ebook img

Artificial Intelligence for Computational Modeling of the Heart PDF

266 Pages·2019·15.489 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Artificial Intelligence for Computational Modeling of the Heart

A R T I F I C I A L I N T E L L I G E N C E F O R C O M P U TAT I O N A L M O D E L I N G O F T H E H E A R T A R T I F I C I A L I N T E L L I G E N C E F O R C O M P U TAT I O N A L M O D E L I N G O F T H E H E A R T Edited by TOMMASO MANSI TIZIANO PASSERINI DORIN COMANICIU Siemens Healthineers Princeton, NJ, United States AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2020ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-817594-1 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:MaraConner AcquisitionEditor:ChrisKatsaropoulos EditorialProjectManager:IsabellaC.Silva ProductionProjectManager:SuryaNarayananJayachandran Designer:MilesHitchen TypesetbyVTeX Contents v Contents List of figures ................................................ ix List of contributors .......................................... xvii Foreword ................................................... xix Preface .................................................... xxiii List of abbreviations....................................... xxxiii Part 1 Modeling of the beating heart: approaches and implementation Chapter1 Multi-scale models of the heart for patient-specific simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 ViorelMihalef,TizianoPasserini,TommasoMansi 1.1 Models of cardiac anatomy..................................... 3 1.2 Electrophysiology modeling.................................... 6 1.2.1 Cellular electrophysiology ................................ 9 1.2.2 Tissue electrophysiology ................................ 12 1.2.3 Body surface potential modeling ......................... 14 1.3 Biomechanics modeling ...................................... 17 1.3.1 The passive myocardium ................................ 19 1.3.2 The active myocardium.................................. 22 1.3.3 The virtual heart in its environment: boundary conditions .. 25 1.4 Hemodynamics modeling..................................... 26 1.4.1 Reduced order hemodynamics ........................... 28 1.4.2 3D hemodynamics ...................................... 33 1.5 Current approaches to parameter estimation ................... 39 1.5.1 Inverse optimization..................................... 39 1.5.2 Data assimilation........................................ 40 1.5.3 Machine learning........................................ 40 1.5.4 Stochastic methods ..................................... 41 1.5.5 Streamlined whole-heart personalization.................. 41 1.6 Summary.................................................... 41 vi Contents Chapter2 Implementation of a patient-specific cardiac model. . . . . . . . . 43 ViorelMihalef,TommasoMansi,SaikiranRapaka,TizianoPasserini 2.1 Anatomical modeling......................................... 44 2.1.1 Medical image segmentation............................. 44 2.1.2 Meshing and tagging.................................... 46 2.1.3 Computational model of the cardiac fiber architecture...... 48 2.1.4 Torso modeling ......................................... 50 2.2 Electrophysiology modeling................................... 50 2.2.1 LBM-EP: efficient solver for the monodomain problem..... 51 2.2.2 Efficient modeling of the electrical conduction system ..... 57 2.2.3 Graph-EP: fast computation of tissue activation time....... 61 2.2.4 Body surface potential modeling ......................... 63 2.3 Biomechanics modeling ...................................... 66 2.3.1 Passive stress component ............................... 68 2.3.2 Active stress component................................. 68 2.3.3 Myocardial boundary conditions ......................... 70 2.3.4 Putting it all together: a fast computational framework for cardiac biomechanics.................................... 73 2.3.5 Evaluation of the TLED algorithm......................... 73 2.4 Hemodynamics modeling..................................... 78 2.4.1 3D hemodynamics using the lattice Boltzmann method .... 79 2.4.2 3D fluid structure interaction ............................. 82 2.5 Parameter estimation......................................... 88 2.5.1 Windkessel parameters from pressure and volume data.... 89 2.5.2 Cardiac electrophysiology ............................... 90 2.5.3 Myocardium stiffness and maximum active stress from images ................................................. 92 2.6 Summary.................................................... 93 Part 2 Artificial intelligence methods for cardiac modeling Chapter3 Learning cardiac anatomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 FlorinC.Ghesu,BogdanGeorgescu,YueZhang,SasaGrbic, DorinComaniciu Contents vii 3.1 Introduction.................................................. 97 3.2 Parsing of cardiac and vascular structures...................... 98 3.2.1 From shallow to deep marginal space learning ............ 98 3.2.2 Intelligent agent-driven image parsing................... 105 3.2.3 Deep image-to-image segmentation ..................... 112 3.3 Structure tracking ........................................... 113 3.4 Summary................................................... 115 Chapter4 Data-driven reduction of cardiac models . . . . . . . . . . . . . . . . . 117 LucianMihaiItu,FelixMeister,PuneetSharma,TizianoPasserini 4.1 Deep-learning model for real-time, non-invasive fractional flow reserve ..................................................... 118 4.1.1 Introduction ........................................... 118 4.1.2 Methods............................................... 120 4.1.3 Results ................................................ 128 4.1.4 Discussion............................................. 130 4.2 Meta-modeling of atrial electrophysiology..................... 136 4.2.1 Methods............................................... 139 4.2.2 Experiments and results ................................ 144 4.2.3 Discussion............................................. 153 4.3 Deep learning acceleration of biomechanics................... 154 4.3.1 Motivation............................................. 154 4.3.2 Methods............................................... 154 4.3.3 Evaluation ............................................. 156 4.4 Summary................................................... 160 Chapter5 Machine learning methods for robust parameter estimation. 161 DominikNeumann,TommasoMansi 5.1 Introduction................................................. 161 5.2 A regression approach to model parameter estimation......... 163 5.2.1 Data-driven estimation of myocardial electrical diffusivity . 163 5.2.2 Experiments and results ................................ 165 5.3 Reinforcement learning method for model parameter estimation168 5.3.1 Parameter estimation as a Markov decision process ...... 170 viii Contents 5.3.2 Parameter estimation using Reinforcement Learning...... 173 5.3.3 Application to cardiac electrophysiology ................. 174 5.3.4 Application to whole-body circulation.................... 177 5.4 Summary................................................... 180 Chapter6 Additional clinical applications . . . . . . . . . . . . . . . . . . . . . . . . . 183 FelixMeister,HeleneHoule,CosminNita,AndreiPuiu,LucianMihaiItu, SaikiranRapaka 6.1 Cardiac resynchronization therapy............................ 183 6.1.1 Introduction ........................................... 183 6.1.2 Methods............................................... 184 6.1.3 Results ................................................ 186 6.1.4 Discussion............................................. 189 6.2 Aortic coarctation ........................................... 190 6.2.1 Introduction ........................................... 190 6.2.2 Methods............................................... 192 6.2.3 Results ................................................200 6.2.4 Discussion............................................. 201 6.3 Whole-body circulation ...................................... 203 6.3.1 Introduction ........................................... 203 6.3.2 Methods............................................... 203 6.3.3 Results and discussion ................................. 206 6.4 Summary................................................... 210 Bibliography ................................................ 211 Index....................................................... 235 Listoffigures ix List of figures Fig.1.1 Diagramofheartanatomyandbloodflow.(Source:Wikipedia.) 4 Fig.1.2 Examplesofheartgeometries.Leftpanel:analytical,prolate spheroidalmodelofthetwoventricles.Rightpanel: patient-specificmodelestimatedfrommedicalimages. 5 Fig.1.3 Exampleofheartfibermodelcomputedusingrule-based approachonapatient-specificheartanatomy. 6 Fig.1.4 ExampleofMRIwithdelayedenhancementofgadolinium highlightingatransmuralscar(yellowarrows(lightgrayinprint version))intheseptumandapexoftheheart.(Source:Wikipedia.) 7 Fig.1.5 Schematicdepictionoftheelectricalconductionsystemofthe heart.1.Sinoatrialnode,2.Atrioventricularnode,3.BundleofHis, 4.Leftbundlebranch,5.Leftposteriorfascicle,6.Leftanterior fascicle,7.Leftventricle,8.Ventricularseptum,9.Rightventricle, 10.Rightbundlebranch.(Source:Wikipedia.) 8 Fig.1.6 Relationshipsbetweenmodelparametersandshapeoftheaction potential.Modelparameterscanbedirectlyrelatedtoclinical parameters. 12 Fig.1.7 Left:Schematicrepresentationoftheelectrocardiographyleads usedin12-leadECG(source:Wikipedia).Right:Idealizedmodelof aportionofthehumantorso,colorcodedbythesurfaceelectrical signalandwithoverlaidlocationofECGelectrodes. 15 Fig.1.8 IllustrationofanadvancedversionoftheHill–Maxwellrheological modelofcardiacbiomechanics. 18 Fig.1.9 Diagramillustratingthestructureofasarcomere,withthe differentmyofilaments.(Source:Wikipedia.) 22 Fig.1.10 Diagramillustratingthedifferentstepsoftheslidingmyofilaments mechanism.(Source:Wikipedia.) 23 Fig.1.11 Lumpedparametermodelrepresentingthewholebody circulation.Heartsystemsareinred(darkgrayinprintversion), systemicandpulmonarycirculationsinblue(lightgrayinprint version). 29 Fig.1.12 Computationexamplesusingthelumpedvalvetomodelpathology likeinsufficientandstenoticvalves.Leftpanel:LVPVloopsinthe caseofregurgitantvalves.Blue(darkgrayinprintversion)–no regurgitations,red(lightgrayinprintversion)–mitral regurgitation,green(midgrayinprintversion)–aortic regurgitation.Rightpanel:LVPVloopsforaorticstenosisof increasingdegrees.Blue(darkgrayinprintversion)–normal, green(midgrayinprintversion)–mild,red(grayinprintversion)– moderate,cyan(lightgrayinprintversion)–severe.Theabscissa unitsaremm3andtheordinateunitsarekPa. 30 Fig.1.13 Fluidstructureinteractionsystemforcardiachaemodynamics computation.Theinteractionsbetweentheelectromechanical model,valvesandthecomputationalfluiddynamics(CFD)model arecontrolledbytheFSIinterfacemodule. 37

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.