ebook img

Artificial Neural Networks in Biological and Environmental Analysis (Analytical Chemistry) PDF

210 Pages·2011·2.49 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Artificial Neural Networks in Biological and Environmental Analysis (Analytical Chemistry)

ARTIFICIAL NEURAL NETWORKS IN BIOLOGICAL AND ENVIRONMENTAL ANALYSIS ANALYTICAL CHEMISTRY SERIES Series Editor Charles H. Lochmüller Duke University Quality and Reliability in Analytical Chemistry, George E. Baiulescu, Raluca-Ioana Stefan, Hassan Y. Aboul-Enein HPLC: Practical and Industrial Applications, Second Edition, Joel K. Swadesh Ionic Liquids in Chemical Analysis, edited by Mihkel Koel Environmental Chemometrics: Principles and Modern Applications, Grady Hanrahan Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach, Piotr Konieczka and Jacek Namie´snik Analytical Measurements in Aquatic Environments, edited by Jacek Namie´snik and Piotr Szefer Ion-Pair Chromatography and Related Techniques, Teresa Cecchi Artificial Neural Networks in Biological and Environmental Analysis, Grady Hanrahan ANALYTICAL CHEMISTRY SERIES ARTIFICIAL NEURAL NETWORKS IN BIOLOGICAL AND ENVIRONMENTAL ANALYSIS Grady Hanrahan Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4398-1259-4 (Ebook-PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To my dearest mother In memory of Dr. Ira Goldberg Contents Foreword ...................................................................................................................xi Preface....................................................................................................................xiii Acknowledgments ....................................................................................................xv The Author .............................................................................................................xvii Guest Contributors ..................................................................................................xix Glossary of Acronyms ............................................................................................xxi Chapter 1 Introduction ..........................................................................................1 1.1 Artificial Intelligence: Competing Approaches or Hybrid Intelligent Systems? ...................................................................1 1.2 Neural Networks: An Introduction and Brief History ...............3 1.2.1 The Biological Model ...................................................5 1.2.2 The Artificial Neuron Model .......................................6 1.3 Neural Network Application Areas .........................................11 1.4 Concluding Remarks ...............................................................13 References ..........................................................................................13 Chapter 2 Network Architectures .......................................................................17 2.1 Neural Network Connectivity and Layer Arrangement ..........17 2.2 Feedforward Neural Networks ................................................17 2.2.1 The Perceptron Revisited ...........................................17 2.2.2 Radial Basis Function Neural Networks ....................23 2.3 Recurrent Neural Networks .....................................................26 2.3.1 The Hopfield Network ................................................28 2.3.2 Kohonen’s Self-Organizing Map ................................30 2.4 Concluding Remarks ...............................................................33 References ..........................................................................................33 Chapter 3 Model Design and Selection Considerations ......................................37 3.1 In Search of the Appropriate Model ........................................37 3.2 Data Acquisition ......................................................................38 3.3 Data Preprocessing and Transformation Processes .................39 3.3.1 Handling Missing Values and Outliers ......................39 3.3.2 Linear Scaling ............................................................40 3.3.3 Autoscaling .................................................................41 3.3.4 Logarithmic Scaling ...................................................41 3.3.5 Principal Component Analysis ...................................41 3.3.6 Wavelet Transform Preprocessing ..............................42 vii viii Contents 3.4 Feature Selection .....................................................................43 3.5 Data Subset Selection ..............................................................44 3.5.1 Data Partitioning ........................................................45 3.5.2 Dealing with Limited Data ........................................46 3.6 Neural Network Training ........................................................47 3.6.1 Learning Rules ...........................................................47 3.6.2 Supervised Learning ..................................................49 3.6.2.1 The Perceptron Learning Rule ...................50 3.6.2.2 Gradient Descent and Back-Propagation .....50 3.6.2.3 The Delta Learning Rule ............................51 3.6.2.4 Back-Propagation Learning Algorithm ......52 3.6.3 Unsupervised Learning and Self-Organization .........54 3.6.4 The Self Organizing Map ...........................................54 3.6.5 Bayesian Learning Considerations .............................55 3.7 Model Selection .......................................................................56 3.8 Model Validation and Sensitivity Analysis .............................58 3.9 Concluding Remarks ...............................................................59 References ..........................................................................................59 Chapter 4 Intelligent Neural Network Systems and Evolutionary Learning ......65 4.1 Hybrid Neural Systems ............................................................65 4.2 An Introduction to Genetic Algorithms ..................................65 4.2.1 Initiation and Encoding ..............................................67 4.2.1.1 Binary Encoding .........................................68 4.2.2 Fitness and Objective Function Evaluation ................69 4.2.3 Selection .....................................................................70 4.2.4 Crossover ....................................................................71 4.2.5 Mutation .....................................................................72 4.3 An Introduction to Fuzzy Concepts and Fuzzy Inference Systems ....................................................................73 4.3.1 Fuzzy Sets ..................................................................73 4.3.2 Fuzzy Inference and Function Approximation ..........74 4.3.3 Fuzzy Indices and Evaluation of Environmental Conditions .........................................77 4.4 The Neural-Fuzzy Approach ...................................................78 4.4.1 Genetic Algorithms in Designing Fuzzy Rule-Based Systems ...................................................81 4.5 Hybrid Neural Network-Genetic Algorithm Approach ...........81 4.6 Concluding Remarks ...............................................................85 References ..........................................................................................86 Chapter 5 Applications in Biological and Biomedical Analysis .........................89 5.1 Introduction .............................................................................89 5.2 Applications .............................................................................89 Contents ix 5.2.1 Enzymatic Activity .....................................................94 5.2.2 Quantitative Structure–Activity Relationship (QSAR) .......................................................................99 5.2.3 Psychological and Physical Treatment of Maladies ...................................................................108 5.2.4 Prediction of Peptide Separation ..............................110 5.3 Concluding Remarks .............................................................112 References ........................................................................................115 Chapter 6 Applications in Environmental Analysis .........................................119 6.1 Introduction ...........................................................................119 6.2 Applications ...........................................................................120 6.2.1 Aquatic Modeling and Watershed Processes ...........120 6.2.2 Endocrine Disruptors ...............................................128 6.2.3 Ecotoxicity and Sediment Quality ...........................133 6.2.4 Modeling Pollution Emission Processes ..................136 6.2.5 Partition Coefficient Prediction ................................141 6.2.6 Neural Networks and the Evolution of Environmental Change (A Contribution by Kudłak et al.) ............................................................143 6.2.6.1 Studies in the Lithosphere ........................144 6.2.6.2 Studies in the Atmosphere ........................144 6.2.6.3 Studies in the Hydrosphere .......................145 6.2.6.4 Studies in the Biosphere ...........................146 6.2.6.5 Environmental Risk Assessment ..............146 6.3 Concluding Remarks .............................................................146 References ........................................................................................147 Appendix I: Review of Basic Matrix Notation and Operations .......................151 Appendix II: Cytochrome P450 (CYP450) Isoform Data Set Used in Michielan et al. (2009) .........................................................................................155 Appendix III: A 143-Member VOC Data Set and Corresponding Observed and Predicted Values of Air-to-Blood Partition Coefficients .........179 Index ......................................................................................................................183

Description:
Originating from models of biological neural systems, artificial neural networks (ANN) are the cornerstones of artificial intelligence research. Catalyzed by the upsurge in computational power and availability, and made widely accessible with the co-evolution of software, algorithms, and methodologi
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.