EPJ manuscript No. (will be inserted by the editor) Aspects of quark mass generation on a torus C. S. Fischer1 and M. R. Pennington2 a 1 Institut fu¨r Kernphysik,Technical University of Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt, Germany 7 2 IPPP, Durham University,Durham DH13LE, U.K. 0 0 2 Received: date/ Revised version: date n a Abstract. In this talk we report on recent results for the quark propagator on a compact manifold. The J corresponding Dyson-Schwinger equations on a torus are solved on volumes similar to the ones used in 6 lattice calculations. The quark-gluon interaction is fixed such that the lattice results are reproduced. We 1 discussboththeeffectsintheinfinitevolume/continuumlimitaswellaseffectswhenthevolumeissmall. 1 PACS. 1 2.38.Aw, 12.38.Gc, 12.38.Lg, 14.65.Bt v 3 2 1 Introduction 1 1 −1 −1 1 = - 0 InthelowenergysectorofQCDdynamicalchiralsymme- 2 7 try breaking is the dominant nonperturbative effect with 0 respect to hadron phenomenology. Thus any framework 1 1 - - / attempting to explainthe spectraanddecaypropertiesof 2 6 h p light hadrons has to satisfy all constraints related to the - correct pattern of chiral symmetry breaking in QCD. In p thisrespectlatticesimulationshavetodealwithtwotypes 1 e ofproblems:onthe onehand,commutationrelationsbet- - 2 + h ween γ-matrices are affected by the finite lattice spacing. : v On the other hand, there is the finite volume. Since con- 1 1 Xi tinuous symmetries cannot be spontaneously broken at a − = − - finite volume V, chiral symmetry is restored in the limit r a of zero current quark mass, m 0 (see e.g. [1]). Thus one first has to perform both th→e continuum and infinite (cid:0)1 (cid:0)1 volume limit before one can investigate the chiral limit. = + Inturn,studies withphysicalup-anddown-quarkmasses necessarily require large volumes to avoid chiral restora- Fig.1.Dyson-Schwingerequationsforthegluon(curly),ghost tion effects. (dashed) and quark (straight lines) propagators. Filled circles denote dressed propagators and empty circles denote dressed Itiscertainlydesirabletostudyvolumeeffectsinchiral vertexfunctions. symmetrybreakingindifferentframeworks.Chiralpertur- bationtheoryhasturnedouttobeareliabletoolforboth volumeandchiralextrapolations.Onthe otherhand,chi- 2 Quark-gluon interaction ral perturbation theory has nothing to say about volume effects in the underlying quark and gluon substructure. For this the Green’s function approachemploying Dyson- TheDyson-Schwingerequations(DSEs)fortheghost,gluon Schwinger equations (DSEs) [2,3] provides a suitable al- and quark propagatorsD ,D ,S(p) ternative. In this talk we present results for the quark G µ,ν propagator in Landau gauge QCD. Based on ideas devel- oped in [4,5], we use lattice results to fix the quark-gluon G(p2) D (p)= , (1) interaction at quark masses accessible on the lattice. To G − p2 this end we solve the DSEs on tori with similar volumes. p p Z(p2) µ ν We then change currentquark massesand volumes to ex- Dµν(p)=(cid:18)δµν − p2 (cid:19) p2 , (2) plore the corresponding effects on the quark propagator. Z (p2) f a Talk given by CF at QNP06, Madrid, June 2006. S(p)= ip+M(p2) , (3) 6 2 C. S.Fischer, M. R.Pennington: Aspects of quarkmass generation on a torus in quenched approximation are given diagrammatically h Λg ΛQCD a1 a2 a3 in Fig. 1. This system of equations is closed but for the (GeV) (GeV) dressed vertices, which have to be approximated by suit- able ansa¨tze. The truncation scheme for the Yang-Mills staggered 1.48 1.50 0.35 18.39 5.25 -0.21 sectorisdiscussede.g.in[3,6].Thecorrespondingnumer- Table 1. Parameters used in thevertex model, Eqs. (7-10). ical solutions for the ghost and gluon propagator can be represented accurately by c(p2/Λ2 )κ+d(p2/Λ2 )2κ R(p2)= YM YM , In[5]theparametershavebeenfittedsuchthatlattice 1+c(p2/Λ2 )κ+d(p2/Λ2 )2κ YM YM results for the quark propagator [8,9] are reproduced on α(p2) 1+2δ similar compact manifolds. To this end, solutions for the Z(p2)=(cid:18)α(µ2)(cid:19) R2(p2), (4) ghost and gluon propagators on similar manifolds have been used [10]. These solutions have been improved in G(p2)=(cid:18)αα((µp22))(cid:19)−δR−1(p2), (5) [c1a1n]bweitsheetnheonefftoercitwthitahtvtohleumcoersrelacrtgienrfitnhiatenvVolum(1e0lfimm)it4s. ≈ Here we use the improved solutions to update the results with the scale ΛYM = 0.658GeV, the coupling α(µ2) = for the quark propagator reported in [5]. The resulting 0.97 and the parameters c = 1.269 and d = 2.105 in the modified values for the parameters (staggered quarks [8] auxiliaryfunctionR(p2).Thequenchedanomalousdimen- only) are given in Fig. 1. The numerical results, shown sion of the ghost is given by δ = 9/44 and related via below, are discussed in the next section. − γ = 1 2δ to the one of the gluon. The infrared ex- − − ponent κ is determined in an analytical infrared analysis [7]: κ = (93 √1201)/98 0.595. The running coupling α(p2),define−dviathe nonp≈erturbativeghost-gluonvertex 0.5 Bowman et al (2002) α(p2)=α(µ2)G2(p2)Z(p2), can be represented by Torus Infinite volume/continuum 0.4 Chiral limit 1 α(p2)= α(0)+p2/Λ2 1+p2/Λ2 (cid:20) YM × ] YM V 4π 1 1 e0.3 G . (6) β0 (cid:18)ln(p2/Λ2YM) − p2/Λ2YM −1(cid:19)(cid:21) M [ 0.2 where α(0) 8.915/N is also known analytically [7]. c ≈ Apart from the gluon propagator the other missing 0.1 piece in the quark-DSEis the quark-gluonvertex.We use an ansatz of the form [5] 0 Γν(k,µ2) = γνΓ1(k2)Γ2(k2,µ2)Γ3(k2,µ2) (7) 0 1 2 3 4 p [GeV] with the components πγ 1.0 Γ1(k2) = ln(k2/Λ2m +τ), (8) QCD 0.9 Γ2(k2,µ2) =G(k2,µ2) G(ζ2,µ2) Z3(µ2) ] (9) V × h [ln(k2/Λ2ge+τ)]1+δ Ge 0.8 [ a(M)+k2/Λ2 Z f Γ3(k2,µ2) =Z2(µ2) 1+k2/Λ2 QCD , (10) 0.7 BToorwumsan et al. (2002) QCD Infinite volume/continuum Chiral limit where γ = 12/33 is the quenched anomalous dimension m 0.6 of the quark and τ = e 1 acts as a convenient infrared − cutoff for the logarithms. The quark mass dependence of 0 1 2 3 4 the vertex is parametrised by q [GeV] a(M) = a1 , Fig.2.ThequarkmassfunctionM(p2)andthewavefunction 1+a2M(ζ2)/ΛQCD+a3M2(ζ2)/Λ2QCD Zf(p2)forrenormalisedcurrentquarkmassesofm(2.9GeV)= (11) 44, 80, 151MeV.Comparedarelatticeresultsof[8]withDSE- where M(ζ2) is determined during the iteration process solutions on a torus (straight lines with filled circles) and in at ζ =2.9 GeV. theinfinitevolume/continuum limit (dashed lines). C. S.Fischer, M. R.Pennington: Aspects of quarkmass generation on a torus 3 3 Numerical results 80 Our results for the quark mass function M(p2) and the ] wavefunctionZ (p2)forrenormalisedcurrentquarkmasses eV 60 f M of m(2.9GeV) = 44,80,151MeV are displayed in Fig. 2. [ The data for the quark mass function from the staggered GeV)40 latticeactioncanbeverywellreproducedwiththesimple =1 p vertex ansatz specified in the last section. The results for M( 20 the wave functions agree less with each other: the lattice dataforthethreedifferentmassesaresmallerspreadthan theDSE-results.Thismaybeanindicationfortheimpor- 0 0.8 1.0 1.2 1.4 1.6 1.8 2.0 tanceoftensorstructuresinthequark-gluonvertexdiffer- L [fm] entfromthe simple γ -termusedin Eqs.(7-10).InFig. 2 µ we also show results in the infinite volume/continuum Fig. 3. The quark mass function for an up/down quark at a limit. For the quark mass function these are very close given momentum p = 1GeV plotted as a function of the box length L=V1/4. to the results on the compact manifold, indicating that the used lattice volume, V = (2.04 fm)4 is indeed large enough s.t. the correct pattern of chiral symmetry break- manifold is at least ing can be observed for the quark masses shown. Small effects are only seen in the renormalisation point depen- L 1.6 fm. (12) χSB dentandthereforeunphysicalquarkwavefunctionZ (p2). ≃ f Thisresultagreeswithconclusionsfromvolumestudieson Inparticularthisgivesa(surprisinglysmall)miminalbox the lattice [12].1 lengthbelowwhichchiralperturbationtheorycannotsafely Theresultingquarkmassandwavefunctionsinthein- be applied. finitevolume,continuumandchirallimitarealsoshownin Fig. 2. The correspondingquark mass at zero momentum Acknowledgements isM(0)=400MeV.Inthe complexmomentumplane the propagatorhasaleadinganalyticstructuregivenbyapair We thank the organisers of QNP06 for all their efforts. of conjugate poles at m = 416(20) i304(20) MeV. The ± CF has been supported by the Deutsche Forschungsge- corresponding spectral function violates positivity and is meinschaft (DFG) under contract Fi 970/7-1. therefore characteristical for a confined quark. The chi- ral condensate is q¯q 2GeV = (235 5MeV)3, using the |h i|MS ± quenched scale Λ = 225(21)MeV in the MS scheme. MS References The pion decay constant, as determined from solutions of the pion Bethe-Salpeter equation, is f = 72MeV. Both π 1. H.LeutwylerandA.Smilga,Phys.Rev.D46(1992) 5607. values are considerably smaller than the experimental re- 2. R.Alkofer and L. von Smekal,Phys. Rept. 353 (2001) 281 sult.Takenatfacevaluethismeansthatthequenchedthe- [arXiv:hep-ph/0007355]. oryunderestimatesthe amountofchiralsymmetrybreak- 3. C. S. Fischer, J. Phys. G 32 (2006) R253 ingbyabout10-20percent.Asimilarconclusionhasbeen [arXiv:hep-ph/0605173]. drawn in [4]. 4. M. S. Bhagwat et al., Phys. Rev. C 68, 015203 (2003) Finallywestudythebehaviourofthequarkmassfunc- [arXiv:nucl-th/0304003]. tion at smallvolumes.In Fig. 3 we plotM(p=1GeV) as 5. C.S.FischerandM.R.Pennington,Phys.Rev.D73(2006) a function of the box length L. The corresponding cur- 034029 [arXiv:hep-ph/0512233]. rent quark mass is of the order of a typical up/down- 6. C. S. Fischer and R. Alkofer, Phys. Lett. B 536 (2002) quark mass, M(p = 2.9GeV) = 10MeV. We clearly see 177[arXiv:hep-ph/0202202];Phys.Rev.D67(2003)094020 that the quark mass function grows rapidly in the range [arXiv:hep-ph/0301094]. 7. C. Lerche and L. von Smekal, Phys. Rev. D 65, 125006 1.0 < L < 1.6 fm signalling the onset of dynamical chi- (2002) [arXiv:hep-ph/0202194]. ral symmetry breaking. Above L = 1.6 fm, a plateau is 8. P.O.Bowman,U.M.HellerandA.G.Williams,Phys.Rev. reached.Thispicturedoesnotchangewhenweextractthe D 66 (2002) 014505 [arXiv:hep-lat/0203001]. mass function M(p2) at smaller momenta p2 or when we 9. J. B. Zhang et al., Phys. Rev. D 71, 014501 (2005) employ even smaller quark masses. The value is also not [arXiv:hep-lat/0410045]. dependent on the type of quark-gluon interaction used. 10. C. S. Fischer, R. Alkofer and H. Reinhardt, Phys. Rev. The result indicates that a safe volume to reproduce the D 65 (2002) 094008 [arXiv:hep-ph/0202195]; C. S. Fischer, correctpatternofchiralsymmetrybreakingonacompact B. Gruter and R. Alkofer, Annals Phys. 321 (2006) 1918 [arXiv:hep-ph/0506053]. 1 The larger volume effects found in [5] also for the mass 11. C.S.Fischer,A.Maas,J.M.PawlowskiandL.vonSmekal, functionareduetoanoverestimationoftheeffectsintheYang- arXiv:hep-ph/0701050. Mills sector. An improved analysis of volume effects in the 12. J.B.Zhangetal.,Nucl.Phys.Proc.Suppl.141,15(2005). ghost and gluon propagators can be found in [11].