ebook img

Artificial Neural Networks. A Practical Course PDF

303 Pages·2017·11.882 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Artificial Neural Networks. A Practical Course

Ivan Nunes da Silva Danilo Hernane Spatti (cid:129) Rogerio Andrade Flauzino Luisa Helena Bartocci Liboni Silas Franco dos Reis Alves fi Arti cial Neural Networks A Practical Course 123 IvanNunes daSilva LuisaHelena Bartocci Liboni Department ofElectrical andComputer Department ofElectrical andComputer Engineering, USP/EESC/SEL Engineering, USP/EESC/SEL University of SãoPaulo University of SãoPaulo São Carlos, São Paulo São Carlos, São Paulo Brazil Brazil DaniloHernane Spatti Silas Francodos Reis Alves Department ofElectrical andComputer Department ofElectrical andComputer Engineering, USP/EESC/SEL Engineering, USP/EESC/SEL University of SãoPaulo University of SãoPaulo São Carlos, São Paulo São Carlos, São Paulo Brazil Brazil RogerioAndrade Flauzino Department ofElectrical andComputer Engineering, USP/EESC/SEL University of SãoPaulo São Carlos, São Paulo Brazil ISBN978-3-319-43161-1 ISBN978-3-319-43162-8 (eBook) DOI 10.1007/978-3-319-43162-8 LibraryofCongressControlNumber:2016947754 ©SpringerInternationalPublishingSwitzerland2017 ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface Whatareartificialneuralnetworks?Whatistheirpurpose?Whataretheirpotential practical applications? What kind of problems can they solve? Withthesequestionsinmind,thisbookwaswrittenwiththeprimaryconcernof answering readers with different profiles, from those interested in acquiring knowledgeaboutarchitecturesofartificialneuralnetworktothosemotivatedbyits multiple applications (of practical aspect) for solving real-world problems. Thisbookaudienceismultidisciplinary,asitwillbeconfirmedbythenumerous exercisesandexamplesaddressedhere.Itexploresdifferentknowledgeareas,such as engineering, computer science, mathematics, physics, economics, finance, statistics, and neurosciences. Additionally, it is expected that this book could be interestingfor those from many other areas that have been inthe focus ofartificial neural networks, such as medicine, psychology, chemistry, pharmaceutical sci- ences, biology, ecology, geology, and so on. Regarding the academic approach of this book and its audience, the chapters were tailored in a fashion that attempts to discuss, step-by-step, the thematic con- cepts, covering a broad range of technical and theoretical information. Therefore, besidesmeetingtheprofessionalaudience’sdesiretobeginordeepentheirstudyon artificial neural networks and its potential applications, this book is intended to be used as a textbook for undergraduate and graduate courses, which address the subject of artificial neural networks in their syllabus. Furthermore,thetextwascomposedusinganaccessiblelanguagesoitcouldbe readbyprofessionals,students,researchers,andautodidactics,asastraightforward andindependentguideforlearningbasicandadvancedsubjectsrelated toartificial neuralnetworks.Tothisend,theprerequisitesforunderstandingthisbook’scontent are basic, requiring only a few elementary knowledge about linear algebra, algo- rithms, and calculus. The first part of this book (Chaps. 1–10), which is intended for those readers who want to begin or improve their theoretical investigation on artificial neural networks, addresses the fundamental architectures that can be implemented in several application scenarios. Thesecondpartofthisbook(Chaps. 11–20)wasparticularlycreatedtopresent solutions that comprise artificial neural networks for solving practical problems from different knowledge areas. It describes several developing details considered toachievethedescribedresults.Suchaspectcontributestomatureandimprovethe reader’s knowledge about the techniques of specifying the most appropriated artificial neural network architecture for a given application. São Carlos, Brazil Ivan Nunes da Silva Danilo Hernane Spatti Rogerio Andrade Flauzino Luisa Helena Bartocci Liboni Silas Franco dos Reis Alves Organization This book was carefully created with the mission of presenting an objective, friendly, accessible,andillustrative text,whosefundamental concern is, infact, its didactic format. The book organization, made in two parts, along with its com- position filled with more than 200 figures, eases the knowledge building for dif- ferentreaders’profiles.Thebibliography,composedofmorethan170references,is thefoundationforthethemescoveredinthisbook.Thesubjectsarealsoconfronted with up-to-date context. Thefirstpartofthebook(PartI),dividedintotenchapters,coversthetheoretical features related to the main artificial neural architectures, including Perceptron, Adaptive Linear Element (ADALINE), Multilayer Perceptron, Radial Basis Function (RBF), Hopfield, Kohonen, Learning Vector Quantization (LCQ), Counter-Propagation,andAdaptiveResonanceTheory(ART).Ineachoneofthese chapters from Part I, a section with exercises was inserted, so the reader can progressively evaluate the knowledge acquired within the numerous subjects addressed in this book. Furthermore, the chapters that address the different architectures of neural net- worksarealsoprovidedwithsectionsthatdiscusshands-onprojects,whosecontent assiststhereaderonexperimentalaspectsconcerningtheproblemsthatuseartificial neural networks. Such activities also contribute to the development of practical knowledge, which may help on specifying, parameterizing, and tuning neural architectures. The second part (Part II) addresses several applications, covering different knowledge areas, whose solutions and implementations come from the neural networkarchitecturesexploredinPartI.Thedifferentapplicationsaddressedonthis partofthebookreflectthepotentialapplicabilityofneuralnetworkstothesolution of problems from engineering and applied sciences. These applications intend to drive the reader through different modeling and mapping strategies based on arti- ficial neural networks for solving problems of diverse nature. Several didactic materials related to this book, including figures, exercise tips, anddatasets for training neural networks (in tableformat), arealso available atthe following Website: http://laips.sel.eesc.usp.br/ In summary, this book will hopefully create a pleasant and enjoyable reading, thus contributing to the development of a wide range of both theoretical and practical knowledge concerning the area of artificial neural networks. Contents Part I Architectures of Artificial Neural Networks and Their Theoretical Aspects 1 Introduction... .... .... ..... .... .... .... .... .... ..... .... 3 1.1 Fundamental Theory..... .... .... .... .... .... ..... .... 5 1.1.1 Key Features.... .... .... .... .... .... ..... .... 5 1.1.2 Historical Overview... .... .... .... .... ..... .... 6 1.1.3 Potential Application Areas. .... .... .... ..... .... 8 1.2 Biological Neuron.. ..... .... .... .... .... .... ..... .... 9 1.3 Artificial Neuron... ..... .... .... .... .... .... ..... .... 11 1.3.1 Partially Differentiable Activation Functions..... .... 13 1.3.2 Fully Differentiable Activation Functions .. ..... .... 15 1.4 Performance Parameters .. .... .... .... .... .... ..... .... 18 1.5 Exercises. .... .... ..... .... .... .... .... .... ..... .... 19 2 Artificial Neural Network Architectures and Training Processes.. ..... .... .... .... .... .... ..... .... 21 2.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 21 2.2 Main Architectures of Artificial Neural Networks... ..... .... 21 2.2.1 Single-Layer Feedforward Architecture.... ..... .... 22 2.2.2 Multiple-Layer Feedforward Architectures . ..... .... 23 2.2.3 Recurrent or Feedback Architecture .. .... ..... .... 24 2.2.4 Mesh Architectures ... .... .... .... .... ..... .... 24 2.3 Training Processes and Properties of Learning. .... ..... .... 25 2.3.1 Supervised Learning .. .... .... .... .... ..... .... 26 2.3.2 Unsupervised Learning .... .... .... .... ..... .... 26 2.3.3 Reinforcement Learning ... .... .... .... ..... .... 26 2.3.4 Offline Learning . .... .... .... .... .... ..... .... 27 2.3.5 Online Learning.. .... .... .... .... .... ..... .... 27 2.4 Exercises. .... .... ..... .... .... .... .... .... ..... .... 28 3 The Perceptron Network. ..... .... .... .... .... .... ..... .... 29 3.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 29 3.2 Operating Principle of the Perceptron.... .... .... ..... .... 30 3.3 Mathematical Analysis of the Perceptron . .... .... ..... .... 32 3.4 Training Process of the Perceptron.. .... .... .... ..... .... 33 3.5 Exercises. .... .... ..... .... .... .... .... .... ..... .... 38 3.6 Practical Work .... ..... .... .... .... .... .... ..... .... 39 4 The ADALINE Network and Delta Rule. .... .... .... ..... .... 41 4.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 41 4.2 Operating Principle of the ADALINE.... .... .... ..... .... 42 4.3 Training Process of the ADALINE.. .... .... .... ..... .... 44 4.4 ComparisonBetweentheTrainingProcessesofthePerceptron and the ADALINE. ..... .... .... .... .... .... ..... .... 50 4.5 Exercises. .... .... ..... .... .... .... .... .... ..... .... 52 4.6 Practical Work .... ..... .... .... .... .... .... ..... .... 52 5 Multilayer Perceptron Networks ... .... .... .... .... ..... .... 55 5.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 55 5.2 Operating Principle of the Multilayer Perceptron ... ..... .... 56 5.3 Training Process of the Multilayer Perceptron . .... ..... .... 57 5.3.1 Deriving the Backpropagation Algorithm .. ..... .... 58 5.3.2 Implementing the Backpropagation Algorithm.... .... 69 5.3.3 Optimized Versions of the Backpropagation Algorithm . ..... .... .... .... .... .... ..... .... 71 5.4 Multilayer Perceptron Applications.. .... .... .... ..... .... 78 5.4.1 Problems of Pattern Classification.... .... ..... .... 78 5.4.2 Functional Approximation Problems (Curve Fitting)... .... .... .... .... .... ..... .... 86 5.4.3 Problems Involving Time-Variant Systems . ..... .... 90 5.5 Aspects of Topological Specifications for MLP Networks . .... 97 5.5.1 Aspects of Cross-Validation Methods . .... ..... .... 97 5.5.2 Aspects of the Training and Test Subsets .. ..... .... 101 5.5.3 Aspects of Overfitting and Underfitting Scenarios. .... 101 5.5.4 Aspects of Early Stopping.. .... .... .... ..... .... 103 5.5.5 Aspects of Convergence to Local Minima.. ..... .... 104 5.6 Implementation Aspects of Multilayer Perceptron Networks.... 105 5.7 Exercises. .... .... ..... .... .... .... .... .... ..... .... 109 5.8 Practical Work 1 (Function Approximation)... .... ..... .... 110 5.9 Practical Work 2 (Pattern Classification).. .... .... ..... .... 112 5.10 Practical Work 3 (Time-Variant Systems). .... .... ..... .... 114 6 Radial Basis Function Networks.... .... .... .... .... ..... .... 117 6.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 117 6.2 Training Process of the RBF Network ... .... .... ..... .... 117 6.2.1 Adjustment of the Neurons from the Intermediate Layer (Stage I) .. .... .... .... .... .... ..... .... 118 6.2.2 Adjustment of Neurons of the Output Layer (Stage II).. ..... .... .... .... .... .... ..... .... 123 6.3 Applications of RBF Networks. .... .... .... .... ..... .... 125 6.4 Exercises. .... .... ..... .... .... .... .... .... ..... .... 130 6.5 Practical Work 1 (Pattern Classification).. .... .... ..... .... 133 6.6 Practical Work 2 (Function Approximation)... .... ..... .... 135 7 Recurrent Hopfield Networks.. .... .... .... .... .... ..... .... 139 7.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 139 7.2 Operating Principles of the Hopfield Network . .... ..... .... 140 7.3 Stability Conditions of the Hopfield Network.. .... ..... .... 142 7.4 Associative Memories.... .... .... .... .... .... ..... .... 145 7.4.1 Outer Product Method. .... .... .... .... ..... .... 146 7.4.2 Pseudoinverse Matrix Method... .... .... ..... .... 147 7.4.3 Storage Capacity of Memories... .... .... ..... .... 148 7.5 Design Aspects of the Hopfield Network . .... .... ..... .... 150 7.6 Hardware Implementation Aspects .. .... .... .... ..... .... 151 7.7 Exercises. .... .... ..... .... .... .... .... .... ..... .... 153 7.8 Practical Work .... ..... .... .... .... .... .... ..... .... 154 8 Self-Organizing Kohonen Networks. .... .... .... .... ..... .... 157 8.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 157 8.2 Competitive Learning Process.. .... .... .... .... ..... .... 158 8.3 Kohonen Self-Organizing Maps (SOM) .. .... .... ..... .... 163 8.4 Exercises. .... .... ..... .... .... .... .... .... ..... .... 170 8.5 Practical Work .... ..... .... .... .... .... .... ..... .... 171 9 LVQ and Counter-Propagation Networks.... .... .... ..... .... 173 9.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 173 9.2 Vector Quantization Process... .... .... .... .... ..... .... 173 9.3 LVQ Networks (Learning Vector Quantization).... ..... .... 176 9.3.1 LVQ-1 Training Algorithm. .... .... .... ..... .... 177 9.3.2 LVQ-2 Training Algorithm. .... .... .... ..... .... 180 9.4 Counter-Propagation Networks. .... .... .... .... ..... .... 182 9.4.1 Aspects of the Outstar Layer.... .... .... ..... .... 183 9.4.2 Training Algorithm of the Counter-Propagation Network... ..... .... .... .... .... .... ..... .... 184 9.5 Exercises. .... .... ..... .... .... .... .... .... ..... .... 185 9.6 Practical Work .... ..... .... .... .... .... .... ..... .... 186 10 ART (Adaptive Resonance Theory) Networks. .... .... ..... .... 189 10.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 189 10.2 Topological Structure of the ART-1 Network.. .... ..... .... 190 10.3 Adaptive Resonance Principle.. .... .... .... .... ..... .... 192 10.4 Learning Aspects of the ART-1 Network. .... .... ..... .... 193 10.5 Training Algorithm of the ART-1 Network ... .... ..... .... 201 10.6 Aspects of the ART-1 Original Version .. .... .... ..... .... 202 10.7 Exercises. .... .... ..... .... .... .... .... .... ..... .... 205 10.8 Practical Work .... ..... .... .... .... .... .... ..... .... 205 Part II Application of Artificial Neural Networks in Engineering and Applied Science Problems 11 Coffee Global Quality Estimation Using Multilayer Perceptron ... 209 11.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 209 11.2 MLP Network Characteristics.. .... .... .... .... ..... .... 209 11.3 Computational Results ... .... .... .... .... .... ..... .... 211 12 Computer Network Traffic Analysis Using SNMP Protocol and LVQ Networks. .... ..... .... .... .... .... .... ..... .... 215 12.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 215 12.2 LVQ Network Characteristics.. .... .... .... .... ..... .... 217 12.3 Computational Results ... .... .... .... .... .... ..... .... 217 13 Forecast of Stock Market Trends Using Recurrent Networks. .... 221 13.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 221 13.2 Recurrent Network Characteristics .. .... .... .... ..... .... 222 13.3 Computational Results ... .... .... .... .... .... ..... .... 223 14 Disease Diagnostic System Using ART Networks .. .... ..... .... 229 14.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 229 14.2 Art Network Characteristics ... .... .... .... .... ..... .... 230 14.3 Computational Results ... .... .... .... .... .... ..... .... 231 15 Pattern Identification of Adulterants in Coffee Powder Using Kohonen Self-organizing Map.... .... .... .... ..... .... 235 15.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 235 15.2 Characteristics of the Kohonen Network.. .... .... ..... .... 236 15.3 Computational Results ... .... .... .... .... .... ..... .... 239 16 Recognition of Disturbances Related to Electric Power Quality Using MLP Networks ... ..... .... .... .... .... .... ..... .... 241 16.1 Introduction .. .... ..... .... .... .... .... .... ..... .... 241 16.2 Characteristics of the MLP Network. .... .... .... ..... .... 243 16.3 Computational Results ... .... .... .... .... .... ..... .... 244

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.