ebook img

Artificial Intelligence for Future Generation Robotics PDF

171 Pages·2021·11.986 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Artificial Intelligence for Future Generation Robotics

A I RTIFICIAL NTELLIGENCE FOR F G UTURE ENERATION R OBOTICS A I RTIFICIAL NTELLIGENCE FOR F G UTURE ENERATION R OBOTICS Edited by RABINDRA NATH SHAW Department of Electrical, Electronics & Communication Engineering, Galgotias University, Greater Noida, India ANKUSH GHOSH School of Engineering and Applied Sciences, The Neotia University, Kolkata, India VALENTINA E. BALAS Department and Applied Software, Aurel Vlaicu University of Arad, Arad, Romania MONICA BIANCHINI Department of Information Engineering and Mathematics, University of Siena, Siena, Italy Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates Copyright©2021ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-323-85498-6 ForInformationonallElsevierpublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:MatthewDeans AcquisitionsEditor:GlynJones EditorialProjectManager:FernandaA.Oliveira ProductionProjectManager:KameshRamajogi CoverDesigner:VictoriaPearson TypesetbyMPSLimited,Chennai,India Contents Listofcontributors xi Abouttheeditors xiii Preface xv 1. Robotic process automation with increasing productivityand improving productquality using artificialintelligenceand machinelearning 1 AnandSinghRajawat,RomilRawat,KanishkBarhanpurkar, RabindraNathShawandAnkushGhosh 1.1 Introduction 1 1.2 Relatedwork 3 1.3 Proposedwork 3 1.4 Proposedmodel 6 1.4.1 Systemcomponent 7 1.4.2 Effectivecollaboration 7 1.5 Manufacturingsystems 8 1.6 Resultsanalysis 10 1.7 Conclusionsandfuturework 11 References 12 2. Inversekinematics analysis of 7-degree offreedom welding and drilling robot usingartificial intelligence techniques 15 SwetChandan,JyotiShah,TarunPratapSingh, RabindraNathShawandAnkushGhosh 2.1 Introduction 15 2.2 Literaturereview 16 2.3 Modelinganddesign 17 2.3.1 Fitnessfunction 17 2.3.2 Particleswarmoptimization 19 2.3.3 Fireflyalgorithm 19 2.3.4 Proposedalgorithm 20 2.4 Resultsanddiscussions 20 2.5 Conclusionsandfuturework 21 References 22 v vi Contents 3. Vibration-baseddiagnosisof defect embedded in inner raceway of ballbearing using1D convolutional neural network 25 PragyaSharma,SwetChandan,RabindraNathShawandAnkushGhosh 3.1 Introduction 25 3.2 2DCNN—abriefintroduction 26 3.3 1Dconvolutionalneuralnetwork 27 3.4 Statisticalparametersforfeatureextraction 30 3.5 Datasetused 31 3.6 Results 31 3.7 Conclusion 35 References 35 4. Single shot detection for detecting real-time flying objects for unmanned aerialvehicle 37 SampurnaMandal,SkMdBasharatMones,ArshaveeDas, ValentinaE.Balas,RabindraNathShawandAnkushGhosh 4.1 Introduction 37 4.2 Relatedwork 39 4.2.1 Appearance-basedmethods 39 4.2.2 Motion-basedmethods 40 4.2.3 Hybridmethods 40 4.2.4 Single-stepdetectors 41 4.2.5 Two-stepdetectors/region-baseddetectors 41 4.3 Methodology 42 4.3.1 Modeltraining 42 4.3.2 Evaluationmetric 43 4.4 Resultsanddiscussions 44 4.4.1 Forreal-timeflyingobjectsfromvideo 44 4.5 Conclusion 51 References 51 5. Depression detection for elderly people using AIrobotic systemsleveraging the Nelder(cid:1)Mead Method 55 AnandSinghRajawat,RomilRawat,KanishkBarhanpurkar, RabindraNathShawandAnkushGhosh 5.1 Introduction 55 5.2 Background 56 5.3 Relatedwork 57 5.4 Elderlypeopledetectdepressionsignsandsymptoms 59 Contents vii 5.4.1 Causesofdepressioninolderadults 59 5.4.2 Medicalconditionsthatcancauseelderlydepression 60 5.4.3 Elderlydepressionassideeffectofmedication 60 5.4.4 Self-helpforelderlydepression 60 5.5 Proposedmethodology 60 5.5.1 Proposedalgorithm 61 5.5.2 Persistentmonitoringfordepressiondetection 63 5.5.3 Emergencymonitoring 64 5.5.4 Personalizedmonitoring 65 5.5.5 Featureextraction 65 5.6 Resultanalysis 66 References 68 6. Data heterogeneity mitigation inhealthcare robotic systems leveraging the Nelder(cid:1)Mead method 71 PritamKhan,PriyeshRanjanandSudhirKumar 6.1 Introduction 71 6.1.1 Relatedwork 71 6.1.2 Contributions 72 6.2 Dataheterogeneitymitigation 73 6.2.1 Datapreprocessing 73 6.2.2 Nelder(cid:1)Meadmethodformitigatingdataheterogeneity 73 6.3 LSTM-basedclassificationofdata 76 6.4 Experimentsandresults 78 6.4.1 DataheterogeneitymitigationusingNelder(cid:1)Meadmethod 78 6.4.2 LSTM-basedclassificationofdata 80 6.5 Conclusionandfuturework 81 Acknowledgment 81 References 82 7. Advancemachine learning and artificial intelligence applications in servicerobot 83 SanjoyDas,IndraniDas,RabindraNathShawandAnkushGhosh 7.1 Introduction 83 7.2 Literaturereviews 84 7.2.1 Homeservicerobot 84 7.3 Usesofartificialintelligenceandmachinelearninginrobotics 85 7.3.1 Artificialintelligenceapplicationsinrobotics[6] 85 7.3.2 Machinelearningapplicationsinrobotics[10] 87 viii Contents 7.4 Conclusion 89 7.5 Futurescope 90 References 90 8. Integrated deep learning for self-driving roboticcars 93 TadGonsalvesandJaychandUpadhyay 8.1 Introduction 93 8.2 Self-drivingprogrammodel 96 8.2.1 Humandrivingcycle 96 8.2.2 Integrationofsupervisedlearningandreinforcementlearning 97 8.3 Self-drivingalgorithm 99 8.3.1 Fundamentaldrivingfunctions 99 8.3.2 Signals 101 8.3.3 Hazards 104 8.3.4 Warningsystems 108 8.4 Deepreinforcementlearning 110 8.4.1 DeepQlearning 110 8.4.2 DeepQNetwork 111 8.4.3 DeepQNetworkexperimentalresults 112 8.4.4 Verificationusingrobocar 113 8.5 Conclusion 114 References 115 Furtherreading 117 9. Lyft 3Dobject detection for autonomousvehicles 119 SampurnaMandal,SwagatamBiswas,ValentinaE.Balas, RabindraNathShawandAnkushGhosh 9.1 Introduction 119 9.2 Relatedwork 120 9.2.1 Perceptiondatasets 121 9.3 Datasetdistribution 123 9.4 Methodology 124 9.4.1 Models 125 9.5 Result 132 9.6 Conclusions 135 References 136 Contents ix 10. Recent trendsinpedestrian detection for robotic vision using deep learning techniques 137 SarthakMishraandSuraiyaJabin 10.1 Introduction 137 10.2 Datasetsandartificialintelligenceenabledplatforms 138 10.3 AI-basedroboticvision 139 10.4 Applicationsofroboticvisiontowardpedestriandetection 141 10.4.1 Smarthomesandcities 141 10.4.2 Autonomousdriving 142 10.4.3 Tracking 143 10.4.4 Reidentification 144 10.4.5 Anomalydetection 144 10.5 Majorchallengesinpedestriandetection 145 10.5.1 Illuminationconditions 145 10.5.2 Instancesize 146 10.5.3 Occlusion 146 10.5.4 Scenespecificdata 147 10.6 AdvancedAIalgorithmsforroboticvision 148 10.7 Discussion 152 10.8 Conclusions 153 References 154 Furtherreading 157 Index 159 List of contributors ValentinaE.Balas DepartmentofAutomaticsandAppliedSoftware,AurelVlaicuUniversityofArad,Arad, Romania;DepartmentandAppliedSoftware,AurelVlaicuUniversityofArad,AradRomania KanishkBarhanpurkar DepartmentofComputerScienceandEngineering,SambhramInstituteofTechnology, Bengaluru,India SwagatamBiswas SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity,Kolkata,India SwetChandan GalgotiasUniversity,GreaterNoida,India ArshaveeDas SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity,Kolkata,India IndraniDas DepartmentofComputerScience,AssamUniversity,Silchar,India SanjoyDas DepartmentofComputerScience,IndiraGandhiNationalTribalUniversity,Regional CampusManipur,Imphal,Manipur AnkushGhosh SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity,Kolkata,India TadGonsalves DepartmentofInformationandCommunicationSciences,SophiaUniversity,Tokyo, Japan SuraiyaJabin DepartmentofComputerScience,FacultyofNaturalSciences,JamiaMilliaIslamia, NewDelhi,India PritamKhan DepartmentofElectricalEngineering,IndianInstituteofTechnologyPatna,India SudhirKumar DepartmentofElectricalEngineering,IndianInstituteofTechnologyPatna,India SampurnaMandal SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity,Kolkata,India SarthakMishra DepartmentofComputerScience,FacultyofNaturalSciences,JamiaMilliaIslamia, NewDelhi,India SkMdBasharatMones SchoolofEngineeringandAppliedSciences,TheNeotiaUniversity,Kolkata,India xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.