ebook img

Aspects of Boundary Problems in Analysis and Geometry PDF

573 Pages·2004·16.178 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Aspects of Boundary Problems in Analysis and Geometry

Operator Theory: Advances and Applications Vol. 151 Editor: I. Gohberg Editorial Office: School of Mathematical H. G. Kaper (Argonne) Sciences S. T. Kuroda (Tokyo) Tel Aviv University P. Lancaster (Calgary) Ramat Aviv, Israel L. E. Lerer (Haifa) B. Mityagin (Columbus) Editorial Board: V. V. Peller (Manhattan, Kansas) D. Alpay (Beer-Sheva) L. Rodman (Williamsburg) J. Arazy (Haifa) J. Rovnyak (Charlottesville) A. Atzmon (Tel Aviv) D. E. Sarason (Berkeley) J. A. Ball (Blacksburg) I. M. Spitkovsky (Williamsburg) A. Ben-Artzi (Tel Aviv) S. Treil (Providence) H. Bercovici (Bloomington) H. Upmeier (Marburg) A. Bottcher (Chemnitz) S. M. Verduyn Lunel (Leiden) K. Clancey (Athens, USA) D. Voiculescu (Berkeley) L. A. Coburn (Buffalo) H. Widom (Santa Cruz) K. R. Davidson (Waterloo, Ontario) D. Xia (Nashville) R. G. Douglas (College Station) D. Yafaev (Rennes) A. Dijksma (Groningen) H. Dym (Rehovot) Honorary and Advisory P. A. Fuhrmann (Beer Sheva) Editorial Board: S. Goldberg (College Park) C. Foias (Bloomington) B. Gramsch (Mainz) P. R. Halmos (Santa Clara) G. Heinig (Chemnitz) T. Kailath (Stanford) J. A. Helton (La Jolla) P. D. Lax (New York) M. A. Kaashoek (Amsterdam) M. S. Livsic (Beer Sheva) Subseries Advances in Partial Differential Equations Subseries editors: Bert-Wolfgang Schulze Sergio Albeverio Institut fOr Mathematik Institut fOr Angewandte Mathematik Universitat Potsdam Universitat Bonn 14415 Potsdam 53115 Bonn Germany Germany Michael Demuth Elmar Schrohe Institut fOr Mathematik Institut fOr Mathematik Technische Universitat Clausthal Universitat Hannover 38678 Clausthal-Zellerfeld 30060 Hannover Germany Germany Aspects of Boundary Problems in Analysis and Geometry Juan Gii Thomas Krainer In90 Witt Editors Advances in Partial Differential Equations Springer Basel AG Editors: Thomas Krainer Ingo Witt Juan Oii Institute of Mathematics Department of Mathematics Uni versity of Potsdam Penn State Altoona P.O. Box 601553 3000 1v yside Park 14415 Potsdam Altoona, PA 16601-3760 Germany USA e-mail: [email protected] e-mail: [email protected] [email protected] 2000 Mathematics Subject Classification 58Jxx, 35Jxx, 53Cxx, 19Kxx, 19Lxx, 35Sxx A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de> ISBN 978-3-0348-9595-8 ISBN 978-3-0348-7850-0 (eBook) DOI 10.1007/978-3-0348-7850-0 This work is subject to copyright. AII rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permis sion of the copyright owner must be obtained. © 2004 Springer Basel AG Originally published by Birkhauser Verlag, Basel-Boston -Berlin in 2004 Softcover reprint of the hardcover I st edition 2004 Printed on acid-free paper produced from chlorine-free pulp. TCF 00 Cover design: Heinz Hiltbrunner, Basel ISBN 978-3-0348-9595-8 987654321 www.birkhauser-science.com Contents Preface xi Part I. Geometric Operators and the Index Spectral invariants of operators of Dirac type on partitioned manifolds by DAVID BLEECKER AND BERNHELM Booss-BAVNBEK Introduction 1 1. Basic notations and results 3 1.1. Index of Fredholm operators and spectral flow of curves of self-adjoint Fredholm operators 3 1.2. Symmetric operators and symplectic analysis 12 1.3. Operators of Dirac type and their ellipticity 19 1.4. Weak unique continuation property 20 2. The index of elliptic operators on partitioned manifolds 28 2.1. Examples and the Hellwig-Vekua index theorem 28 2.2. The index of twisted Dirac operators on closed manifolds 38 2.3. Dirac type operators on manifolds with boundary 52 2.4. The Atiyah-Patodi-Singer index theorem 62 2.5. Symplectic geometry of Cauchy data spaces 73 2.6. Non-additivity of the index 76 2.7. Pasting of spectral flow 78 3. The eta invariant 79 3.1. Functional integrals and spectral asymmetry 83 3.2. The (-determinant for operators of infinite rank 86 3.3. Spectral invariants of different 'sensitivity' 88 3.4. Pasting formulas for the eta invariant - outlines 90 3.5. The adiabatic additivity of the small-t chopped 1J-invariant 96 3.6. Asymptotic vanishing of the large-t chopped 1J-invariant on stretched part manifold 103 3.7. The estimate of the lowest nontrivial eigenvalue 109 3.8. The spectrum on the closed stretched manifold 115 3.9. The additivity for spectral boundary conditions 122 References 126 Index theory of Dirac operators on manifolds with corners up to codimension two by PAUL LOYA 1. Introduction: The Gauss-Bonnet formula and index theory 131 1.1. The classical Gauss-Bonnet formula 132 1.2. The Gauss-Bonnet formula as an index formula 133 2. The Atiyah-Singer index formula 135 2.1. Statement of the Atiyah-Singer index theorem 135 2.2. Outline of the proof of the Atiyah-Singer formula 138 vi 2.3. Some remarks on the Atiyah-Singer index theorem 140 3. The Atiyah-Patodi-Singer index formula 140 3.1. Attaching a cylindrical end 141 3.2. Statement of the Atiyah-Patodi-Singer index theorem 144 3.3. Interpretation as b-objects 146 3.4. Some remarks on the Atiyah-Patodi-Singer index theorem 147 4. Melrose's b-geometry proof of the Atiyah-Patodi-Singer theorem 148 4.1. The proof of APS with details left out 148 4.2. Some facts about the heat kernels 150 4.3. Filling in the details for the b-trace 150 4.4. Filling in the details for the eta invariant 152 5. Index theory on manifolds with corners of codimension two 153 5.1. Dirac operators on manifolds with corners 154 5.2. Attaching multi-cylindrical ends 156 5.3. Miiller's generalization of the APS index formula 158 5.4. b-version of Miiller's theorem 159 5.5. Some remarks on index theory on manifolds with corners 160 6. Perturbations of Dirac operators on manifolds with corners 161 6.1. Fredholm perturbation of Dirac operators 161 6.2. An index formula for perturbed Dirac operators 163 6.3. Some concluding remarks 165 References 166 Index defects in the theory of spectral boundary value problems by ANTON SAVIN AND BORIS STERNIN Introduction 170 1. Spectral boundary value problems and their index 182 1.1. Atiyah-Patodi-Singer spectral boundary value problems 182 1.2. The spectral flow 183 1.3. A theorem on index decompositions 186 1.4. Examples 189 2. Index defects for problems with parity conditions 190 2.1. The dimension functional for even subspaces 190 2.2. The index defect formula 193 2.3. The dimension functional and the rrinvariant 196 3. Index defects on twisted Zn-manifolds 198 3.1. Twisted Zn-manifolds and elliptic operators 198 3.2. The Freed-Melrose index theorem modulo n 201 3.3. The index defect problem on twisted Zn-manifolds 203 3.4. The element of K-theory defined by a manifold whose boundary is a covering 205 3.5. The index defect formula 207 3.6. An application to 'T/-invariants 211 4. Appendix A. The Atiyah-Patodi-Singer 'T/-invariant 212 PART I. GEOMETRIC OPERATORS AND THE INDEX vii 4.1. The geometric index formula and the 17-invariant 212 4.2. The derivative of the 17-invariant 214 4.3. The homotopy invariance of the 17-invariant 214 5. Appendix B. Elliptic operators and Poincare duality. Smooth theory 217 5.1. The Poincare isomorphism on a closed manifold 218 5.2. Duality and the topological index 222 5.3. Poincare duality on manifolds with boundary. Absolute and relative cycles 223 6. Appendix C. Poincare duality on Zn-manifolds 225 6.1. Relative cycles. The CO-algebra of a Zn-manifold 226 6.2. Absolute cycles. Nonlocal operators 228 6.3. The Poincare isomorphism 231 6.4. Poincare duality 232 6.5. A topological index for Zn-manifolds 234 References 235 Cyclic homology and pseudod ifferential operators, a survey by MOULAy-TAHAR BENAMEUR, JACEK BRODZKI, AND VICTOR NISTOR Introduction 239 1. Hochschild homology 240 2. Cyclic homology 245 3. Introducing topology 252 4. Algebras of pseudodifferential operators 254 5. Applications and examples 259 5.1. Manifolds with corners 259 5.2. Fibrations by manifolds with corners 260 5.3. Longitudinal symbols on foliations 260 References 262 Index and secondary index theory for flat bundles with duality by ULRICH BUNKE AND XIAONAN MA 1. Introduction to the paper 265 2. The functor L. 267 2.1. Introduction and summary 267 2.2. Definition and first properties 268 2.3. Computation of L.(X) 271 2.4. The natural transformation to K-theory 275 2.5. Push-forward for L. 276 3. The functor L. 280 3.1. Introduction and summary 280 3.2. Secondary K-theory 281 3.3. The functor Lri/z 282 3.4. The functor L 283 3.5. Functorial properties 293 viii 4. Eta homomorphisms 296 4.1. Introduction and summary 296 4.2. 1]iR./z: KiR.}z(M) --> !RIll 296 4.3. !R-valued 1]-homomorphisms 297 4.4. Definition of the extended L-groups 299 4.5. Construction of 1]: L=X(M) --> !R 304 5. The secondary index map 305 5.1. Introduction and summary 305 5.2. Adiabatic limits of eta invariants, the eta form 306 5.3. Definition of the secondary index maps 314 5.4. Functorial properties 316 5.5. The index map for L~x and L~x 319 6. Adiabatic limits - sketches of proofs 322 6.1. Remarks 322 6.2. The proof of Theorem 4.17 322 6.3. Proof of Theorem 5.9 330 6.4. Proof of Theorem 5.10 333 6.5. Proof of Theorem 5.11 335 References 340 Part II. Elliptic Boundary Value Problems Toeplitz operators, and ellipticity of boundary value problems with global projection conditions by B.-W. SCHULZE Introduction 342 1. Elements of the classical calculus of boundary value problems 348 1.1. Pseudo-differential and Toeplitz operators on a closed manifold 348 1.2. Operators with the transmission property at the boundary 369 1.3. SL-elliptic boundary value problems 383 2. Ellipticity with global projection conditions 385 2.1. The index obstruction 385 2.2. A Toeplitz algebra of boundary value problems 392 2.3. Ellipticity, parametrices, and the Fredholm property 395 2.4. Reduction to the boundary 400 3. Transmission operators and Cauchy data spaces 401 3.1. Transmission operators 401 3.2. Examples 408 3.3. Spectral boundary value problems 410 3.4. Calderon-Seeley projections 420 4. Remarks on the edge calculus with global projection data 422 4.1. Boundary value problems without the transmission property 422 4.2. Edge problems 423 4.3. Analysis on manifolds with singularities 426 References 426 PART II. ELLIPTIC BOUNDARY VALUE PROBLEMS ix On the tangential oblique derivative problem - methods, results, open problems by PETER POPIVANOV Introduction 430 1. Subelliptic operators and their application to the tangential oblique derivative problem 432 1.1. Subelliptic estimates 432 1.2. Local solvability and microlocal analysis 442 1.3. Canonical transformations 447 1.4. The Calderon projector 449 1.5. Holder regularity 452 2. Survey on the degenerate oblique derivative problem in Holder, Sobolev, and Besov spaces 457 2.1. Tangential vector fields and solvability 458 2.2. Modified oblique derivative problem 464 3. Open problems 469 References 470 A note on boundary value problems on manifolds with cylindrical ends by MARIUS MITREA AND VICTOR NISTOR Introduction 472 1. Operators on manifolds with cylindrical ends 475 1.1. Manifolds with cylindrical ends and the Laplace operator 475 1.2. Operators that are translation invariant in a neighborhood of infinity 476 2. A spectrally invariant algebra 478 2.1. Operators that are almost translation invariant in a neighborhood m ~~~ 2.2. The"~ + V trick" 481 3. Boundary layer potential integrals 482 3.1. Submanifolds with cylindrical ends 482 3.2. Boundary layer potential integrals 483 4. Layer potentials depending on a parameter 485 5. The Dirichlet problem 489 5.1. The Dirichlet-to-Neumann map 492 References 492 Relative elliptic theory by VLADIMIR NAZAIKINSKII AND BORIS STERNIN Introduction 495 Analytic Aspects of Relative Elliptic Theory 504 1. Classical objects. Lagrangian formalism 505 1.1. Lagrangian manifolds with measure 505 x 1.2. Composition and transposition formulas 509 1.3. Symbols 511 1.4. The product of symbols (twisted multiplication) 516 2. Quantization and the algebra of operator morphisms 519 2.1. The main operators 519 2.2. Composition formulas and adjoint operators 522 2.3. Algebras of operator morphisms 523 3. Elliptic morphisms and the index formula 525 3.1. The Green equation 526 3.2. Ellipticity and the Fredholm property 529 3.3. The index theorem for elliptic morphisms 533 4. The Sobolev problem 534 4.1. Sobolev problems and elliptic morphisms 534 4.2. The Fredholm property 536 4.3. The Sobolev problem and the adjoint problem 537 4.4. The index formula 538 Topological Aspects of Relative Elliptic Theory 539 5. Preliminaries 539 6. The metric trace of an elliptic operator 539 7. The pullback of an elliptic operator 542 7.1. The pullback of a pseudodifferential operator 542 7.2. The regularized pullback 543 7.3. The Riemann-Roch theorem for the regularized pullback 544 8. A finitely regularized pullback 544 8.1. A counterexample 544 8.2. The pullback for linear principal symbols 546 8.3. Pullbacks and exterior tensor products 548 9. The pullback of geometric operators 550 9.1. Group operators 550 9.2. The Euler and Hirzebruch operators 551 9.3. The Todd and Dirac operators 554 Appendix. Fourier Integral Operators 555 A.1. Homogeneous Lagrangian manifolds 555 A.2. Local description of homogeneous Lagrangian manifolds 556 A.3. Composition of homogeneous Lagrangian manifolds 556 A.4. Definition of Fourier integral operators 556 A.5. Pseudodifferential operators as Fourier integral operators 558 A.6. Boundedness theorems 558 A.7. Composition theorems 558 A.8. L2-adjoints of Fourier integral operators 559 A.9. Fourier integral operators on sections of vector bundles 559 References 559

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.