SpringerBriefs in Plant Science For furthervolumes: http://www.springer.com/series/10080 Yuyang Zhang Ascorbic Acid in Plants Biosynthesis, Regulation and Enhancement 123 YuyangZhang KeyLaboratory ofHorticultural Plant Biology Ministry ofEducation, College ofHorticulture and Forestry Sciences HuazhongAgricultural University Wuhan,Hubei China ISSN 2192-1229 ISSN 2192-1210 (electronic) ISBN 978-1-4614-4126-7 ISBN 978-1-4614-4127-4 (eBook) DOI 10.1007/978-1-4614-4127-4 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012942715 (cid:2)TheAuthor2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Ascorbic acid (vitamin C) is synthesized from hexose sugars. Ascorbic acid is an important antioxidant and redox buffer in plants, playing important roles in metabolismandplantresponsestoabioticstressesandpathogens.Italsoworksas an enzyme cofactor, so it has multiple roles in various plant physiological pro- cesses. Humans have lost the ability to synthesize ascorbate and have to absorb ascorbic acid from the diet including fresh fruits and vegetables, as they are the major sources of ascorbate. Several pathways for ascorbic acid biosynthesis and metabolism have been identified in plants since 1998. Significant progresses have been made in relation tokeyenzymesandgenesinvolvedintheascorbatebiosynthesisandmetabolism. Biochemical and molecular genetic evidence supports synthesis from GDP-D- mannoseviaL-galactose(D-Man/L-Galpathway)asasignificantsourceofascorbic acid. More recently, evidence for pathways via uronic acids has been obtained: overexpressionofmyoinositoloxygenase,D-galacturonatereductaseandL-gulono- 1,4-lactone oxidase all increase ascorbic acid concentration in plants. An understanding of how ascorbate is synthesized should provide a basis for engineeringorotherwisemanipulatingitsaccumulation.However,intheexamples ofpathwayengineeringsofar,theincreaseinascorbicacidhasbeenmodestonan absoluteorproportional basis. Therefore, adeeper understandingofascorbic acid metabolism is needed to achieve larger increases. Identifying genes that control ascorbate accumulation may hold promise, particularly if regulatory genes can be identified. Recently, more attention has been paid tothe control and regulationof ascorbic acid biosynthesis, as it is constantly regulated by the plant development andtheenvironmentalfactors,e.g.,light.Ascorbicacidisalsofrequentlyreported toaffectplantgrowthanddevelopment,e.g.,floweringtimeandfruitripening.The increasing knowledge about ascorbic acid regulation should facilitate engineering ormodulatingitsaccumulation.Besidesthemetabolicengineeringfromgenes,the environmental regulation may stand close to industrial practice. v vi Preface Theauthortakesthisopportunitytogiveabriefreviewcoveringthebiological function, biosynthesis and metabolism, regulation, and metabolic modification of ascorbateinplants.Processingandstorageofplantproductisnotincluded,though itdecidesthefinalamountofthisnutrient.Theoutstandingworkonascorbicacid in plants by scientific colleagues is greatly acknowledged. Acknowledgments Theauthoracknowledgestheexcellentworkbyscientistsworkingonascorbatein plants, while many of them are not cited because of space limitation. The author thanksProfessorZhibiaoYe,ProfessorHanxiaLi,andProfessorXiuxinDengfor criticalcommentsonthemanuscriptoutlineandearlierdraft.Partoftheascorbate researchworkontomatodescribedherewascarriedoutinProfessorZhibiaoYe’s laboratory.TheauthorwishestoexpresshissincerethankstoDr.ChanjuanZhang and Dr. Liping Zou for providing valuable discussion and information. Huge thanks are owed to Hannah Smith for her continuous encouragement and profes- sional assistance. Part of the author’s work is supported by the National Program onKey BasicResearch Project (2011CB100600)andNaturalScience Foundation of China (31171974). vii Contents 1 Discovery and Determination of Ascorbic Acid . . . . . . . . . . . . . . 1 1.1 Chemical Nature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Determination of Ascorbate in Plants . . . . . . . . . . . . . . . . . . 3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Biological Role of Ascorbate in Plants. . . . . . . . . . . . . . . . . . . . . 7 2.1 Role in Plant Growth and Development . . . . . . . . . . . . . . . . 8 2.1.1 Cell Division. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Cell Wall Metabolism and Cell Expansion . . . . . . . . . 9 2.1.3 Shoot Apical Meristem Formation . . . . . . . . . . . . . . . 11 2.1.4 Root Development . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.5 Photosynthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.6 Regulation of Florescence. . . . . . . . . . . . . . . . . . . . . 17 2.1.7 Regulation of Leaf Senescence . . . . . . . . . . . . . . . . . 18 2.2 The Cofactors for Enzyme Activity . . . . . . . . . . . . . . . . . . . 20 2.3 Plant Antioxidation Capacity. . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Heavy Metal Evacuation and Detoxification . . . . . . . . . . . . . 23 2.5 Role in Stress Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Ascorbate Biosynthesis in Plants. . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1 D-Man/L-Gal Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Myoinositol Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Galacturonate Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Gulose Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.5 VTC2 Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ix x Contents 4 The Oxidization and Catabolism of Ascorbate. . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5 Recycling of Ascorbate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6 Distribution and Transport of Ascorbate. . . . . . . . . . . . . . . . . . . 49 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7 Enzymes Involved in Ascorbate Biosynthesis and Metabolism in Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.1 Phosphomannose Isomerase (PMI: EC 5.3.1.8). . . . . . . . . . . . 55 7.2 Phosphomannomutase (PMM: EC 5.4.2.8). . . . . . . . . . . . . . . 56 7.3 GDP-D-Mannose Pyrophosphorylase (GMP: EC 2.7.7.22) . . . . 57 7.4 GDP-D-Mannose-3,5-Epimerase (GME: EC 5.1.3.18) . . . . . . . 59 7.5 GDP-L-Galactose Phosphorylase (GGP: EC 2.7.7.69) . . . . . . . 61 7.6 L-Galactose-1-Phosphate Phosphatase (GPP: EC 3.1.3.25). . . . 62 7.7 L-Galactose Dehydrogenase (GalDH: EC 1.1.1.117) . . . . . . . . 64 7.8 L-Galactono-1,4-Lactone Dehydrogenase (GLDH: EC 1.3.2.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.9 Ascorbate Oxidase (AO: EC 1.10.3.3). . . . . . . . . . . . . . . . . . 66 7.10 Ascorbate Peroxidase (APX: EC 1.11.1.11). . . . . . . . . . . . . . 68 7.11 Dehydroascorbate Reductase (DHAR: EC.1.8.5.1) . . . . . . . . . 71 7.12 Monodehydroascorbate Reductase (MDHAR: EC.1.6.5.4) . . . . 72 7.13 Myoinositol Oxygenase (MIOX: EC 1.13.99.1) . . . . . . . . . . . 73 7.14 Alternative Pathway and Enzyme for Ascorbate Biosynthesis and Metabolism. . . . . . . . . . . . . . . . . . . . . . . . 74 7.14.1 L-Gulono-1,4-Lactone Oxidase (GLOase: EC 1.1.3.8). . . . . . . . . . . . . . . . . . . . . . . . 74 7.14.2 D-Galacturonate Reductase (GalUR: EC 1.1.1.203). . . . 75 7.15 The Multi-Gene Family Involved in Ascorbate Biosynthesis and Metabolism. . . . . . . . . . . . . . . . . . . . . . . . 75 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 8 Regulation of Ascorbate Synthesis in Plants. . . . . . . . . . . . . . . . . 85 8.1 Growth and Postharvest Condition . . . . . . . . . . . . . . . . . . . . 85 8.2 Light Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.3 Plant Growth Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.4 Jasmonates Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.5 Feedback Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.6 Coordination and Compensation. . . . . . . . . . . . . . . . . . . . . . 91 8.7 Transcription Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Contents xi 9 Ascorbate in Tomato, a Model Fruit. . . . . . . . . . . . . . . . . . . . . . 99 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 10 Metabolic Modification of Ascorbate in Plants. . . . . . . . . . . . . . . 105 10.1 Overexpression and Ectopic Expression . . . . . . . . . . . . . . . . 106 10.2 Gene Suppression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 11 Regulating Ascorbate Biosynthesis and Metabolism for Stress Tolerance in Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . 111 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Abbreviations ABA Abscisic acid ACC 1-Aminocyclopropane-1-carboxylate AO Ascorbate oxidase APX Ascorbate peroxidase CAT Catalase cDNA Complementary DNA DHAR Dehydroascorbate reductase DTT Dithiothreitol FAD Flavin adenine-dinucleotide GA Gibberellins GalDH L-Galactose dehydrogenase GalUR D-Galacturonate reductase GFP Green fluorescent protein GGP GDP-L-Galactose phosphorylase GLDH L-Galactono-1,4-lactone dehydrogenase GLOase L-Gulono-1,4-lactone oxidase GME GDP-D-mannose-3,5-epimerase GMP GDP-D-mannose pyrophosphorylase guanosine monophosphate GPP L-galactose-1-phosphate phosphatase GR Glutathione reductase GUS b-Glucuronidase HPLC High performance liquid chromatography JA Jasmonic acid MDHAR Monodehydroascorbate reductase MeJA Methyl jasmonate MIOX Myinositol oxygenase mRNA Messenger RNA NADPH Reduced nicotinamide adenine dinucleotide phosphate PEG Polyethylene glycol PMI Phosphomannose isomerase PMM Phosphomannomutase xiii
Description: