Abstracts The American Society for Cell Biology th 45 Annual Meeting December 10-14, 2005 The Moscone Center San Francisco CONTENTS SATURDAY CoordinationofCytoskeletalNetworks.....................................207 NuclearCompartments..............................................................208 BigScience,LittleScience........................................................4 PathogensCo-optingHostCellFunctions.................................210 RegulatingIntercellularJunctions.............................................211 SUNDAY Signalingin3DEnvironments...................................................213 TraffickingProteins&Complexes............................................215 QuantitativeStudiesofCellSignalingNetworks......................5 SignalTransductionII...............................................................216 BruceAlbertsAwardPresentation............................................5 ApoptosisI.................................................................................224 ProkaryoticOriginsoftheCytoskeleton...................................5 Mitosis&MeiosisII..................................................................231 E.E.JustLecture.......................................................................6 G2-M.........................................................................................237 CargoSorting&VesicularTransport........................................7 CytokinesisI..............................................................................240 CellBiologyoftheSynapses.....................................................8 Actin-AssociatedProteinsII......................................................245 Differentiation&Cancer...........................................................10 ActinDynamics&AssemblyI..................................................250 ExtracellularMatrix&Signaling..............................................11 ConventionalMyosin.................................................................255 Formins&Arp2/3:RegulatorsofActin....................................13 Tubulin......................................................................................260 NuclearEnvelopeFunctions......................................................15 DyneinII....................................................................................262 RegulationoftheCellCycle.....................................................16 MicrotubuleDynamics&AssemblyI.......................................269 SignalingintheImmuneSystem...............................................18 Cilia&FlagellaI.......................................................................275 EBWilsonMedalPresentation&Lecture................................20 CellMotilityII...........................................................................282 GrowthFactors&Receptors.....................................................20 CytoskeletalOrganizationI.......................................................290 SignalTransductionI................................................................26 Cytoskeleton-MembraneInteractionsI......................................296 Mitosis&MeiosisI...................................................................32 CellAttachmenttotheExtracellularMatrix..............................300 G1-S/DNAReplication.............................................................39 ExtracellularMatrix&CellSignalingII...................................306 Actin..........................................................................................42 Cell-CellInteractionsII.............................................................312 Actin-AssociatedProteinsI.......................................................44 OrganizationandRegulationoftheExtracellularMatrix..........316 UnconventionalMyosins...........................................................50 MembraneReceptors.................................................................318 DyneinI.....................................................................................57 ERtoGolgiTransport...............................................................326 Microtubule-AssociatedProteins...............................................60 EndocytosisII............................................................................330 CellMotilityI............................................................................67 ProteinTargetingtotheCellSurface.........................................335 CentrosomesI............................................................................75 ProteinFolding&AssemblyintheEndoplasmic IntracellularMovement.............................................................79 ReticulumI..............................................................................339 IntermediateFilamentsI............................................................85 MechanismsofNuclearTranscription.......................................342 FocalAdhesions........................................................................91 Chromatin&ChromosomesI....................................................347 Cell-CellAdherensJunctions....................................................96 NuclearImportandExportSignals............................................352 ExtracellularMatrix&CellSignalingI....................................100 Organogenesis...........................................................................355 Cell-CellInteractionsI..............................................................106 CellPolarityII...........................................................................358 MembraneChannels&TransportersI.......................................110 Development&Carcinogenesis................................................362 MembraneFusion......................................................................117 SynapseFormation&FunctionI...............................................364 EndocytosisI.............................................................................119 GolgiComplex..........................................................................368 ProteinTargeting.......................................................................124 EpitheliaII.................................................................................375 GeneStructureandExpression..................................................132 CancerII....................................................................................379 ChromatinRemodeling.............................................................137 MetabolicDiseases....................................................................383 NuclearMatrixandNuclearArchitecture.................................139 OtherDiseasesI.........................................................................391 GermCells&Fertilization........................................................142 CellPolarityI............................................................................148 TUESDAY Neurotransmitters,Peptides&Receptors..................................152 Chloroplasts&Mitochondria....................................................157 ReprogrammingCellFate..........................................................399 EndoplasmicReticulum.............................................................163 CommunityBuildingtoPromoteCareersinBiomedical EpitheliaI..................................................................................169 Science.....................................................................................399 Parasitology...............................................................................173 Host-PathogenInteractions........................................................400 CancerI.....................................................................................180 BuildingSensoryNetworks.......................................................401 ImagingTechnology..................................................................186 CoordinatingAdhesion&Signaling..........................................402 MolecularBiology.....................................................................193 CytoskeletalMolecularMotors..................................................404 BloodVessels............................................................................198 IntermediateFilaments..............................................................405 IntersectionofSignaling&Trafficking:SmallGTPases..........407 MONDAY Mitosis&Meiosis.....................................................................409 OrganelleDynamics..................................................................410 WiringtheNervousSystem.......................................................202 ProteinMisfolding&Disease....................................................412 TheNatureofLife:AnOrientationCoursethatIntroduces KeithR.PorterLecture..............................................................413 FreshmentotheDisciplinesofBiology,BuildsCommunity, Oncogenes&TumorSuppressors.............................................414 andTeachesStrategiesforSuccessinCollege........................202 CellCycleControlsI.................................................................419 AdaptingtoStress:SpotlightonOrganelles..............................203 ApoptosisII...............................................................................425 CellMigration/Motility.............................................................203 Mitosis&MeiosisIII.................................................................431 ChromatinDynamics.................................................................205 Kinetochores..............................................................................440 CONTENTS Pre-CollegeandCollegeScienceEducation..............................447 Caveolae....................................................................................718 Actin-AssociatedProteinsIII....................................................455 TraffickinginPolarizedCells....................................................721 ActinDynamics&AssemblyII................................................461 DevelopmentalControlofGeneExpression..............................726 Muscle:Biochemistry&CellBiologyI....................................466 Ribonucleoproteins....................................................................728 KinesinI....................................................................................470 StructureofNuclearEnvelope...................................................732 MicrotubuleDynamics&AssemblyII......................................474 InvertebrateDevelopment..........................................................737 CellMotilityIII.........................................................................479 SignalTransductioninDevelopment.........................................740 Cytoskeleton-MembraneInteractionsII....................................486 StemCellsII..............................................................................747 ExtracellularMatrix&CellBehaviorI.....................................490 Endosomes&LysosomesII......................................................753 ExtracellularMatrix&Morphogenesis.....................................494 Leukocytes.................................................................................757 Cadherins...................................................................................499 CellCulture...............................................................................760 GapJunctions............................................................................504 CancerIV...................................................................................765 Structure&FunctionofMembraneProteinsI..........................511 NeuronalDiseasesII..................................................................771 GolgitoCellSurfaceTransport.................................................517 OtherDiseasesIII......................................................................778 EndocyticMachinery:Structure,Function&Regulation..........522 Bioinformatics/BiologicalComputing.......................................785 ProteinTargetingtotheEndocyticPathway.............................529 RNAiTechnology......................................................................787 ProteinFolding&AssemblyintheEndoplasmic ReticulumII.............................................................................534 Tissue-SpecificGeneExpression..............................................538 Chromatin&ChromosomesII..................................................543 MammalianDevelopment.........................................................548 GrowthFactorsinDevelopment................................................555 StemCellsI...............................................................................558 SynapseFormation&FunctionII.............................................564 Endosomes&LysosomesI.......................................................568 EndothelialCells.......................................................................571 CancerIII..................................................................................575 NeuronalDiseasesI...................................................................581 OtherDiseasesII.......................................................................588 WEDNESDAY CellGrowthandDivision..........................................................594 YeastGenomicsintheClassroom:UsingtheYeastDeletion CollectiontoStudyEnvironmentalToxinsandFood Additives.................................................................................594 CytoskeletalDynamicsinLivingCells.....................................595 EpithelialMorphogenesis&Polarity........................................596 Lipid-MediatedSignals.............................................................598 TheMembraneCytoskeleton.....................................................599 NeuronalPolarity&Axo-DendriticGrowth.............................601 ProteinFolding&QualityControl............................................603 RNASilencingMechanisms.....................................................604 StemCellNiches.......................................................................606 SignalTransductionIII..............................................................607 CellCycleControlsII................................................................614 Mitosis&MeiosisIV................................................................621 CytokinesisII............................................................................629 ActinDynamics&AssemblyIII...............................................633 Muscle:Biochemistry&CellBiologyII...................................638 KinesinII...................................................................................643 Cilia&FlagellaII......................................................................648 CellMotilityIV.........................................................................655 CytoskeletalOrganizationII......................................................662 CentrosomesII..........................................................................669 NerveCellCytoskeleton............................................................673 IntermediateFilamentsII..........................................................679 ExtracellularMatrix&CellBehaviorII....................................684 Integrins.....................................................................................689 Metalloproteases........................................................................695 TightJunctions..........................................................................699 Structure&FunctionofMembraneProteinsII.........................705 MembraneDomains..................................................................708 Exocytosis:RegulatedSecretion...............................................713 Saturday BigScience,LittleScience(1-2) 1 UnravelingSmell L.Buck;HowardHughesMedicalInstitute,FredHutchinsonCancerResearchCenter,Seattle,WA Odorantsaredetectedby~1000differentodorantreceptors(ORs),whicharelocatedonolfactorysensoryneuronsinthenose.Ourstudiesshow that ORs are used combinatorially to detect different odorants and encode their unique identities. Toexplore howthe nervous systemtranslates odorouschemicalsintoperceptions,weaskedhowinputsderivedfromdifferent mouseORsareorganizedassignalstravel fromthenosetothe olfactorybulbandthentheolfactorycortex.Inthenose,eachsensoryneuronexpressesasingleORgene.NeuronswiththesameORaredispersed inthenose,buttheiraxonsconvergeinafewglomeruliattwofixedlocationsinthebulb.Theresultisastereotypedsensorymapinwhichinputs fromdifferentORsaresegregatedindifferentglomeruliandrelayneurons.Intheolfactorycortex,inputsfromoneORaretargetedtoclustersof neuronsatspecificsites,creatingastereotypedmapunrelatedtothatinthebulb.IncontrasttothesegregationofdifferentORinputsseeninboth the nose and bulb, it appears that different OR inputs overlap extensively in the cortex and single neurons receive combinatorial inputs from multipledifferentORs.Usingc-Fosasanindicatorofneuronalactivator,wefoundthatdifferentodorantselicitdifferent,butpartiallyoverlapping, activation patterns in the cortex. The representation of each odorant is composed of a small subset of sparsely distributed neurons. Quantitative analysisoftheodorrepresentationssuggeststhatcorticalneuronsmayfunctionascoincidencedetectorsthatareactivatedonlybycorrelatedinputs fromdifferentORs. 2 Discovery-DrivenResearch:ANewFrontierintheBiologicalSciences C.Fraser;TheInstituteforGenomicResearch,Rockville,MD The application of large-scale approaches to the study of biological questions has produced a fundamental change in the way that we approach scientific discovery. In this new era, high-throughput technologies are providing enormous amounts of new data and computational biology is allowingustomakelinksbetweengenomesequenceandbiologicalprocessesandfunction.Theultimategoalofsuchbigscienceistoachievea predictiveunderstandingofbiology. 4a Sunday QuantitativeStudies ofCell SignalingNetworks (3-4) 3 TheDeeperCorrelations:SingleCellMeasuresofKinaseSignalingforMechanisticandClinicalAnalyses G.Nolan;Microbiology/Immunology,StanfordUniversity,Stanford,CA Intracellularassaysofsignalingsystemshasbeenlimitedbyaninabilitytocorrelatefunctionalsubsetsofcellsincomplexpopulationsbasedon activekinasestatesorothernodalsignalingjunctions.Suchcorrelationscouldbeimportanttodistinguishchangesinsignalingstatusthatarisein rare cell subsets during functional activation or in disease manifestation. Simultaneous detection of activated kinases and phosphoproteins in simultaneous pathways in subpopulations of complex cell populations by multi-parameter flow cytometric analysis allows identification of signaling cascades for disease states by ordering of kinase activation and phosphoprotein status in signaling hierarchies. Importantly, we demonstrate that ordering of these activations requires multiple interrogations of cells, and that thenetworks discovered are reflective of deeper correlations.UsingBayesianNetworkanalysis(aformofmachinelearning)onecaninferpathwayconnectivityinanautomatedfashion,allowing forhighthroughputderivationsofsignalingsystemnetworksgraphsinPRIMARYCELLS.Theapproachhaspowerfulapplicationsinmechanistic understanding,drugscreening,andpatientstratificationforpredictionofdiseaseoutcomeincancer,autoimmunity,infection,basedonsignaling network status. (1) Irish J.M., Hovland R., Krutzik P.O., Perez O.D., Bruserud O., Gjertsen B.T., Nolan G.P. (2004) Single Cell Profiling of PotentiatedPhospho-Protein Networksin Cancer Cells. Cell. 118:217-228. (2)SachsK.,PerezO.,Pe'er D., Lauffenburger D.Aand NolanG.P. 2005.Causalprotein-signalingnetworksderivedfrommultiparametersingle-celldata.Science.308:523-9. 4 SystemsBiologyofCytokineSignalinginHumanCells P. Sorger, D. Lauffenburger, K. Janes, S. Gaudet, J. Albeck, B. Schoeberl; Department of Biology and Biological Engineering, Massachusetts InstituteofTechnology,Cambridge,MA Cytokines and their receptors activate complex signaling cascades to regulate cell proliferation, death and differentiation. We seek to develop quantitative, mechanistic models that describe cytokine-induced signaling with an eye to understanding cell-type variation and the differences between healthy and diseased states. We focus on decisions controlled by pro-apoptotic cytokines such as Tumor Necrosis Factor (TNF) and TRAIL and pro-survival cytokines such as EGF and the insulin-like growth factors (IGF). By mining a compendium comprising ~10,000 measurements of signal protein activities elicited by cytokines individually and in combination we can construct both statistical and physicochemicalmodels.Classifier-basedregressionhasbeenparticularlyhelpfulinestablishingthatcellsrespondtoTNFdirectly,viaactivated TNFreceptor,andindirectlyviaautocrinecircuitsinvolvingtransforminggrowthfactoralpha(TGF- α),interleukin-1α(IL-1α)andIL-1receptor antagonist(IL1-ra).Thesecytokinesparticipateinathree-partautocrineloopthatplaysoutoveratleast24hrandaddssequentiallayersofproand anti-apoptoticsignalingthatsetscelldeathataself-limitinglevel. Experimentalworktodatehasbeeninhumantumorcells.However,itseems highlylikelythatTNF-triggeredautocrinecascadeswilldifferfromonecelltypetothenext.Wearecurrentlyattemptingtocomparediseasedand normalprimarycellsfrombreastandconnectivetissue.OneinterestinginitialfindingisthatthelogicoftheTNF-TGF-IL-1α- IL-1racascadecan bere-wired in somecell typesbyinflammatorycytokinessuch asinterferons. Thereismuch interest in theroleofintracellular crosstalkamong signaling circuits. We propose that that time-dependent crosstalk among synergistic and antagonistic autrocrine circuits may equally important. Morevoer, it should be easier to modulate the activity of autocrine than intracellular loops thanks to the increasing range of protein-based therapeuticsavailabletotargetcytokinesandtheirreceptors. BruceAlberts Award Presentation (5) 5 ColumbiaUniversity’sSummerResearchProgramforSecondarySchoolScienceTeachers S.C.Silverstein;DeptPhysiology/CellBiophys,ColumbiaUnivCollPhys&Surg,NewYork,NY Concerns about the quality of secondary science education stimulated me in 1990 to found Columbia’s Summer Research Program (www.scienceteacherprogram.org).Theprogram’spurposeistoincreasestudentinterestandachievementinsciencebyimprovingthequalityof science instruction. To this end, Columbia’s program provides secondary school science teachers with paid fellowships that support their participationinlifeandphysicalscienceresearchlaboratoriesfortwoconsecutivesummersundertheguidanceofColumbiafaculty.Todate,202 teachers have participated in the program. At ASCB’s 2004 Education Forum, I reported that 8.4% more students in classes of participating teacherspass a NY State Regents exam in science than students studying the same subject in classes of non-participating teachers in the same school. This is objective evidence that teacher participation in Columbia’s program has a significant positive impact on student achievement in science.ThepresentvalueofthisincreaseinRegentsscienceexampassrateis$11,782perteacherinschoolcostssavedannually,and$32,885per teacher in additional tax revenues generated annually, yielding total annual economic benefits of each teacher’s participation in Columbia’s programthatare3.4-foldgreaterthantheprogram’sannualcostperteacher.Policyimplicationsofthesefindings: Anationalinvestmentof$75 millionannuallycouldsupportsimilarprogramsat250U.S.medicalschoolsandresearchuniversities,whilereturningover$220millionannually in school costs saved and tax revenues generated. If each of these 250 programs enrolled 10 newscience teachers annually, over 10 years they couldprovidescienceworkexperiencesfor25,000scienceteachers,approximatelyhalfthecurrentmembershipoftheNationalScienceTeachers Association. ProkaryoticOrigins of theCytoskeleton (6-8) 6 BacterialtubulinhomologFtsZ H.P.Erickson;DepartmentofCellBiology,DukeUniversityMedicalCenter,Durham,NC 5a Sunday FtsZisthemajorcytoskeletalproteininbacterialcytokinesis.Whenviewedbylightmicroscopyitappearsasa“Zring”inthecenterofthecell. TheZringconstrictstodividethecell,disassemblesduringtheconstrictionandthenreassemblesinthedaughtercells.ThesubstructureoftheZ ringhasnotbeenvisualizedbyEM,butwehaveturnedtoinvitrostudiestodeduceit.FtsZassemblesintoshort,single-strandedprotofilaments (pfs),whicharestructuralhomologsofthetubulinprotofilamentsthatmakethemicrotubulewall.Wehavedevelopedfluorescencetechniquesto study the kinetics of initial assembly and subunit turnover at steady state. FtsZ assembly is cooperative, showing a weak dimer nucleusand a criticalconcentration.(Itisanenigmahowasingle-strandedpfcanassemblecooperatively.)Theassemblyisverydynamic - pfsareturningover with a half time of 8 sec at steady state. The subunit turnover is regulated by GTP hydrolysis, and may involve a mechanism like microtubule dynamic instability. We believe that the Z ring in vivo is constructed from these dynamic pfs. This must involve a lateral association (the mechanismforthisisunknown)andattachmenttothemembrane.FtsZistetheredtothemembranebyFtsA,abacterialactinhomolog.Weused FRAPtodeterminetheassemblydynamicsoftheZringinvivo.Itisturningoverwithahalftimeof8sec,justaswedeterminedinvitro.Thisis themostrapidcytoskeletaldynamicsknown.Animportantquestioniswhatgeneratestheforceofconstriction?WehavefoundinvitrothatFtsZ can formcurved pfs, which areequivalent to tubulin rings. Thestraight-to-curved pfconformational changeispowered byGTP hydrolysis, and maygeneratetheforceforconstriction. 7 DynamicsofaDNA-SegregatingCytoskeletalSysteminProkaryotes D.Mullins,C.Campbell,E.Garner;Cellular&MolecularPharmacology,UniversityofCalifornia,SanFrancisco,SanFrancisco,CA Themechanismsthatprovideforcetosegregatebacterialchromosomesarestillmysterious.Wedo,however,understandoneimportantexampleof bacterialDNAsegregationinmoleculardetail- segregationoftheR1andR100drug-resistanceplasmids.Theselarge(100kb),low-copyplasmids encodegenesforantibioticandheavy-metalresistanceandhavebeenisolatedfrommanypathogens.Toensureinheritancebybothdaughtercells during division, the R1par operon constructs a simple DNA-segregating machine from three components. One of these components, ParM, is relatedtoeukaryoticactinsandassemblyofParMintoactin-likefilamentsappearstodriveplasmidsegregationdirectly.Wefindthatthissimple prokaryotic cytoskeleton exhibits a remarkable collection of activities usually associated with eukaryotic cytoskeletons, including: dynamic instability,processivecapping,insertionalpolymerization,andtheabilitytogenerateforce.WealsofindthatR1plasmidsegregationisadynamic process in which assembly of unstable ParM filaments induces plasmids to oscillate rapidly from pole to pole of the cell producing a dynamic rather than static bipolar distribution. Our results indicate that theassembly dynamics of prokaryotic cytoskeletal systems are important to their cellularfunctionandthattheprokaryoticsystemsalso makeuseofmechanismssimilartothoseoftheeukaryoticcytoskeletontoestablishlong- rangeorderandtomoveintracellularcargo. 8 TheBacterialCytoskeletonandCellShape C. Jacobs-Wagner,1N. Ausmees,2G. Charbon,1M. Cabeen1;1Molecular, Cellular &Developmental Biology, YaleUniversity, NewHaven, CT, 2UppsalaUniversity,Uppsala,Sweden Similarly to eukaryotic cells, prokaryotic cells come in a variety of shapes. In eukaryotes, the cytoskeleton, which is made of microtubules, microfilamentsandintermediatefilaments,constitutesaninternalframeworkthatisessentialforthemaintenanceofcellshape.Fordecades,itwas thought that the external cell wall was the sole determinant of cell shape in bacteria.It is now apparent that bacteria also possess an actin-like cytoskeleton madeofMreB and that thiscytoskeleton isinvolved in determiningrod cell morphology. Our laboratoryhasrecentlydiscovered a prokaryotic counterpart of intermediate filament (IF) proteins, termed crescentin. Crescentin is a fibrous protein with a tripartite domain architecturesimilartothatofmetazoanIFproteins.Purifiedcrescentinself-assemblesspontaneouslyinto~10nmwidefilamentsinvitrowithout exogenous energy sources, which is a distinct biochemical property of IF proteins. The function of crescentin is required for the characteristic crescentshapeofCaulobactercrescentusascellslackingcrescentinlosetheircurvatureandadoptastraight-rodcellmorphology.Consistentwith its role in cell curvature, crescentin forms a filamentous structure along the inner cell curvature of wild-type cells. Localization and proper organizationofthecrescentincytoskeletonisdependentonthebacterialhomologofactin,MreB,indicatingthatMreBalsoplaysanactiverolein cellcurvature. E.E.JustLecture(9) 9 StillWatersRunDeep:InvestigationsintotheQuiescentStateinYeast M.Werner-Washburne;DepartmentofBiology,UniversityofNewMexico,Albuquerque,NM Mylaboratoryhasstudiedentranceinto,survivalduring,andexitfromstationaryphaseinyeastforthepast17years.Previously,yeastandother microbeswerethoughttolackatrueG phase,becausebuddedcellswerealwayspresentinstationary-phasecultures.Wehaverecentlyisolated 0 twodistinctcellpopulationsfromyeaststationary-phaseculturesthatcontainverydifferentcelltypes.Wehaveconcludedfromouranalysisthat onefractioncontainsquiescent(G )cellsandtheothernon-quiescentcells.Thequiescentcellsaregenerallythelastcellsformedafteryeastcells 0 exhaustglucose(thediauxicshift).Theyarerefractilebyphasecontrastmicroscopy,unbudded,thermotolerant,andsynchronousduringexitfrom quiescence.Strangely,inthequiescentcellsonlynucleiandvacuolesarevisiblebyEM.Non-quiescentcellscontainmanymoremembrane-bound organelles,includingER,Golgi,andmitochondriaandlipidbodiesandlackglycogen.Bothcelltypesaremetabolicallyactive,butnon-quiescent cells show a reduced ability to form colonies. We are continuing to characterize these cell types and their formation. The identification and characterizationofthesecelltypesprovidesthebasisforongoing,novelanalysesofthequiescentstate,asymmetriccelldivision,andtheprocesses ofcelldifferentiationandaginginyeast. 6a Sunday CargoSorting&VesicularTransport(10-15) 10 AnIntramoleculart-SNAREComplexFunctionsinvivowithouttheSyntaxinN-terminalRegulatoryDomain J.S.VanKomen,X.Bai,B.L.Scott,J.A.McNew;BiochemistryandCellBiology,RiceUniversity,Houston,TX Membrane fusion in the secretory pathway is mediated by SNAREs (located on the vesicle membrane (v-SNARE) and the target membrane (t- SNARE).Inallcasesexamined,t-SNAREfunctionisprovidedasathree-helixbundlecomplexcontainingthree~70aminoacid‘SNARE-motifs’. OneSNAREmotifisprovidedbyasyntaxinfamilymember(thet-SNAREheavychain)andtheothertwohelicesarecontributedbyadditionalt- SNARElightchains.ThesyntaxinfamilyisthemostconformationallydynamicgroupofSNAREsandappearstobethemajorfocusofSNARE regulation. An N-terminal region of plasma membrane syntaxins has been assigned as a negative regulatory element in vitro. This region is absolutelyrequiredforsyntaxinfunctioninvivo.WenowshowthattherequiredfunctionoftheN-terminalregulatorydomainoftheyeastplasma membranesyntaxin, Sso1p, can becircumvented when t-SNARE complex formation is madeintramolecular. Our resultssuggest theN-terminal regulatorydomainisrequiredforefficientt-SNAREcomplexformationanddoesnotrecruitnecessaryscaffoldingfactors. 11 Arf1p,Chs5p,andtheChAPsareRequiredforExportofSpecializedCargofromtheGolgi M.Trautwein,C.Schindler,R.Gauss,A.Spang;Friedrich-Miescher-LaboratoriumderMax-Planck-Gesellschaft,Tübingen,Germany InSaccharomycescerevisiae,thesynthesisofchitinistemporallyandspatiallyregulatedthroughthetransportofChs3p(ChitinsynthaseIII)tothe plasmamembraneinthebudneckregion.TrafficofChs3pfromtheTGN/earlyendosometotheplasmamembranerequiresthefunctionofChs5p andChs6p.Chs6pbelongstoafamilyoffourproteinsthatwehavenamedChAPsforChs5p-Arf1p-bindingProteins.Thisnovelproteinfamilyis conservedthroughoutfungiandseemedtohavearisenbythreegeneduplicationevents.WeshowthatallChAPsphysicallyinteractnotonlywith Chs5pbutalsowiththesmallGTPaseArf1p.AshortsequenceattheC-terminusoftheChAPsisrequiredforproteinfunctionandtheabilityto bindtoChs5p.Disruptionoftwomembers,Δbud7 and Δbch1,phenocopiesaΔchs6or Δchs5deletionwithrespecttoChs3ptransport.Moreover, theChAPsinteractwitheachotherandformhighermolecularweightcomplexes.Inaddition,theyareallatleastpartiallylocalizedtotheTGNin aChs5p-dependentmanner.Mostimportantly,theChAPsinteractphysicallywithChs3p.WeproposethattheChAPsfacilitateexportofcargoout oftheGolgi. 12 TheRoleofARF4andARF-GAPsinRhodopsinTrafficking D. Deretic,1 L. Astuto-Gribble,1 N. Ransom,1 P. A. Randazzo2; 1Surgery/Ophthalmology, University of New Mexico, Albuquerque, NM, 2LaboratoryofCellularOncology,NationalCancerInstitute,Bethesda,MD Thesmall GTP-bindingproteinARF4, aclassII ARF, specificallyrecognizesand bindsto theVXPX-COOHsortingmotifofthe light receptor rhodopsin. Using a retinal cell-free system, which reconstitutes rhodopsin trafficking in vitro, we have established that the rhodopsin-ARF4 interactionregulatesthebuddingfromthetrans-Golginetwork(TGN)andtheincorporationofrhodopsinintothetransportcarriers(RTCs).RTCs are targeted to the rod outer segment (ROS), a highlyspecialized subcellular domain of retinal photoreceptors. To test if rhodopsin controlsthe ARF4-GTPasereaction byregulatingtheaccess of an ARF-GAP to ARF4, in thisstudywesought to identifythe ARF-GAP thatinteracts with ARF4 in retinal photoreceptors. ARF-GAPs containing ankyrin repeats and plekstrin homology domains (AZAPs) were particularly attractive candidatesgiventheirknownrolesintheregulationofmembranetraffickingandactincytoskeleton.Bywesternblottingwithspecificantibodies, we determined that photoreceptors express high levels of ASAP1, an AZAP that also contains the Src homology domain 3 (SH3), and has a preferenceforARF1,aclassIARF,andARF5,aclassIIARF.ARAP1,anAZAPthatcontainsarho-GAPdomain,wasdetectedatlowerlevels. ByconfocalmicroscopyASAP1waslocalizedtopunctatestructuresdistributedalongthephotoreceptormicrofilamentsandinthevicinityofthe Golgi/TGN.ARAP1wasparticularlyconcentratedattheouterlimitingmembranewheretheactincablesareanchored.Wearecurrentlytestingthe GAP activityof ASAP1 on ARF4. SincetheBARdomain of ASAP1 participatesin membranebendingand fission, weareexploringif ARF4- dependent recruitment of ASAP1 to the sites of RTC budding may be the underlying mechanism for the regulation of rhodopsin trafficking by ARF4.SupportedbyNIHgrantEY12421. 13 FunctionalInvolvementofAnnexinIIincAMP-InducedAQP2ExocytosisinRenalCells G.Tamma,A.Strafino,F.Addabbo,M.Svelto,G.Valenti;DepartmentofGeneralandEnvironmentalPhysiology,UniversityofBari,Bari,Italy The membraneassociated protein annexin IIisknown toberequired for theapical transport in epithelial cells. Inthisstudyweinvestigated the involvementofannexinIIincAMP-inducedAQP2translocationtotheapicalmembrane.RT-PCRperformedusingdegeneratedprimersrevealed thepresenceofannexinIImRNAtranscriptinAQP2expressingrenalCD8cells.Interestingly,annexinIIwasfoundinAQP2-containingvesicles immunoisolatedfromCD8cells.Consistentwiththisobservation,cellfractionationfollowedbyWesternblottinganalysisshowedthatstimulation of CD8 cells with the cAMP-elevating agent forskolin, caused a significant increase of annexin II in the particulate fraction paralleled with a decrease in the soluble fraction. To investigate the functional involvement of annexin II in AQP2 exocytosis the fusion process between highly purifiedAQP2bearingvesiclesandplasmamembranewasinvitroreconstructedandmonitoredbyafluorescenceassaybasedonthedequenching of the lipophilic fluorescent probe octadecylrhodamine B-chloride (R18). We designed a peptide reproducing the N-terminal 14 aminoacids of annexin II and including binding site of the the calcium binding protein p11, a protein required for the formation of a complex with annexin necessaryfortightlyanchoringtheproteintothecorticalcytoskeleton.Acontrolpeptidehaving1000timesreducedaffinityforp11wasusedasa control.WefoundthatpreincubationofcellularfractionswithannexinIIpeptidestronglyinhibitedthefusioninducedbytheadditionofcytosol. In contrast, the control peptide had no effect on fusion. Together these data demonstrate the association of annexin II with AQP2 containing vesiclesandpointtoapossiblefunctionalinvolvementofannexinIIincAMP-inducedAQP2exocytosisinrenalcells. 7a Sunday 14 RabCouplingProtein(RCP)RegulatestheSortingofMembraneProteinsinRecyclingEndosomes J. J. Burden,1E. Schonteich,2G. Wilson,2 R. Prekeris,2C. R. Hopkins1;1Department of Biological Sciences, Imperial College, London, United Kingdom,2UniversityofColoradoHealthSciencesCenter,Aurora,CO Rabcouplingprotein(RCP)isaclassImemberoftheRab11 familyofinteractingproteins(FIPs),afamilycharacterisedbytheirabilitytobind Rab11 via a Rab11/25 binding domain (RBD), and to bind phospholipids via aC2 domain. Through its association with Rab11, RCP has been proposed to play a role in protein recycling. Whilst many proteins, like the transferrin receptor (TfR), have been extensively characterised and showntofaithfullyfollowthisrecyclingpathway,littleisknownaboutthemolecularmachineryinvolvedinregulatingthistraffickingroute.Using RNA interference and a combination of biochemical techniques and electron microscopy, we have investigated the role that RCP plays in the intracellulartraffickingofrecyclingproteins.Byimmuno-electronmicroscopywehavelocalisedRCPtoatubular-vesicularcompartment,thatcan be loaded with endocytosed transferrin-HRP. Depletion of RCP in Hela cells, was found to significantly reduce the amount of internalised transferrin in comparison to control cells, whilst the rate of internalisation of the TfR was unaffected. The reduction in transferrin uptake was accompanied by a reduction in the levels of TfR, suggesting mis-sorting of the TfR away from the recycling pathway towards the degradation pathway.Toinvestigatethisfurther,weusedRNAinterferencetodepletecellsofanotherclassIFIPmember,Rip11,andfoundthatTfRrecycling wasnotinhibited(seeWilsonetal.poster).Interestingly,theco-down-regulationofRCPwithRip11wasabletorescuetheeffectofRCPdown- regulationontheTfR,implicatingRip11insortingmembraneproteinstowardsthedegradativepathway.Thus,weproposethatRCPplaysarolein theregulationofTfRtrafficking,specificallysortingthereceptorfromtheendosomalcompartmenttowardstheplasmamembraneandawayfrom thedegradativepathway. 15 UbiquitinBindingProteinsandLysosomalSorting R.C.Piper,S.Winistorfer,J.McDermott;PhysiologyandBiophysics,UniversityofIowa,IowaCity,IA Oneofthesortingsignalsthatdirectsmembraneproteinstolysosomesistheirpost-translationalattachmenttoubiquitin.Ubiquitinactsasaself- containedsortingsignal,whichactsatmayintracellularlocalestoultimatelysendmembraneproteinstothelysosome.Ubiquitinworksasasignal for internalization, asaTGNsortingsignal and asasignal for incorporatingproteinsintolumenal vesiclesof multivesiclular bodies. Inorder to understandhowubiquitinsortsproteinstothelysosome,wehavefocusedonidentifyingubiquitin-sortingreceptorsattheTGNandendosomesthat bind cargo proteinsand guidethemto lysosomes. At theTGN, we find that theGGA familyof clathrin bindingproteinsbindubiquitin viatwo equivalent motifs within their GAT domains. This binding is required to direct ubiquitinated membrane proteins from the TGN directly to endosomes.Wealsofindthatseveralubiquitin-bindingproteinsattheendosomearerequiredforsortingintomultivesicularbodies.Amongthese aretheVps27-Hse1complex,theESCRT-IcomplexandESCRT-IIcomplex.WeshowthatphysicalinteractionoftheVps27-Hse1complexand ESCRT-I complextriggersahand-off mechanismwherebyubiquitinated cargo couldbetransferred fromonecomplexto thenext.Interestingly, however,wefindthattheubiquitinbindingcapacityoftheESCRT-IandESCRT-IIcomplexesisnotrequiredforpropersortingofubiquitinated cargo into the MVB. Thus, we propose that the ubiquitin-binding function of these complexes is used to help Vps27-Hse1 release from cargo bindingandhelppreventtheVps27-Hse1complexfrombeingincorporatedintotheMVBlumen. Cell Biologyof theSynapses (16-21) 16 ProN-cadherinInhibitsSynapseFormation A.G.Reines,W.Shan,A.W.Koch,D.R.Colman;BTRC,MontrealNeurologicalInstitute,McGillUniversity,Montreal,PQ,Canada N-cadherinparticipatesintheregulationofsynapticstrengthandstabilization.Thisproteinissynthesizedasaprecursormolecule(ProN-cadherin) which has anti-adhesive properties. The Pro domain is thought to be cleaved off in the late Golgi by a furin protease, after which adhesively activatedN-cadherinisdirectedtothecellmembrane.WeraisedanantibodyrecognizingtheProNsequence,andstudiedtheexpressionofProN- cadherinindevelopinghippocampalcultures.WedemonstratedthepresenceofthisimmatureN-cadherinthroughoutneuronaldifferentiation,from 5h to 14 days in vitro. Biotinylation of the proteins on theneuronal surface revealed that a proportion of ProN-cadherin is sorted to the plasma membraneandthatthemature/immatureN-cadherinratioonthesurfaceincreasesasneuronaldifferentiationprogresses.Interestingly, we found thatthePropieceisreleasedintotheculturemediacoincidentwithitsdecreaseontheplasmamembrane.TostudythefunctionofProN-cadherin whenexpressedontheneuronalsurface,weemployedaconstructinwhichtheendogenouscleavagesitewasreplacedbyafactorXacleavagesite. ProN-cadherinoverexpressionhadalargeimpactonsynapsenumber,measuredasadecreaseinthenumberofsynaptophysinandPSD-95puncta. Thesameeffect wasobserved whenthefunctionallabelingofpresynapticboutonswiththeFM4-64dyewasanalyzed. Thiseffect was partially overcomewhenfactorXawasappliedtothecultures.Ourresultsdemonstratethatanti-adhesiveProN-cadherinisexpressedinneuronsandsorted totheplasmamembranewhereitmayactasanegativeregulatorofsynapseformation.Weproposethatchangesintheratioofmature/immature N-cadherinontheneuronalsurfacemightbeanovelmechanismbywhichneuronsregulatesynapticjunctionformation. 17 ImmaculateConnections,aKinesinMotor,isNecessaryforPresynapticDifferentiationandfortheTransportofSynapticComponents E.Pack-Chung,D.K.Dickman,T.L.Schwarz;Children'sHospital,HarvardMedicalSchool,Boston,MA Thebuildingblocksofsynapsesarepresentwithingrowingaxonsandarerecruitedtositesoftargetcellcontact.Thus,thetransportofsynaptic components,includingtheproteinsofsynapticvesiclesandactivezones,isnecessaryforsynaptogenesis.Theidentityandregulatorymechanisms of the molecular motors that move synaptic cargoes, however, remain elusive. We have identified a Drosophila gene (named immaculate connections)thatisrequiredforsynaptogenesis.immaculateconnections(imac)encodesamemberofthekinesin3familyofmotors.Mutationsin imacdonotpreventaxonoutgrowthbutpreventgrowthconesfromtransformingintosynapses.Attheembryonicneuromuscularjunction,growth cones reach their target muscles but do not mature into synaptic boutons. Thus the development of nmj appears to be blocked just at synaptogenesis.Examinationofintracellulartransportrevealedthatthetraffickingofsynapticvesicleandactivezonecomponentsareblockedin 8a Sunday imac.Theseproteinswerelackinginimacaxonsandaccumulatedinthecellbodies.However,post-Golgivesicles,mitochondria,andcytoskeletal componentswereproperlytraffickedinimacaxons.Interestingly,theabsenceofpresynapticdifferentiationinimacdidnotpreventtheassembly ofpostsynapticcomponents;clusteringofpostsynapticreceptorsandpostsynapticdensityelementsweredetected.WethusconcludethatImacis selectivelyrequiredforthetransportofmaterialsforsynaptogenesisandthatinitsabsence,presynapticdifferentiationfailstotranspire.Ourdata alsoprovesthatitisdistinctfromthemotorormotorsnecessaryforaxonoutgrowth.Bybringingsynapticmaterialsintothegrowingaxon,imac permitstherapidformationoffunctionalsynapticconnections.Thecouplinganduncouplingofthemotoranditscargoarelikelytobeimportantin regulatingtheformationofsynapses. 18 HIP1ExpressionisRequiredforNormalNMDARFunction:ImplicationsforaRoleofHIP1inHuntington’sDisease M.Metzler,1L.Gan,1J.Helm,1T.P.Wong,2L.Liu,2Y.Wang,2L.Liu,1Y.T.Wang,2M.R.Hayden1;1CMMT,Dept.ofMedicalGenetics,UBC, Vancouver,BC,Canada,2TheBrainResearchCentre,UBC,Vancouver,BC,Canada The initial identification of the endocytic protein HIP1 (huntingtin interacting protein 1) resulted from its interaction with the polyglutamine- containing protein huntingtin that, in its polyglutamine-expanded form, causes Huntington's Disease (HD). The interaction between HIP1 and huntingtin is significantly altered following polyQ-expansion in huntingtin suggesting that HIP1 is a possible component of the pathogenic mechanisminHD.Inpreviousstudieswehaveshownthat AMPA-inducedAMPAreceptor(AMPAR)traffickingisblockedincorticalneurons fromHIP1 knock-out mice(Metzler et al., 2003).Here, wedemonstrateasimilar blockin NMDA-induced AMPARendocytosis, andhencethe reduction ofcell-surface AMPARexpression, in cultured hippocampal neuronsfromHIP1 knock-out mice. Moreover, theNMDA-induced long term potentiation of AMPAR-mediated synaptic transmission at the CA1 synapses in hippocampal brain slices from HIP1 knock-out mice is significantly reduced compared to wild-type littermates. Results from coimmunoprecipitation and GST-pulldown experiments revealed direct interaction between HIP1 and the NR2 subunit of NMDARs. Furthermore, colocalization between HIP1 and NR2-cointaining NMDARs is observedinprimaryhippocampalneurons.MostimportantforourunderstandingofHD,NMDA-inducedexcitotoxicityisblockedinneuronsfrom HIP1knock-outmice.Together,thesedataprovidestrongevidencethatHIP1regulatesNMDARfunctionandthatthisfunctionofHIP1maybe contributingtoenhancedexcitotoxicityinHD. 19 AssociationofanAKAPSignalingScaffoldwithCadherinAdhesionMoleculesinNeuronsandEpithelialCells J.A.Gorski,1L.L.Gomez,1J.D.Scott,2M.L.Dell'Acqua1;1Pharmacology,UniversityofColoradoDenverHealthSciencesCenter,Aurora,CO, 2VollumInstitute,HowardHughesMedicalInstitute,OregonHealthSciencesUniversity,Portland,OR A-kinase anchoring protein (AKAP) 79/150 organizes a scaffold of PKA, PKC and protein phosphatase 2B/calcineurin that is localized to epithelialadherensjunctionsandthepostsynapticdensityofneuronalsynapses.TargetingoftheAKAPtothesesubcellularlocationsrequiresthree N-terminal basic domains that bind F-actin and acidic phospholipids. Here we report a novel interaction of this targeting domain with cadherin adhesion moleculesthat arelinked to actin through β-catenin (β-cat). MappingtheAKAP bindingsitein cadherinsidentified overlap withβ-cat binding; however, no competition between AKAP and β-cat binding to cadherins was detected in vitro. Accordingly, AKAP79/150 exhibited polarizedlocalization withβ-catand cadherinsin epithelialcell lateral membranes, andβ-cat waspresent inAKAP-cadherin complexesisolated fromepithelial cells, culturedneurons, and ratbrain synapticmembranes. Inhibitionofepithelialcell cadherin adhesion induced byextracellular calciumswitchandinhibitionofactinpolymerizationbytreatmentwithLatrunculinAredistributedintactAKAP-cadherincomplexesfromlateral membranes to intracellular compartments. In contrast, stimulation of neuronal pathways implicated in long term depression that depolymerize postsynaptic F-actin disrupted AKAP-cadherin interactions and resulted in loss of the AKAP, but not cadherins, from synapses. This neuronal regulationofAKAP79/150targetingtocadherinsmaybeimportantinfunctionalandstructuralsynapticmodificationsunderlyingplasticity. 20 StructuralPlasticitywithPreservedTopologyinaPostsynapticProteinNetwork T. A. Blanpied,1 M. D. Ehlers2; 1Physiology, University of Maryland School of Medicine, Baltimore, MD, 2Neurobiology, Cell Biology, PharmacologyandCancerBiology,HowardHughesMedicalInstituteandDukeUniversityMedicalCenter,Durham,NC Multiprotein complexes form structural networks to mediate diverse cellular events including adhesion, signaling, nuclear transport, and intercellular communication. The function of such interconnected protein machines is determined by the spatial positioning and dynamic rearrangementsofindividualcomponentswithinthecomplex.Thepostsynapticdensity(PSD)isaprominentexampleofsuchnetworks.ThePSD positions neurotransmitter receptors across from presynaptic sites of neurotransmitter release and links postsynaptic receptors with intracellular signaling cascades. Nearly all molecular theories of learning postulate morphological and molecular alteration of the PSD during plasticity at excitatory synapses. However, despite recent documentation of rapid mobility of receptors near the PSD, there is little known about dynamic behavior ofcorePSDconstituentsin thecomplex. To probethestructureoflivingPSDs, wehavemeasured theirinternaldynamicsusinghigh- resolutionimaginganalyses.TheseexperimentsindicatethatthePSDisassembledasaflexibleyettopologicallystablematrixonwhichenduring changes in function can be rapidly encoded. Exchange, addition, or removal of PSD elements can occur at independent matrix coordinates, providingamolecularmapfororganizingsynapticnanoarchitecture. 21 TwoTypesofEndocyticIntermediatesatthePeriactiveZoneofaCentralSynapse A.Sundborger,N.Tomilin,O.Shupliakov;Neuroscience,KarolinskaInstitutet,Stockholm,Sweden Dynamin is the GTPase implicated in fission of vesicles from the plasma membrane. In synapses it is an important component of the protein complexresponsiblefordetachingclathrinvesiclesfromthepresynapticmembrane.Ithasbeenshownininvitrostudieswithisolatedmembranes and with synaptosomes that GTPγS blocks fission resulting in the accumulation of clathrin-coated pits with elongated necks decorated with dynamin-containing spirals. To visualize dynamin-dependent endocytic intermediates in an intact synapse we microinjected GTPγS into living giant axons in lamprey and studied them using electron microscopy. GTPγS did not alter morphology of synapses at rest. Stimulation of 9a Sunday microinjected axons with action potentialsat 5 Hzinduced areduction in thenumber ofsynaptic vesiclesat active zonesand theappearanceof numerousendocyticintermediatesatperiactivezones. Twodifferentclassesofintermedientswerefoundatperiactivezones:clathrin-coatedpits withelongatednecks,andmembraneinvaginations.Coatedpitswerepresentonlyonsomeofthesemembraneinvaginations.Bothwereconnected to the presynaptic membrane. Spiral-like structures were found at sites of these membrane connections. To investigate if these spirals contain dynamin, axons microinjected with GTPγS we cut along the longitudinal axis and stained with anti-dynamin (DG-1) antibodies using a pre- embedding immunogold technique. An accumulation of gold particles occurred at necks of clathrin-coated pits and at sites of connection of membrane invaginations to the presynaptic membrane. Our results show that two endocytic intermediates, clathrin-dependent and clathrin- independent,areformedatperiactivezonesduringsynapticactivity.Thus,inadditiontotheclathrinmechanism,bulkretrievaloflargemembrane compartmentsmayoccurinintactsynapsesduringneurotransmitterrelease. Differentiation &Cancer(22-27) 22 UnderstandingWntSignalinginDevelopmentandDisease X.He1,2;1Children'sHospital,Boston,MA,2HarvardMedicalSchool,Boston,MA Wnt signaling is essential for development and tissue homeostasis. Disruption of Wnt signal transduction causes abnormal embryogenesis and cancers. Using a combination ofmolecular, biochemical and embryological techniques, we have focused on the mechanismof Wnt signaling in Xenopusembryodevelopmentandhumancancer.WeareparticularlyinterestedinhowtheWntreceptorcomplextransducesWntsignalacrossthe plasmamembrane,howtheWntreceptorcomplexspecifiesdistincttransductionpathwaystogoverndifferentaspectsofembryogenesis,andthe molecularcompositionandlogicofthesetransductionpathways.ProteinphosphorylationispivotalforWntsignaling.Wehavecharacterizedtwo key phosphorylation events in the canonical Wnt/beta-catenin pathway. One is phosphorylation of the Wnt coreceptor, LDL receptor related protein 6 (LRP6). This phosphorylation leads to LRP6 activation and the initiation of Wnt signal transduction. The other is beta-catenin phosphorylation, which results in beta-catenin degradation and is inhibited upon Wnt signaling. 1). The mechanism of phosphorylation and activationoftheWntcoreceptorLRP6.WehaveshownthatWntinducesLRP6phosphorylationatPPPS/TPmotifs,andthisphosphorylationis necessaryandsufficienttotriggerWntsignaling.WehavegeneratedantibodiesthatspecificallyrecognizephosphorylatedLRP6.Theseantibodies areusefultoolsfordetectionofWntsignalingactivationinvivoandforidentificationofkinasesinvolvedinLRP6phosphorylation.Iwilldiscuss ourrecentprogressinstudyingWnt-inducedLRP6phosphorylationandidentifyingLRP6kinases.2).Themechanismofphosphorylationand degradationofbeta-catenin.Wehavedemonstratedthattwokinases,caseinkinase1(CK1)andglycogensynthasekinase3(GSK3),sequentially phosphorylatebeta-catenininaproteincomplexassembledbythescaffoldingproteinAxin.IwilldiscusshowWntreceptoractivationmayleadto inhibitionofbeta-cateninphosphorylation,andourattempttoidentifyotherkeymoleculesviainvitroreconstitution. 23 p21WAF1/Cip1MediatesNotch1-dependentSuppressionofWntExpressionandSignaling V. Devgan,1 C. Mammucari,2S. E. Millar,3C. Brisken,4 G. P. Dotto2; 1Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, 2Department of Biochemistry, Lausanne University, Epalinges, Switzerland, 3Department of Dermatology, University of PennsylvaniaMedicalSchool,Philadelphia,PA,4SwissCancerResearchInstitute,Epalinges,Switzerland Besides controlling cyclin/CDK and PCNA activities, p21WAF1/Cip1 can directly bind transcription factors and co-activators, modulating their functions. However, thebiological significanceofthesefindingshasnotbeen established. In keratinocytes, p21isadirectdownstreamtarget of Notch1 activation, and loss of either p21 or Notch1 expands keratinocyte stem cell populations and facilitates tumor development. The tumor suppressorfunctionofNotch1hasbeenassociatedwithnegativeregulationofβ-cateninsignaling,throughanunknownmechanism.Weshowhere that Notch1 activation down-regulates β-catenin signaling through suppression of Wnts gene expression, and that p21 is a key mediator of this down-modulation. p21 suppresses Wnts expression independently of the cell cycle, while lack of p21 prevents Notch-dependent suppression of Wntgeneexpressionandresults,bothinculturedkeratinocytesandintheintactskin invivo,inincreasedWnt4expression.Morespecifically,p21 associates with the E2F-1 transcription factor at the Wnt4 promoter and causes curtailed recruitment of c-Myc and p300, and histone hypoacetylationatthispromoter.Thus,p21functionsasamediatorofthenegativeeffectofNotch1activationonWntsignaling,byspecificdown- modulationofWntgeneexpressionatthetranscription-chromatinlevelandindependentlyofcellcycle. 24 Gata-3isaCriticalRegulatorofDifferentiationintheMammaryGlandandBreastCancer H.Kouros-Mehr,Z.Werb;Anatomy,UCSF,SanFrancisco,CA AseriesofbreastcancermicroarraystudieshaveshownthatthetranscriptionfactorGATA-3isstronglycorrelatedwithEstrogen Receptor(ER) status, tumor grade and survival. We show here that GATA-3 plays a fundamental role in maintaining the luminal epithelial cell fate in the mammaryglandandinbreastcancer.WeinitiallyidentifiedGATA-3throughamicroarrayscreenasthemosthighlyexpressedtranscriptionfactor inthemammarygland.ImmunostainingrevealedthatGATA-3isexpressedexclusivelyinallluminalprogenitorsanddifferentiatedluminalcells. TodeterminethefunctionofGATA-3,wecrossedfloxedGATA-3micewithMMTV-CreandWAP-rtTA-Crelines.HomozygousfloxedGATA-3 micecarryingMMTV-Credisplayedrunting,progressivealopecia,andahighlydefectivemammarygland.Themammaryglandsdisplayedanear lackofepitheliumduetoaninabilitytoformterminalendbuds.TomorecloselyanalyzethefunctionofGATA-3,wecrossedthefloxedmicewith the Tet-inducible Cre line WAP-rtTA-Cre. After short-term (72 hr) administration of doxycycline to adult mice, GATA-3 null luminal cells displayedlossofbasalpolarityanddiedwithintheductallumenassinglecells.TodeterminehowGATA-3affectsbreastcancerprogression,we usedthePyMTmousemodelofbreastcancer.WetransplantedGFP+hyperplasiasintosyngeneicmicetodeterminewhenmalignantconversion occurred.WefoundthatlossofGATA-3stronglycorrelatedwithlossoftumordifferentiation,theprogressionfromadenomatoearlycarcinoma, andtheonsetoftumordisseminationintodistantsites.Furthermore,overexpressionofGATA-3inprimaryPyMTtumorswassufficienttoinduce elementsoftumor differentiation. Thiswork suggeststhat GATA-3 specifiesand maintainsluminal cell differentiation and suggeststhat lossof cellfateisacriticaleventinthemalignantprogressionofbreastcancer. 10a
Description: