ebook img

Aspects of Calculus PDF

525 Pages·1986·12.955 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Aspects of Calculus

Undergraduate Texts in Mathematics Editors F. W. Gehring P. R. Halmos Advisory Board C. DePrima I. Herstein Undergraduate Texts in Mathematics Apostol: Introduction to Analytic Halmos: Finite-Dimensional Vector Number Theory. Spaces. Second edition. Armstrong: Basic Topology. Halmos: Naive Set Theory. BaklNewman: Complex Analysis. Iooss/Joseph: Elementary Stability and Bifurcation Theory. Banchoff/Wermer: Linear Algebra Through Geometry. Janich: Topology. Childs: A Concrete Introduction to Kemeny/Snell: Finite Markov Chains. Higher Algebra. Klambauer: Aspects of Calculus. Chung: Elementary Probability Theory with Stochastic Processes. Lang: Undergraduate Analysis. Croom: Basic Concepts of Algebraic Lang: A First Course in Calculus. Fifth Topology. Edition. Curtis: Linear Algebra: Lang: Calculus of One Variable. Fifth Edition. An Introductory Approach. Lang: Introduction to Linear Algebra. Second Dixmier: General Topology. Edition. Driver: Why Math? Lax/Burstein/Lax: Calculus with Applications and Computing, Volume I. Ebbinghaus/FJum/Thomas Corrected Second Printing. Mathematical Logic. LeCuyer: College Mathematics with APL. Fischer: Intermediate Real Analysis. Lidl/Pilz: Applied Abstract Algebra. Fleming: Functions of Several Variables. Second edition. Macki/Strauss: Introduction to Optimal Control Theory. Foulds: Optimization Techniques: An Introduction. Malitz: Introduction to Mathematical Logic. Foulds: Combination Optimization for Undergraduates. Marsden/Weinstein: Calculus I, II, III. Second edition. Franklin: Methods of Mathematical Economics. continued after Index Gabriel Klambauer Aspects of Calculus With 82 Illustrations Springer-Verlag New York Berlin Heidelberg Tokyo Gabriel Klambauer Department of Mathematics University of Ottawa Ottawa KIN 9B4 Ontario Canada Editorial Board F. W. Gehring P. R. Halmos Department of Mathematics Department of Mathematics University of Michigan University of Santa Clara Ann Arbor, MI 48019 Santa Clara, CA 95053 U.S.A. U.S.A. AMS Subject Classification: 26-01, 26-A06 Library of Congress Cataloging in Publication Data Klambauer, Gabriel. Aspects of calculus. (Undergraduate texts in mathematics) Bibliography: p. Includes index. 1. Calculus. I. Title. II. Series. QA303.K654 1986 515 85-30283 © 1986 by Springer-Verlag New York Inc. Softcover reprint of the hardcover 1st edition 1986 All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. Typeset by Asco Trade Typesetting Ltd., Hong Kong. 9 8 7 6 5 4 3 2 1 ISBN-13 :978-1-4613-9563-8 e-ISBN-13 :978-1-4613-9561-4 DOl: 10.1007/978-1-4613-9561-4 To Agnes Catherine Preface This book is intended for students familiar with a beginner's version of differential and integral calculus stressing only manipulation offormulas and who are now looking for a closer study of basic concepts combined with a more creative use of information. The work is primarily aimed at students in mathematics, engineering, and science who find themselves in transition from elementary calculus to rigorous courses in analysis. In addition, this book may also be of interest to those preparing to teach a course in calculus. Instead of exposing the reader to an excess of premature abstractions that so easily can degenerate into pedantry, I felt it more useful to stress instruc tive and stimulating examples. The book contains numerous worked out examples and many of the exercises are provided with helpful hints or a solution in outline. For further exercises the interested reader may want to consult a problem book by the author entitled Problems and Propositions in Analysis (New York: Marcel Dekker, 1979). For the history of calculus I recommend the book by C. B. Boyer, The Concepts of the Calculus (New York: Dover, 1949). This book is made up of seven chapters and the Contents gives detailed information concerning the topics covered. The book begins with a study of the logarithmic and exponential functions. The treatment of these functions is geometric rather than arithmetic in nature and quickly leads to the evalua tion of certain limits that are of crucial importance; the approach, which depends on a specific relation between hyperbolic segment and logarithmic function, goes back to A. A. de Sarasa (1618~ 1667). In the Bibliography at the end of the book the reader will find suitable references for further study. I thank Professor P. R. Halmos, Indiana University, for the kind interest he has shown in my work, my son Peter who prepared the illustrations for this book, and my friends Dr. E. L. Cohen, University of Ottawa, and Dr. viii Preface G. K. R. Rao, University of Kenya, for valuable help and steadfast encourage ment. I also wish to express my gratitude to the Board of Governors of the University of Ottawa for the benefit of a sabbatical leave during a portion of the writing of this book, and to the staff of Springer-Verlag for their fine cooperation. Gabriel Klambauer Contents CHAPTER 1 The Logarithmic and Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . 1 1. An Area Problem .............................................. . 2. The Natural Logarithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3. The Exponential Function ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4. The Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5. Miscellaneous Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Exercises to Chapter 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 CHAPTER 2 Limits and Continuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1. Limits........................................................ 49 2. Continuity..................................................... 68 3. Monotonic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4. Miscellaneous Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Exercises to Chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 CHAPTER 3 Differentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 1. Basic Rules of Differentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 2. Derivatives of Basic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3. Mechanics of Differentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4. Asymptotes.................................................... 131 5. Tangent to a Conic Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Exercises to Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 x Contents CHAPTER 4 Applications of Differentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 1. Mean Value Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2. Taylor's Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 3. Concave Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 4. Newton's Method for Approximating Real Roots of Functions. ... ..... 190 5. Arithmetic and Geometric Means. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 6. Miscellaneous Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Exercises to Chapter 4........................................... . . ... 232 CHAPTER 5 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 1. Examples of Area Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 2. Area of a Planar Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 3. The Riemann Integral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 4. Basic Propositions of Integral Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 5. Numerical Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Exercises to Chapter 5. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 302 CHAPTER 6 Additional Topics in Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 1. The Indefinite Integral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 2. Some Techniques ofIntegration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 3. Integration of Rational Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 4. Integration by Rationalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 5. Some Applications of Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Exercises to Chapter 6................................................ 370 CHAPTER 7 Infinite Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 1. Numerical Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 2. The Formulas of Wallis and Stirling............................... 406 3. Numerical Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 4. Groupings and Rearrangements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 5. Uniform Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 6. Power Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 7. Some Important Power Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 8. Miscellaneous Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 Exercises to Chapter 7. . .. . . . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . 497 Bibliography 512 Index 513 CHAPTER 1 The Logarithmic and Exponential Functions 1. An Area Problem The curve y = l/x, for x > 0, is of special interest to us; it is located above the x-axis in the first quadrant of the x, y plane and it is seen to be symmetric with respect to the line y = x (because the equation xy = 1 remains un changed when x and yare interchanged). See Figure 1.1 for a display of the curve under consideration. ° Definition. If < a < b, let Aa, b denote the area of the region bounded above by the curve y = l/x, bounded below by the x-axis, bounded °to the left by the line x = a, and bounded to the right by the line x = b; if < b < a, let Aa,b = - Ab,a' It is easily seen that Aa,a = 0, Aa,b = - Ab,a, and Aa,c = Aa,b + Ab,c (1.1) for any points a, b, and c on the positive part of the x-axis [see Figure 1.2 and Figure 1.3 in connection with equation (1.1)]. Perhaps less obvious is the relation (1.2) for any r > 0. To verify equation (1.2) we° pr oceed as follows. Suppose r > 1. (The case r = 1 needs no proof; the case < r < 1 reduces to the case under consideration when we interchange the roles of rand l/r.) In Figure 1.4 the region indicated by vertical cross-hatching has the same area as the region indicated by horizontal cross-hatching because the rectangle R2 (with ver tical cross-hatching) and the rectangle Rl (with horizontal cross-hatching)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.