ebook img

Aspects of integrability of differential systems and fields PDF

101 Pages·2019·0.646 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Aspects of integrability of differential systems and fields

SPRINGER BRIEFS IN PHYSICS Costas J. Papachristou Aspects of Integrability of Differential Systems and Fields A Mathematical Primer for Physicists 123 SpringerBriefs in Physics Series Editors BalasubramanianAnanthanarayan,CentreforHighEnergyPhysics,IndianInstitute of Science, Bangalore, India EgorBabaev,PhysicsDepartment,UniversityofMassachusettsAmherst,Amherst, MA, USA MalcolmBremer,HHWillsPhysicsLaboratory,UniversityofBristol,Bristol,UK Xavier Calmet, Department of Physics and Astronomy, University of Sussex, Brighton, UK FrancescaDiLodovico,DepartmentofPhysics,QueenMaryUniversityofLondon, London, UK Pablo D. Esquinazi, Institute for Experimental Physics II, University of Leipzig, Leipzig, Germany Maarten Hoogerland, University of Auckland, Auckland, New Zealand Eric Le Ru, School of Chemical and Physical Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand Hans-Joachim Lewerenz, California Institute of Technology, Pasadena, CA, USA Dario Narducci, University of Milano-Bicocca, Milan, Italy James Overduin, Towson University, Towson, MD, USA Vesselin Petkov, Montreal, QC, Canada Stefan Theisen, Max-Planck-Institut für Gravitationsphysik, Golm, Germany Charles H.-T. Wang, Department of Physics, The University of Aberdeen, Aberdeen, UK James D. Wells, Physics Department, University of Michigan, Ann Arbor, MI, USA Andrew Whitaker, Department of Physics and Astronomy, Queen’s University Belfast, Belfast, UK SpringerBriefs in Physics are a series of slim high-quality publications encom- passing the entire spectrum of physics. Manuscripts for SpringerBriefs in Physics willbeevaluatedbySpringerandbymembersoftheEditorialBoard.Proposalsand other communication should be sent to your Publishing Editors at Springer. Featuring compact volumes of 50 to 125 pages (approximately 20,000-45,000 words),Briefsareshorterthanaconventionalbookbutlongerthanajournalarticle. Thus,Briefsserveastimely,concisetoolsforstudents,researchers,andprofessionals. Typical texts for publication might include: (cid:129) A snapshot review of the current state of a hot or emerging field (cid:129) A concise introduction to core concepts that students must understand in order to make independent contributions (cid:129) Anextendedresearchreportgivingmoredetailsanddiscussionthanispossible in a conventional journal article (cid:129) A manual describing underlying principles and best practices for an experi- mental technique (cid:129) An essay exploring new ideas within physics, related philosophical issues, or broader topics such as science and society Briefs allow authors to present their ideas and readers to absorb them with minimal time investment. Briefs will bepublished aspart of Springer’s eBook collection,withmillionsof users worldwide. In addition, they will be available, just like other books, for individual print and electronic purchase. Briefs are characterized by fast, global electronic dissemination, straightforward publishing agreements, easy-to-use manuscript preparation and formatting guide- lines,andexpeditedproductionschedules.Weaimforpublication8-12weeksafter acceptance. More information about this series at http://www.springer.com/series/8902 Costas J. Papachristou Aspects of Integrability of Differential Systems and Fields A Mathematical Primer for Physicists 123 Costas J.Papachristou Department ofPhysical Sciences Hellenic Naval Academy Piraeus, Greece ISSN 2191-5423 ISSN 2191-5431 (electronic) SpringerBriefs inPhysics ISBN978-3-030-35001-7 ISBN978-3-030-35002-4 (eBook) https://doi.org/10.1007/978-3-030-35002-4 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thismonograph,writtenatanintermediatelevelforeducationalpurposes,servesas anintroductiontotheconceptofintegrabilityasitappliestosystemsofdifferential equations (both ordinary and partial) as well as to vector-valued fields. We stress fromtheoutsetthatthisisnotatreatiseonthetheoryorthemethodsofsolutionof differential equations! Instead, we have chosen to focus on specific aspects of integrability that are often encountered in a variety of problems in Applied Mathematics, Physics, and Engineering. With regard to Physics, in particular, integrability is a subject of major impor- tance given that most physical principles are expressed mathematically as systems of differential equations. In Classical Mechanics, certain mathematical techniques are employed in order to integrate the equations of a Newtonian or a Hamiltonian system.Thesemethodsinvolveconceptssuchasconservationlaws,whichfurnisha numberofconstantsofthemotionforthesystem.InElectrodynamics,ontheother hand,theintegrability(self-consistency)oftheMaxwellsystemofequationsisseen tobeintimatelyrelatedtothewavelikebehavioroftheelectromagneticfield.Inthe staticcase,theintegrability(inthesenseofpath-independence)oftheelectricfield leadstotheconceptoftheelectrostaticpotential.Finally,anumberofmethodshave been developed for finding solutions of nonlinear partial differential equations that areofinterestinMathematicalPhysics.Beforeembarkingonthestudyofadvanced Physics problems, therefore, the student will benefit by being exposed to some fundamentalideasregardingthemathematicalconceptofintegrabilityinitsvarious forms. The following cases of integrability are examined in this book: (a) path- independenceoflineintegralsofvectorfieldsontheplaneandinspace;(b)integra- tion of a system of ordinary differential equations (ODEs) by using first integrals; and (c) integrable systems of partial differential equations (PDEs). Special topics includetheintegrationofanalyticfunctionsandsomeelementsfromthegeometric theoryofdifferentialsystems.Certainmoreadvancedsubjects,suchasLaxpairsand Bäcklund transformations, are also discussed. The presentation sacrifices mathe- maticalrigorinfavorofsimplicity,asdictatedbypedagogicallogic. v vi Preface A vector field is said to be integrable in a region of space if its line integral is independentofthepathconnectinganytwopointsinthisregion.Aswillbeseenin Chap. 1, this type of integrability is related to the integrability of an associated system of PDEs. Similar remarks apply to the case of analytic functions on the complexplane,examinedinChap.2.Inthiscase,theintegrablesystemofPDEsis represented by the familiar Cauchy-Riemann relations. In Chap. 3, we introduce the concept of first integrals of ODEs and we demonstrate how these quantities can be used to integrate those equations. As a characteristic example, the principle of conservation of mechanical energy is used tointegratetheODEexpressingNewton’ssecondlawofmotioninonedimension. ThisdiscussionisgeneralizedinChap.4forsystemsoffirst-orderODEs,where thesolutiontotheproblemisagainsoughtbyusingfirstintegrals.Themethodfinds animportantapplicationinfirst-orderPDEs,thesolutionprocessofwhichisbriefly described. Finally, we study the case of a linear system of ODEs, the solution of which reduces to an eigenvalue problem. Chapter 5 examines systems of ODEs from the geometric point of view. Concepts of Differential Geometry such as the integral and phase curves of a differential system, the differential-operator representation of vector fields, the Lie derivative,etc.,areintroducedatafundamentallevel.Thegeometricsignificanceof first-order PDEs is also studied, revealing a close connection of these equations with systems of ODEs and vector fields. Two notions of importance in the theory of integrable nonlinear PDEs are Bäcklund transformations and Lax pairs. In both cases, a PDE is expressed as an integrabilityconditionforsolutionofanassociatedsystemofPDEs.Theseideasare briefly discussed in Chap. 6. A familiar system of PDEs in four dimensions, namely,theMaxwellequationsfortheelectromagneticfield,isshowntoconstitute a Bäcklund transformation connecting solutions of the wave equations satisfied by theelectricandthemagneticfields.ThesolutionoftheMaxwellsystemforthecase of a monochromatic plane electromagnetic wave is derived in detail. Finally, the useofBäcklundtransformationsasrecursionoperatorsforproducingsymmetriesof PDEs is described. I would like to thank my colleague and friend Aristidis N. Magoulas for an excellent job in drawing a number of figures, as well as for several fruitful dis- cussions on the issue of integrability in Electromagnetism. Piraeus, Greece Costas J. Papachristou September 2019 Contents 1 Integrability on the Plane and in Space . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Simply and Multiply Connected Domains . . . . . . . . . . . . . . . . . . 1 1.2 Exact Differentials and Integrability. . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Line Integrals and Path Independence . . . . . . . . . . . . . . . . . . . . . 6 1.4 Potential Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Conservative Force Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Integrability on the Complex Plane . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Analytic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Integrals of Complex Functions. . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Some Basic Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Antiderivative and Indefinite Integral of an Analytic Function. . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 The Concept of the First Integral. . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Exact Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Integrating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Higher-Order Differential Equations. . . . . . . . . . . . . . . . . . . . . . . 32 3.5 Application: Newton’s Second Law in One Dimension. . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Systems of Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . 37 4.1 Solution by Seeking First Integrals . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Application to First-Order Partial Differential Equations . . . . . . . . 43 4.3 System of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 vii viii Contents 5 Differential Systems: Geometric Viewpoint. . . . . . . . . . . . . . . . . . . . 53 5.1 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Geometric Significance of the First Integral . . . . . . . . . . . . . . . . . 57 5.3 Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.4 Differential Operators and Lie Derivative. . . . . . . . . . . . . . . . . . . 61 5.5 Exponential Solution of an Autonomous System . . . . . . . . . . . . . 63 5.6 Vector Fields as Generators of Transformations . . . . . . . . . . . . . . 65 5.7 Geometric Significance of First-Order PDEs. . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6 Integrable Systems of Partial Differential Equations. . . . . . . . . . . . . 71 6.1 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.2 Bäcklund Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3 Lax Pair for a Nonlinear PDE. . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.4 The Maxwell Equations as a Bäcklund Transformation. . . . . . . . . 76 6.5 Bäcklund Transformations as Recursion Operators . . . . . . . . . . . . 80 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Appendix A: Conservative and Irrotational Fields. .... .... ..... .... 85 Appendix B: Matrix Differential Relations ... .... .... .... ..... .... 89 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 93 Chapter 1 Integrability on the Plane and in Space 1.1 SimplyandMultiplyConnectedDomains WebeginwithafewbasicconceptsfromTopologythatwillbeneededinthesequel. AdomainDontheplaneissaidtobesimplyconnectedif,foreveryclosedcurve C withinthisdomain,everypointoftheplaneintheinteriorofC isalsoapointof D.Alternatively,thedomainDissimplyconnectedifeveryclosedcurveinDcanbe shrunktoapointwithouteverleavingthisdomain.Ifthisconditionisnotfulfilled, thedomainiscalledmultiplyconnected. InFig.1.1,theregion(α)issimplyconnected,theregion(β)isdoublyconnected while the region (γ) is triply connected. Notice that there are two kinds of closed curvesinregion(β):thosethatdonotencirclethe“hole”andthosethatencircleit. (Wenotethattheholecouldevenconsistofasinglepointsubtractedfromtheplane.) Byasimilarreasoning,thetripleconnectednessofregion(γ)isduetothefactthat therearethreekindsofclosedcurvesinthisregion:thosethatdonotencircleany hole,thosethatencircleonlyonehole(nomatterwhichone!)andthosethatencircle twoholes. AdomainΩ inspaceissimplyconnected if,foreveryclosedcurveC insideΩ, thereisalwaysanopensurfaceboundedbyC andlocatedentirelywithinΩ.This (α) (β) (γ) Fig.1.1 Threedomainsontheplane,havingdifferenttypesofconnectedness ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2019 1 C.J.Papachristou,AspectsofIntegrabilityofDifferentialSystemsandFields, SpringerBriefsinPhysics,https://doi.org/10.1007/978-3-030-35002-4_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.