landscapes PDF

17 Pages·2016·2.76 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Assessing and Governing Ecosystem Services Trade-Offs in Agrarian Landscapes

land Article Assessing and Governing Ecosystem Services Trade-Offs in Agrarian Landscapes: The Case of Biogas ChristianAlbert1,2,*,JohannesHermes1,FelixNeuendorf1,ChristinavonHaaren1 andMichaelRode1 1 InstituteofEnvironmentalPlanning,LeibnizUniversitätHannover,HerrenhäuserStr.2,30419Hanover, Germany;[email protected](J.H.);[email protected](F.N.); [email protected](C.v.H.);[email protected](M.R.) 2 DepartmentofEnvironmentalPolitics,HelmholtzCentreforEnvironmentalResearch—UFZ, Permoserstraße15,04318Leipzig,Germany * Correspondence:[email protected];Tel.:+49-511-762-2652;Fax:+49-511-762-3791 AcademicEditors:BenjaminBurkhard,StefanHotes,HubertWiggeringandPeterVerburg Received:8July2015;Accepted:12January2016;Published:22January2016 Abstract: Thispaperdevelopsamethodtoexplorehowalternativescenariosoftheexpansionof maizeproductionforbiogasgenerationaffectbiodiversityandecosystemservices(ES).Ourapproach consistsoffoursteps: (i)definingscenariotargetsandimplementationofassumptions;(ii)simulating cropdistributionsacrossthelandscape;(iii)assessingtheESimpacts;and(iv)quantifyingtheimpacts foracomparativetrade-offanalysis.ThecasestudyistheregionofHannover,Germany.Onescenario assumesanincreaseofmaizeproductioninalittleregulatedgovernancesystem;twoothersreflect anincreaseofbiogasproductionwitheitherstrictorflexibleenvironmentalregulation. Weconsider biodiversityandthreeES:biogasgeneration,foodproductionandthevisuallandscape. Ourresults showthattheexpansionofmaizeproductionresultsinpredominantlynegativeimpactsforotherES. However,positiveeffectscanalsobeidentified,i.e.,whentheintroductionofmaizeleadstohigher localcropdiversityand,thus,amoreattractivevisuallandscape. Thescenariooflittleregulation portraysmorenegativeimpactsthantheotherscenarios. Targetedspatialplanning,implementation and appropriate governance for steering maize production into less sensitive areas is crucial for minimizingtrade-offsandexploitingsynergiesbetweenbioenergyandotherES. Keywords: landscape planning; ecosystem services; landscape services; landscape functions; trade-offs;biogas 1. Introduction Policy,businessandcivilsocietyactorsinmanyEUmemberstateshavepushedforanexpansion ofbiogasproductionasarenewableenergysource. InGermany,forexample,theRenewableEnergy SourcesAct(2004)hasprovidedsubstantialfinancialincentivesfortheestablishmentofbiogasplants andforthecontributionofbiogastotheenergysystem. Inresponsetothesecalls,manystates,countiesandcommunitieshavesetthemselvesambitious targetsforrenewableenergygeneration,andforbiogasinparticular,tobeachievedapproximately between2025and2050. Numerousbiogasplantshavebeeninstalled,causingasubstantialchange in the crop cycles within their proximity in order to expand the production of biomass for biogas generation. InsomeGermanmunicipalities,forinstance,increasedmaizecultivationforbiogasand fodderproductionencompassesmorethan85%ofallarableland[1,2]. Land2016,5,1;doi:10.3390/land5010001 www.mdpi.com/journal/land Land2016,5,1 2of17 Unfortunately,inmanyregions,theincreaseintheproductionofmaizeforenergyproductionhas dramaticnegativeeffectsonbiodiversityandseveralecosystemservices(ES)[3,4]: Trade-offs,which comefromanincreaseintheareaappropriatedforthegenerationofbiogas, includeprovisioning services,suchasfodderandfood,duetoagriculturallandcompetition[5,6],regulatingservices,such asdecreasedwaterquality,duetohigherinputsoffertilizersandalongerperiodofopensoilthan inothercrops[7],andculturalservicesthroughincreasedmonoculturesand,thus,decreasesinthe diversityofthevisuallandscapeintheproximityofbiogasplants[8,9]. The spatial implications of increased maize production and the resulting negative effects on biodiversityandESare,however,onlymarginallyconsideredinpolicyandthedecision-makingof countiesandcommunities. Thedearthofinformationisakeychallengefordecision-makers, and consequently,thepotentialadverseeffectsonESandeconomiclossesforsocietyarenotconsidered[10,11]. Decision-makingabouttheamountofbiogastobegeneratedinaparticularspatialarea,aswell asthesitingofbiogasplants, aretopicalissuesinwhichtheimpactandtrade-offsofdecisionson biodiversityandESareonlypartiallyconsidered. Landscapeplanning,asaforward-lookingaction to preserve, enhance and restore landscapes (cf. [12]), is arguably well positioned to provide the necessaryenvironmentalinformation,impactassessmentsandsolutionoptionsforovercomingthis shortcomingandsupportingabetterinformeddecision-makingprocess(e.g.,[13]). However,despite someinitialexplorations[3,10,14,15],landscapeplanningstilllacksnecessaryconceptsandmethods. Somesophisticatedapproachesareavailableforinvestigatingtheimpactsofbiogasproductiononthe farmtolandscapelevel[16–19]. Somespatially-explicitintegratedmodellingframeworksalsoexistfor exploringopportunitycosts[20–22]. However,theseapproachesandtoolsarerelativelycomplex,too resourceintensiveforpracticalapplicationand,thus,notbestsuitedtoassistinlandscapeplanning anddecision-making. The focus of this paper is on the development and testing of assessment methods to assist in landscapeplanninganddecision-making. Thesetoolsaretestedusingsimulateddataonthecurrent andpotentialfuturedistributionofcropsacrossthestudyareaoftheregionofHannover,Germany. However,thesesimulationsarenotthecentralconcernofthepaper,butareratherusedtoillustrate theapplicationofthetools 2. CaseStudyArea ThecasestudyfortheanalysisistheregionofHannover(RegionHannover),locatedinthesouth oftheGermanfederalstateofLowerSaxony(Figure1). TheurbancenteristhecityofHannover, whichissurroundedbyruralareas. Morethanhalfoftheregion1sareaisagriculturalland(55%of totalarea). Thedominantagriculturallanduseformiscropland(40%oftotalarea),andabout19%of thetotalareaiscoveredwithforests. RegionHannoverrepresentsaninterestingcasestudydueto itsvaryingbiophysicalconditionsandtheresultingdiversityofcultivatedcrops. Thesouthernpart ischaracterizedbyveryfertileloesssoilsthatarealmostexclusivelycultivatedwithsugarbeetand wheat. Inthenorthernandnorth-easternpart,however,sandyandlessfertilesoilsdominate,and moremaize,barleyandryeiscultivated. Thepercentageofgrasslandisalsomuchhigherinthenorth. InchoosingRegionHannoverasacasestudy,webenefitedfromgooddataavailability,including statisticaldataoncultivatedcrops,spatialdataonlanduseandbiogasplantsandinformationabout objectivesconcerningtheexpansionofrenewableenergies. Furthermore,wecouldbuilduponprior contacttolocalpolicymakers,administrators,farmersandothercivilsocietystakeholders,whotook partinworkshopsinconnectiontotheresearch. In2012,biogasplantswerepredominantlyfoundininthenorthernpartofthestudyarea. The installedcapacitywas19,729kW[23]. Maizecultivationtookplaceon11%ofthearableland[24], whereasenergymaizeclaimedonly6%(owncalculation,basedon[23–25]). InLowerSaxony,the shareofmaizecultivationwas23.8%ofagriculturalland,whilemaizecultivationforbiogastookplace on9%. However,therearehugeregionaldifferences. Inregionswithahighdemandformaizeas fodder,maizecultivationforbiogashasincreasedthealreadyhighlevelofcultivationto,attimes, Land2016,5,1 3of17 morethan50%. Intheseregions,theshareofmaizecultivationforbiogaswasbetween19%and38%. In other regions, maize cultivation took place on generally only 6%–13% of the arable area and is predominantlyusedforbiogasproduction[26]. Thepotentialforanincreaseofbiogasproductionin theregionofHannovercanthusbeconsideredashighcomparedtoothercountiesinLowerSaxony. Figure1.LanduseinthecasestudyareaoftheregionofHannover. 3. Methods 3.1. ResearchDesign Scenario-basedlandscapeplanning[27–32]ispotentiallyausefulapproachtoassesspossible impacts from biogas production on nature and the landscape and to develop spatially-explicit solutionstrategiesandimplementationoptions. Scenario-basedlandscapeplanningmakesreasonable assumptionsaboutfuturedevelopmentswithandwithoutplanninginterventions,simulateslikelyland usechangesandanalysespotentialeffectsonnatureandlandscape.Scenario-basedlandscapeplanning therebyenablessociallearningandbetterinformeddecision-making(cf.[33]). Morespecificallyinour case,itenablesbetterdecision-makingabouttheamountofbiogasthatcouldbegeneratedinagiven regionandhowthisproductionwouldneedtobespatiallyallocatedinordertoavoidorminimize unwantedeffectsonbiodiversityandES. Weemployedaplanninganddecision-supportapproachthataimedatconnectingpolicyand decision-making with science and planning through exchange and discussions among scientists, decision-makersandstakeholders. Currentbiogasgovernanceregulationsandobjectivesforbiogas expansion,asstatedbypolicy-anddecision-makers,wereintegratedintheformulationofscenario assumptions. Furthermore,thescenariosassumeddifferentoptionsforbiogasgovernance. Wethen simulated the scenarios1 effects on agricultural land use and cropping patterns and assessed the potentialimpactsconcerningselectedbiodiversityandESindicators. Theresultsofthescenariostudy werefedbacktopolicy-anddecision-makerstosupporttheireffortsinrefiningbiogasexpansion objectives and creating sustainable pathways for its governance. Finally, conclusions concerning implementationoptionsweredrawn. Land2016,5,1 4of17 3.2. ScenarioAssumptions Three scenarios were developed with a time horizon to 2050. The first scenario assumes a market-baseddevelopmentwithoutenvironmentalconstraints(Table1). Thetargetvalueforthearea ofmaizeproductionisanincreaseof280%oftheshareofthecurrentareadevotedtothisproduction type. Numerically,thismeansanincreasefrom7102ha(19,729kW)–27,036ha(75,100kW).Thistarget resultsfromaparticipatoryscenario-workshoponthetopicofexpansionofrenewableenergies. This wasconductedwithadministratorsfromtheregionofHannoverinSeptember2012. Theincreasewas separatelycalculatedandsimulatedforeachmunicipality,therebyrespectingthelocalcontextand conditions,e.g.,locationcharacteristics,agrarianstructureandcultivationpreferencesoffarmers. Table1.Scenarioassumptions. 2012 2050:Market 2050:RestrictiveProtection 2050:ConditionalProtection 280%increaseof Max.15%maize Max.15%maize Assumptions biogasarea Exclusionofprotectedsites Exclusionofprotectedsites (bymunicipality) Exclusionofsensitiveareas Capacity(kW) 19,729 75,100 36,689 44,669 Demandedarea(ha) 7102 27,036 13,222 16,084 The second scenario is based on nature conservation requirements and contains different restrictionsforbiogasproduction; meaningthatthereisno(further)cultivationallowedinnature reserves, drinking water protection areas, flood plains, erosion-prone sites and areas of faunistic importance. Datalayersfortheserestrictedareaswerederivedfromthelandscapeplanframework fortheregionofHannover[34]. Furthermore,themaizeproductionareawascappedat15%ofthe arable land outside of the excluded areas. Municipalities were regarded separately. However, in municipalitiesthatalreadyhadmorethan15%oftheirarablelandcultivatedwithmaizeforbiogas, theamountwasneitherreduced,norcoulditbefurtherincreased. Exploitingthe15%,thisscenario resultsinamaizecultivationforbiogasareaof13,222haand36,689-kWinstalledplantcapacity. Thethirdscenarioisalessrestrictivevariantofthesecondone. Itstillallowscultivationofmaize forbiogasonerosion-pronesitesandinareasoffaunisticimportance. However,itisallowedonlyon theconditionthatthestandardsofgoodagriculturalpractice(minimumrequirementsforagricultural management;seeregulation(EC)No. 1750/1999Article28)arestrictlycompliedwithandthatfurther measurestopreventenvironmentaldeteriorationaretakenifnecessary. Undertheseassumptions,the areaofmaizecultivationforbiogascanbeincreasedupto16,084haandtheinstalledcapacityofthe plantsto44,669kW. As an increase of maize cultivation is implemented at the cost of the area available for other crops,decisionsneedtobemadeaboutwhichcropswouldbemostlikelyto“loseout”incompetition withmaize. Weassumedthatcropswiththelowestcontributionmarginswouldbegivenupfirst, makingwayformaizecultivationforbiogas. Relativecontributionmarginswerederivedfromexpert knowledge and, in particular, from the long-term experience of one of the co-authors (M.R.). We furtherassumedthattheplantingareaofeachcropwouldonlybereduceduntilaminimumof10%of theoriginalareapermunicipalitywasreached. 3.3. SimulatingtheSpatialDistributionofCrops Akeychallengeforthestudywasthelackofaccesstospatialdataoncropdistributions. Data onthisissuewereavailableinthereportingsystemoftheEUagriculturalpolicies’directpayments, butdataarenotusuallyavailableforpublicorresearchuse. Inthemeantime,wedecidedtoadoptan alternativeapproachthatmakesbestuseoftheavailablepublicdata. Alongthisline,wedrewupon aggregatedaccountinginformationoncropcultivationpermunicipality,whichisavailablefromthe statisticalofficeofthefederalstateofLowerSaxony. Inordertoprogressundertheseconditionsof Land2016,5,1 5of17 uncertainty,wedecidedtosimulatethespatialcropdistributionsforthestatusquoandthedifferent scenarios. While one could argue that such a simulation rarely reflects the exact distribution, we consideritusefulasafirstattempttounderstandtheeffectsofcropdistribution. Severalsimulation modelrunsandevaluationswouldbeneededtoinvestigatetheuncertaintyinherentinthesimulations weperformed. However,thiswasnotpossiblewithinthescopeofthisproject. Thesimulationofspatialcropdistributionswasconductedinthreesteps(seeFigure2). First, theareaofarablelandwasidentifiedusingalandusemap. Then,theexistingbiogasplantswere identifiedandtheirassociatedareasinwhichenhancedpressureofmaizecultivationforbiogastook place. Weassumedhigherpressuresexistedforthecultivationofmaizecultivationforbiogaswithin theproximityofplants,becauselongertransportationdistancesareusuallylessprofitable[35]. We thereforedefined“areasofenhancedpressure”asthoseareaswithincreasedlikelihoodformaize cultivationaroundtheplants. Locatingplantsandareasofenhancedpressurewasdonewiththehelp ofthewebservice(energymap.info),whichprovidesinformationonplantlocationsandproduction capacities. Weassumedthatplantswouldneed0.36haofarablelandper1kWcapacity(i.e.,180ha for a 500-kW plant) to meet their demand for maize [25]. In 2012, approximately 80% of the area usedforbiogascropswascultivatedwithmaize[24]. Thesizeoftheareaswithenhancedpressures also depends on the capacities of a plant. We assumed a radii of 1.5 km for plants with less than 255kW,3kmforplantswith256–400kwand5kmforplantswithmorethan400kWcapacity(own elaborationsbasedon[35,36]). TheresultingbasicspatialinformationisprovidedinFigure3. Figure2.Approachforspatialsimulationofcropdistribution. Land2016,5,1 6of17 Figure 3. Locations of biogas plants [23] and areas of enhanced pressure from maize cultivation forbiogas. Data on the cultivation area for different crops are provided by the agricultural statistics [1]. Asdatawereavailableforthemunicipallevel,cropdistributioncouldbeperformedseparatelyfor everymunicipalityinthestudyarea. Similarly,thedifferencesinthecharacteristicsofagricultural productionbetweenthenorthandthesouthofthestudyarea,asdescribedabove,couldbebetter incorporated. Thesimulationmethodconsistedofseveralsteps,performedmanuallywithLibreOffice CalcinattributetablesfromESRIArcGIS: (1) Uniformly-distributedrandomnumberswhereassignedtoeachagriculturalparcel (2) Withineachbiogasplantareaofenhancedpressure: (a) Parcelswereselectedwithreferencetotherandomnumbers, whilesumminguptheir areauntilthetotalsummedupareamatchedthedemandofareaformaizecultivationfor theplant. (b) Maizecultivationwasassignedtotheselectedparcels. (3) Withineachmunicipality: (a) The remaining maize cultivation area was calculated according to the agricultural statisticsavailable. (b) Ifthedistributedmaizecultivationareaexceededthestatisticalvalueofthatmunicipality andifareasofenhancedbiogaspressurecrossedmunicipalboundaries,thenparcelswere removedfrommaizecultivation,inreverseorderwithintheonemunicipality,andthe respectiveareaofdemandwasrepartitionedtotheneighboringmunicipality(s). (c) Theremainingmaizecultivationareawasdistributedbyselectingparcelsinorderoftheir randomnumbersandsumminguptheirareauntilitmatchedthestatisticalvalue. Then, maizecultivationwasassignedtotheselectedparcels. (d) Theothercropsweredistributedontheremainingparcelsusingthesamemethodasfor maize,butonlywithinthemunicipalborders. Thegeneratedcropdistributionmapwasusedasthestatusquoforsimulatingchangesinthe scenarios. Weusedthesameprocedureasdescribedabovetosimulateanincreaseofmaizeareaand Land2016,5,1 7of17 a decrease of other crops. However, we did not consider new plant locations in the simulation of thescenarios. Thedemandsformaizecultivationareas, asdescribedinthescenarioassumptions, wereprojectedwithinmunicipalborders. Furthermore,therestrictedareaswereintroducedintothe simulationofthetwoprotectionscenarios. Theapproachwehavetakenhererepresentsonestrategyforconsideringpossiblelandusechange arisingthroughscenarioprojections. Therearealsomorecomplexmodelsavailablethatcouldbe employed. Forexample,sophisticatedapproachestomodellingofpotentialfuturecropdistribution patterns, such as the land use and land cover change model CLUE-S [37,38], could result in other simulatedscenariooutcomesthattakeintoaccountmoresitespecificcharacteristicsandhaveahigher likelihoodofrepresentingfuturecroppatterns. TheapplicationofCLUE-Sislimitedbytheavailability ofrelevantspatialdata, whichwerenotavailableforthestudyarea. Furthermore, thedecisionof whichapproachtotakewillultimatelybebasedontheexpertise,dataandresourcesoftheorganization engagedintheexercise. Asthefocusofthecurrentpaperisonexploringmethodologicalissues,we haveemployedasetofsimplistic,butrealisticassumptionstoprojectpossiblelandusefutures. The paperillustratesthatevenwithoutdetaileddataavailable,itispossibletouseasimplifiedframework toexaminelandusechange. 3.4. AssessingPotentialImpactsofScenariosonVariousEcosystemServices Biodiversityandtwoecosystemservices,namelyfoodproductionandlandscapeaesthetics,were selectedtoassessthepotentialimpactsofeachscenario. Biodiversityandthetwoecosystemservices wereselected,aschangesintheirsupplywereexpectedtooccurinresponsetochangesintheamount ofbiogasproduced. Foreachaspectconsidered,wefirstreviewedindicatorsproposedintheliterature (e.g.,[39–41])andthenselectedtheonesforwhichsuitabledataandmethodswereavailable. The impactevaluationofbiodiversityreferredtodifferentiatedhabitatvaluescoresbasedonBierhalsand vonDrachenfels[42]andvonDrachenfels[43]. Theywereamendedandrefinedfortheapplication ofdifferentcroptypes[44]. Thisadaptedmethodisbasedontheevaluationofseveralbiodiversity indices of different crop types and farm management intensities, for instance the species richness ofthefieldflora. Asimplifiedapproachwasusedthatreliesonexpert-basedclassificationofcrop typesaccordingtotheirenvironmentalriskforspeciesandhabitats[45]. Croptypeswithahigher risk(maize,sugarbeet,winterwheat,rape,potato)wererankedloweronascalebetween1and2 (habitatvalueforarableland)[42],whilstcroptypeswithalowerrisk(oat,barley,springwheat)were rankedhigher. Toevaluatethebiodiversityfunctionsofarablelandwithdifferentcroptypes,wechose arangeof5classes,fromverylowtoveryhigh,andclassifiedthedifferentcroptypes(Table2). To thisend,wesplitupeachofthecategories,“highrisk”and“lowrisk”definedbyUrbanetal.[45], intotwoclassesrespectively,soastogetamoredifferentiatedresultthatstillfollowstheapproach proposedbyBredemeieretal.[44]. Table2.Ecosystemservicevaluesforbiodiversityandlandscapeaesthetics. LandscapeAesthetics*Shannon BiodiversityRefinedHabitatValueScoresFollowing Index(CropTypeDiversity)[57] Bredemeieretal.[44]andUrbanetal.[45] RasterCells Municipalities Verylowvalue Habitatvaluescoreofď1.4(forexample:wheat) H=0–0.45 H=1.2–1.4 Lowvalue Habitatvaluescoreof>1.4–1.5(maize,sugarbeet) H>0.45–0.90 H>1.4–1.6 Mediumvalue Habitatvaluescoreof>1.5–1.6(barley) H>0.90–1.35 H>1.6–1.8 Highvalue Habitatvaluescoreof>1.6–1.7 H>1.35–1.80 H>1.8–2.0 Veryhighvalue Habitatvaluescoreof>1.7(rye) H>1.80–2.26 H>2.0–2.2 *Habitatvalues(H)betweenreferencelevels(i.e.,rastercellsandmunicipalities)arenotcomparablewitheach otherduetothescaledependenciesoftheShannonindex. Theimpactevaluationoffoodproductionconcernedboththeamountofareausedforproduction, aswellastheleveloftheoreticalregionalself-sufficiencyforfoodconsumption. Theindicatorvalue Land2016,5,1 8of17 wascalculatedasthepercentagetowhichtheannualfooddemandoftheregion1spopulation[46] wasmetbytheannualfoodproductionfromagriculturewithinthesameregion. Thecomparison wasbasedontheamountofenergydemanded/generatedperyearingigajoules. Thefooddemand modellingassumedhomogenousnutritionpatternsof2400kJperdayformalesand1900kJperdayfor females[47]. Foodsupplymodelingwasbasedonmeanyieldspersoilfertilityclassofdifferentcrop typesintheHannoverregion[24]andanaverageenergyvalueforeachcrop[48–51]. Meatproduction hasbeenindirectlytakenintoaccountbyusingamodifier(10%ofenergyinplantbiomass)[52]that resemblestheenergyconversionoffoddercropsthathavebeencultivatedineachmunicipality[24]. The energy values for corn silage, silage grass and pressed sugar beet pulp were calculated using thenetenergylactationandthemetabolicenergy[51]. Wecalculatedtheleveloftheoreticalregional self-sufficiencyforfoodconsumptionforeachmunicipality,aswellasfortheentireregion. Impactsonlandscapeaestheticswereevaluatedaschangesinthecroptypediversity[53–55]. ThevalueofthisdiversityindicatorwascalculatedusingtheShannonindex[56],foreachcellofa 2.5-km2rastergridandforeachmunicipalityintheregion(Table2). Theresultsofthecalculationhave beencategorizedinto5classes,rangingfromverylowtoveryhighforbothapproaches,usingequal intervals. Astheactualareaofarablelandwithineachrastercelldiffered,wedecidednottosimply counttherastercellstoidentifysharesofeachclass. Instead,wecalculatedtheareaofarableland foreachcellthathadapositiveevaluation(highandveryhigh). Theresultswerethensummarized andcomparedtothesameresultsforeveryotherclass. Forillustrationpurposes,thescenarioimpacts werecomparedagainstthesituationin2012and2009,respectively. Datafortheareaattributedforthe cultivationofdifferentcropsforthesetwoyearscouldbetakenfromtheactualproductionstatistics[1], andthespatialallocationofcropstospecificfieldswasdonerandomlyasdescribedabove. 4. Results 4.1. SpatialCropDistributioninDifferentScenarios The2012,thesimulatedspatialdistributionofcropsreflectsthedifferencesinthenaturalsoil fertilitythroughtheassociateddifferencesinpreferencesforparticularcroptypes(seeFigure4). Inthe northernpartoftheregionofHannover,whichboastslessproductivesoilsthanthesouthernpart, thereistraditionallyamuchstrongeremphasisonthecultivationofmaizeandotherfoddercropsfor livestockthaninthesouth. Furthermore,theareautilizedforfoddermaizeequalstheareaofmaize demandedbythehighnumberofbiogasplantssituatedinthispartoftheregionin2012. Thisleadsto substantialsharesofmaizecultivationinthenorth. Nexttomaize,ryecultivation,grasslands,barley, rapeseedandpotatoesarepredominantlyproducedinthenorthernpart. Thesouthernpartofthe regionofHannoverhasmorefertilesoilsandoffersseveralprofitablealternativestomaizeproduction. Inthispartoftheregion,thecultivationofsugarbeetandwheatwaspredominantandonlyafew biogasplantsdemandedthecultivationofmaize. Inthemarketscenario,thesimulationincludesa280%increaseofeachmunicipality1sshareofthe areadevotedtomaizecultivation. Thisresultsinanaccentuationoftheunevendistributionofbiogas productionacrosstheregionofHannover(seeFigure4). Insomenortherncountiesoftheregion,the shareofarablelandforbiogascropcultivationgrewto73%,whilesomemunicipalitiesinthesouth stillexhibitmaizesharesoflessthan10%. Theresultofthecropdistributionsimulationusingtherestrictiveprotectionscenarioshowsa considerablymoreevendistributionoflandsharesformaizecultivationacrossthecommunitiesthan themarketscenario. Inthenorthernpartoftheregion, littleadditionalincreaseinareasharesfor maizecultivationforbiogastookplace. Thiswasbecausethemaximumcapof15%ofarableland formaizecultivationforbiogaspermunicipalitywasalreadyreachedorovershot. Furthermore,the scenario1sexclusionofprotectedareasandregionssensitivetoerosionorotherimpactsonfaunafrom maizecultivationforbiogasonlyresultedinmarginalchangesinthenorthofthestudyarea. The southernpart,however,showsaconsiderableincreaseofareasharesformaizeforbiogasproduction. Land2016,5,1 9of17 Thisresultsinagenerallymoreevendistributionacrosstheregion. Anoverallshareof14%ofthe region1sarablelandiscultivatedwithmaize. Thescenarioofconditionalprotectiondiffersonlyslightlyfromtherestrictiveprotectionscenario. Thestrongerincreaseofmaizeforbiogasproductioninthesouthandsoutheastisduetolessarea being excluded from increases in maize for biogas production on the basis of protection status or ecological sensitivity. Altogether, 16% of the regions arable land is cultivated with maize. In this scenario,thetotalamountisabithigherthantheallowed15%,becausemaizecultivationwasnot reducedinmunicipalitiesthatalreadyhadmorethan15%. Figure4.Resultsofthespatialsimulationofcropdistributioninthestatusquoandthescenarios. 4.2. ScenarioImpactsonBiodiversityandEcosystemServices Theimpactevaluationforbiodiversityin2012showsthat19.2%ofthearablelandisofmedium to very high value in terms of cropland habitats (see Figure 5). Conducting an impact evaluation forbiodiversityinthemarketscenarioleadstoaconsiderabledecreaseofthisshareofareatoonly 10.1%. Intherestrictiveprotectionandconditionalprotectionscenarios,theareaofarablelandwitha veryhighvalueisalmostthesame. However,theshareofareasofmediumtohighvaluedecrease respectivelyby3%and4%. Thiscanbeexplainedbyachangeincultivationofalargepercentageof areas,frombarleyandryetomaize,whichhasaslightlyworsecroplandhabitatvalue. The results of the impact evaluation for food production shows that in 2012, the region of Hannoversuppliedabout101%ofitstheoreticaldemandforfood. Inthemarketscenario,thelevelof self-sufficiencydecreasedto89%. Therestrictiveprotectionandtheconditionalprotectionscenarios Land2016,5,1 10of17 ledtoadecreaseoftheself-sufficiencylevelto96%and94%,respectively. Theregionwouldtherefore loseitscurrentpotentialofbeingtheoreticallyself-sufficientintheprovisionofagriculturalproduce. Theevaluationoflandscapeaestheticsofarablelandintermsofcroptypediversityshowsthat in2012, about72%ofthearablelandwasevaluatedasofhighorveryhighvalue. Thesimulated changesincropdistributionsinthemarketscenariohavedivergenteffectsoncroptypediversity. In total,theshareofarablelandwithinrastercellsevaluatedasofhighorveryhighvaluedecreases considerablyto64.2%. Thelandscapeaestheticvalues,inthemunicipalitiesinthewesternpartofthe regionofHannover,generallydecreasebyonevaluationlevel. InthenortheastregionofHannover,no changesincroptypediversityoccur,asthealreadyhighshareofmaizeproductionwaskeptmoreor lessconstant. Therestrictiveprotectionandconditionalprotectionscenariosleadtoonlymarginalincreasesof theshareofarablelandwithinrasterfields,whichwereevaluatedasahighorveryhighvalue.Aslight increaseofthecroptypediversitycanbedeterminedintwomunicipalitiesinbothprotectionscenarios. Figure5.Resultsofimpactmodelling. Comparingthevariousimpactsofthethreescenariosonbiodiversityandthetwoecosystem services,itispossibletoillustratetrade-offsandsynergies(Figure6). Theincreaseofmaizeproduction haspredominantlynegativeeffectsonbiodiversity,foodproductionandlandscapeaesthetics. This especiallyapplieswhentheshareofmaizeissignificantlyincreased,asshowninthemarketscenario. Despitethesegenerallynegativeeffects,anincreaseofmaizecultivationforbiogascanalsohavea

Description:
Academic Editors: Benjamin Burkhard, Stefan Hotes, Hubert Wiggering and biodiversity and three ES: biogas generation, food production and the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.