ebook img

ARW Dynamics and Numerics PDF

42 Pages·2012·2.57 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ARW Dynamics and Numerics

The Advanced Research WRF (ARW) Dynamics Solver Bill Skamarock [email protected] Jimy Dudhia [email protected] WRF Tutorial July 2012 WRF ARW Tech Note A Description of the Advanced Research WRF Version 3 http://www.mmm.ucar.edu/wrf/users/pub-doc.html WRF Tutorial July 2012 ARW Dynamical Solver –  Terrain representation –  Vertical coordinate –  Equations / variables –  Time integration scheme –  Grid staggering –  Advection scheme –  Time step parameters –  Filters –  Boundary conditions –  Nesting –  Map projections WRF Tutorial July 2012 Vertical Coordinate and Prognostic Variables π Hydrostatic pressure Column mass µ = π − π s t (per unit area) ( ) π −π t Vertical coordinate η= µ (cid:0) Layer mass µΔη= Δπ = gρΔz (per unit area) (cid:0) Conserved state (prognostic) variables: (cid:0) µ, U = µu, V = µv, W = µw, Θ = µθ φ = gz Non-conserved state variable: WRF Tutorial July 2012 2D Flux-Form Moist Equations in ARW Moist Equations: Diagnostic relations: WRF Tutorial July 2012 Time Integration in ARW 3rd Order Runge-Kutta time integration advance Amplification factor WRF Tutorial July 2012 Phase and amplitude errors for LF, RK3 Oscillation equation analysis  = t ik WRF Tutorial July 2012 Time-Split Runge-Kutta Integration Scheme U = L (U) + L (U) t fast slow 3rd order Runge-Kutta, 3 steps L (Ut) U* •  RK3 is 3rd order accurate for s linear eqns, 2nd order t t+dt/3 t+dt accurate for nonlinear eqns. •  Stable for centered and L (U*) U** s upwind advection schemes. •  Stable for Courant number t t+dt/2 t+dt Udt/dx < 1.73 •  Three L (U) evaluations per L (U**) Ut+dt slow s timestep. t t+dt WRF Tutorial July 2012 WRF ARW Model Integration Procedure Begin time step Runge-Kutta loop (steps 1, 2, and 3) (i) advection, p-grad, buoyancy using (t, *, **) (ii) physics if step 1, save for steps 2 and 3 (iii) mixing, other non-RK dynamics, save… (iv) assemble dynamics tendencies Acoustic step loop (i) advance U,V, then m, Q, then w, f (ii) time-average U,V, W End acoustic loop Advance scalars using time-averaged U,V, W End Runge-Kutta loop Adjustment physics (currently microphysics) End time step WRF Tutorial July 2012 Flux-Form Perturbation Equations Introduce the perturbation variables: Note – likewise Reduces horizontal pressure-gradient errors. For small time steps, recast variables as perturbations from time t Allows vertical pressure gradient to be expressed in terms of ’’. WRF Tutorial July 2012

Description:
WRF Tutorial July 2012. Hydrostatic Option. Integrate the hydrostatic equation to obtain p (): Recover and from: , and. W is no longer required during the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.