ebook img

Aspherical neighborhoods on arithmetic surfaces PDF

96 Pages·2016·0.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Aspherical neighborhoods on arithmetic surfaces

DISSERTATION submitted to the Combined Faculty of the Natural Sciences and Mathematics of Heidelberg University, Germany for the degree of Doctor of Natural Sciences Put forward by Dipl.-Phys. Dipl.-Math. Katharina Hübner Born in: Nürnberg Oral examination: Aspherical neighborhoods on arithmetic surfaces Advisors: Prof. Dr. Alexander Schmidt Prof. Dr. Kay Wingberg Abstract Aspherical neighborhoods on arithmetic surfaces On arithmetic surfaces over local or global rings of integers this thesis exam- ines whether a geometric point has a basis of étale neighborhoods which are Kpπ,1q with respect to a full class of finite groups c. These neighborhoods are also called aspherical neighborhoods. In this thesis we will consider only classes of finite groups c such that the order of all groups in c is prime to the residue characteristics of the arithmetic surface in question. In the local case we construct a basis of Kpπ,1q-neighborhoods for any geometric point of a normal (but not necessarily regular) arithmetic surface. In the global case the existence of such bases of neighborhoods is proven under additional regularity assumptions and a condition on the l-division points of the Jaco- bian of the generic fibre. Moreover, we assume in the global case case that c is the class of finite l-groups for a prime number l that is invertible on the arithmetic surface. Asphärische Umgebungen auf arithmetischen Flächen Die vorliegende Arbeit beschäftigt sich mit der Existenz asphärischer étaler UmgebungsbasenaufarithmetischenFlächen,auchKpπ,1q-Umgebungsbasen genannt. Genauer wird die Kpπ,1q-Eigenschaft bezüglich einer vollen Klasse endlicher Gruppen c untersucht, wobei die Ordnung aller Gruppen in c teiler- fremd zu den Restklassencharakteristiken der jeweiligen arithmetischen Flä- che ist. Das Basisschema der hier behandelten arithmetischen Flächen ist dabei stets ein lokaler oder globaler Zahlring. Im lokalen Fall wird für alle normalen (aber nicht notwendigerweise regulären) arithmetischen Flächen eine Kpπ,1q-Umgebungsbasis konstruiert. Für den globalen Fall sind zusät- zlicheReguläritätsannahmenundeineBedingungandiel-Teilungspunkteder Jacobischen der generischen Faser notwendig. Außerdem beschränkt sich die Untersuchung auf die Klasse cplq der endlichen l-Gruppen für eine auf der arithmetischen Fläche invertierbare Primzahl l. 1 Acknowledgements I would like to thank my advisor Alexander Schmidt, firstly for arousing my interest in Kpπ,1q- schemes and secondly for many fruitful discussions about this topic. I would like to thank Kay Wingbergformakingtheefforttobemysecondadvisor. FurtherthanksgotoArminHolschbach, Johannes Schmidt, Johannes Anschütz, and Malte Witte for answering my various questions. I wanttothankDavidRohrforproof-readingmythesisalthoughheworksinacompletelydifferent field. Finally, my thanks go to the members of the mathematical institute for accompanying me throughmytimeasadoctoralstudent,forinterestingseminars,andformanylivelyconversations during coffee breaks. 2 Contents Acknowledgements 1 Contents 2 1 Introduction 4 2 Setup and Notation 8 2.1 The Kpπ,1q-property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Arithmetic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Tame coverings of arithmetic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Non-existence of good Artin neighborhoods 17 4 Exceptional fibres 21 4.1 The local structure of tame coverings . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Rational Singularities and the dual graph . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 Explicit desingularizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4 The generalized exceptional fibre of a desingularized tame covering. . . . . . . . . 33 4.5 Multiplicities of the exceptional divisors . . . . . . . . . . . . . . . . . . . . . . . . 37 5 Cohomology with support 40 5.1 Absolute cohomological purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2 Cohomology and dual graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 Killing cohomology with support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 Higher direct Images 54 6.1 The Leray Spectral Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2 Killing the Cohomology of higher direct images . . . . . . . . . . . . . . . . . . . . 56 6.3 The intersection matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.4 The first higher direct image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.5 The second higher direct image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 CONTENTS 3 7 Construction of Kpπ,1q neighborhoods 76 7.1 Stability of certain properties under desingularized tame coverings . . . . . . . . . 76 7.2 Neighborhoods with enough tame coverings . . . . . . . . . . . . . . . . . . . . . . 80 7.3 Construction of suitable étale neighborhoods . . . . . . . . . . . . . . . . . . . . . 83 8 The main results 86 Bibliography 89 4 Chapter 1 Introduction A classical result in topology states that every CW-complex is locally contractible. In other words, for every point x in a CW-complex X we find an open neighborhood U of x such that the inclusiontxuãÑU isahomotopyequivalence. InthecategoryofCW-complexesthisisequivalent to saying that the induced maps of homotopy groups with base point x are isomorphisms, i.e., that txuãÑU is a weak homotopy equivalence. Since the homotopy groups of a point are trivial, this amounts to saying that every point of X has a neighborhood with trivial homotopy groups. As a consequence, we can cover X by contractible open subsets. The topological properties of X are then completely encoded in the way these open subsets are patched together to form X. We would like to have a similar result in étale homotopy theory. Let us sketch shortly what étale homotopy theory is about. In [Fri II] it is explained how to functorially assign to a locally noetherian scheme X with geometric point x¯ a pointed pro-CW-complex, the étale topological type. Strictly speaking the étale topological type is not a pro-CW-complex but a pro-simplicial set. After geometric realization, however, we can view it as pro-CW-complex. Its image in the pro-homotopy category of CW-complexes is denoted X and is called étale homotopy type of X. ét It was already constructed in [AM]. To the pro-CW-complex X we can associate its homotopy ét pro-groups π pX q. In [SGA3], Exp. X, §6 there is already defined a first homotopy pro-group n ét for X, the "pro-groupe fondamentale enlargi" π pX,x¯q. In order for étale homotopy theory to be 1 useful, the first homotopy group of the étale homotopy type X should be related to π pX,x¯q. ét 1 And indeed, by [AM], Corollary 10.7 we have π pX q–π pX,x¯q. It thus makes sense to define 1 ét 1 the étale homotopy pro-groups of X as π pX,x¯q:“π pX q. n n ét If X is connected, geometrically unibranch, and noetherian, the étale homotopy pro-groups are profinite (see [AM], Theorem 11.1) and thus can be interpreted as topological groups. In this case the first homotopy group coincides with the fundamental group defined in [SGA1]. Further- more, étale homotopy theory is compatible with étale cohomology in the following sense: Via the isomorphism π pX q – π pX,x¯q the locally constant étale sheaves on X are in one-to-one 1 ét 1 correspondence with the local systems on X . If (cid:65) is a locally constant sheaf on X and A its ét corresponding local system on X , we have ét HnpX,(cid:65)q–HnpX ,Aq ét by [AM], Corollary 10.8. Let us return to the problem of local contractibility. The étale homotopy type X is in general ét not a CW-complex but a pro-CW-complex. In the category of pro-CW-complexes there is a priori no canonical notion of homotopy equivalence. Yet, we can still speak of a weak homotopy equivalence by saying that it induces isomorphisms on homotopy pro-groups. Following [AM], we will write 7-isomorphism instead of weak homotopy equivalence. In general, we cannot expect to find étale neighborhoods of a geometric point x¯ in X such that all homotopy pro-groups

Description:
want to thank David Rohr for proof-reading my thesis although he works in a . If X is connected, geometrically unibranch, and noetherian, the étale
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.