ebook img

Artificial Intelligence and Machine Learning for Healthcare: Vol. 2: Emerging Methodologies and Trends PDF

282 Pages·2022·4.957 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Artificial Intelligence and Machine Learning for Healthcare: Vol. 2: Emerging Methodologies and Trends

Intelligent Systems Reference Library Volume 229 SeriesEditors JanuszKacprzyk,PolishAcademyofSciences,Warsaw,Poland LakhmiC.Jain,KESInternational,Shoreham-by-Sea,UK The aim of this series is to publish a Reference Library, including novel advances and developments in all aspects of Intelligent Systems in an easily accessible and wellstructuredform.Theseriesincludesreferenceworks,handbooks,compendia, textbooks,well-structuredmonographs,dictionaries,andencyclopedias.Itcontains wellintegratedknowledgeandcurrentinformationinthefieldofIntelligentSystems. Theseriescoversthetheory,applications,anddesignmethodsofIntelligentSystems. Virtuallyalldisciplinessuchasengineering,computerscience,avionics,business, e-commerce,environment,healthcare,physicsandlifescienceareincluded.Thelist oftopicsspansalltheareasofmodernintelligentsystemssuchas:Ambientintelli- gence,Computationalintelligence,Socialintelligence,Computationalneuroscience, Artificiallife,Virtualsociety,Cognitivesystems,DNAandimmunity-basedsystems, e-Learningandteaching,Human-centredcomputingandMachineethics,Intelligent control,Intelligentdataanalysis,Knowledge-basedparadigms,Knowledgemanage- ment, Intelligent agents, Intelligent decision making, Intelligent network security, Interactive entertainment, Learning paradigms, Recommender systems, Robotics and Mechatronics including human-machine teaming, Self-organizing and adap- tive systems, Soft computing including Neural systems, Fuzzy systems, Evolu- tionarycomputingandtheFusionoftheseparadigms,PerceptionandVision,Web intelligenceandMultimedia. IndexedbySCOPUS,DBLP,zbMATH,SCImago. AllbookspublishedintheseriesaresubmittedforconsiderationinWebofScience. · · · Chee Peng Lim Ashlesha Vaidya Yen-Wei Chen · Vaishnavi Jain Lakhmi C. Jain Editors Artificial Intelligence and Machine Learning for Healthcare Vol. 2: Emerging Methodologies and Trends Editors CheePengLim AshleshaVaidya DeakinUniversity RoyalAdelaideHospital Victoria,VIC,Australia Adelaide,SA,Australia Yen-WeiChen VaishnaviJain CollegeofInformationScience ASFInsignia andEngineering KyndrylSolutionsPvtLtd. RitsumeikanUniversity Gurugram,Haryana,India Kusuatsu,Shiga,Japan LakhmiC.Jain LiverpoolHopeUniversity Liverpool,UK KESInternational Shoreham-by-Sea,UK ISSN 1868-4394 ISSN 1868-4408 (electronic) IntelligentSystemsReferenceLibrary ISBN 978-3-031-11169-3 ISBN 978-3-031-11170-9 (eBook) https://doi.org/10.1007/978-3-031-11170-9 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface ThisvolumeisasequeloftheeditiononArtificialIntelligenceandMachineLearning forHealthcare.Anumberofartificialintelligence/machinelearning(AL/ML)-based imageanddataanalyticssolutionsforaddressingmedicalandhealthcareproblems are presented in the first volume. In this second volume, a total of ten chapters dedicated to emerging methodologies and future trends of AL/ML in the medical andhealthcaredomainsarecovered.Adescriptionofeachcontributionisasfollows. RuizandVelasquezanalysednewparadigmstodeveloppreventive,participatory, predictive,andpersonalisedmedicine(4Pmedicine).Thefoundationandpotential forAIandMLtosolicitknowledgethroughintelligentimageanddataprocessingare explained.Consideringhealth-relateddatabasesonlygrowincomplexityandsize,AI andMLplayacriticalroletoestablishautomatedtoolsforprocessingandextraction ofhealthcareinformationandknowledge.Theformationofmulti-disciplinaryteams to design and develop new intelligent solutions for supporting decision-making is vital,contributingtowardstheadvancementof4Pmedicineinthefuture. Belciugprovidedaguideonsurvivalanalysisandpracticalexamplesinoncology. Severalmethodologies,whichincludeKaplan–Meiersurvivalcurves,logranktest, hazard ratio, and Cox regression, are introduced to determine the best course of medical treatment. A step-by-step guide for performing survival analysis and interpretingtheobtainedresultsisprovided. Kapoteli et al. devised a general approach to sentiment analysis pertaining to COVID-19vaccinationandreviewedseveralusecases.BasedonaTwitterdataset onCOVID-19vaccination,bothsupervisedandunsupervisedmodelsforsentiment analysisareexplored.Thedevelopedmethodologyisusefulformininginformation onpublicattitudes,forecastingopinionsandreactionsrelatedtovaccineupdatein nearrealtime,whichiscriticalindealingwithhealthemergencysituations. Michailidis et al. utilised data mining techniques for incident prediction and generalmedicalknowledgeacquisition.MLmethodologiesthatareusefulforhealth- caresupportareexplained,whichincludeclassification,regression,clustering,and associationrules.Astudyonstrokepredictionisusedtoillustratetheeffectiveness ofMLmodels,whileissuesandchallengesofdatamininginstrokepredictionand generalhealthcaresupportarealsodiscussed. v vi Preface Ageingisarealconcernnowadaysinmanycountries.WithintheEuropeanageing population, hearing loss, cardiovascular diseases, cognitive impairments, mental health, and balance disorders are prevalent medical conditions that cause tremen- dous social and financial issues. Bellandi et al. conducted a study on preventing, slowingthedevelopmentof,ordealingeffectivelywiththeeffectsofthesemedical conditions and related issues. An eHealth platform leveraging AI and ML models isdevised.Personalisednotificationsandalertscanbegeneratedbycollectingand analysingdailyactivitydataoftheelderlythroughtheintegrationofheterogeneous smart devices, e.g. wearables and environment sensors. This allows an affordable, secure, and privacy-preserving living environment to be established for promoting healthyandindependentlivingfortheageingpopulation. Game-basedvirtualreality(VR)rehabilitationprotocolsofferapromisingthera- peuticalternativeforactivatingneuro-motorfunctionsaswellassustainingmotiva- tionandachievingrehabilitationgoalsofpatients.Jeyakumaretal.studiedawide rangeofVR-basedapplicationsforrehabilitationtreatmentsanddiscussedtheroleof virtualgamesforrapidrecoveryduringpost-therapy.Casestudiesonsportsrehabil- itationexercisesforathletessufferingfrommusculoskeletalinjuriesandguidelines forthemtoreturntoplayarealsopresented. Learningandplayinggamesareusefulforchildrentodevelopsocialskills.Mihova etal.reviewedontheuseofseriousgamestoimprovethecommunicationskillsof youngsters with Autism Spectrum Disorder (ASD). Specialised games are useful tools to help the development of a child’s skills based on certain parameters. The reviewandfindingsassiststakeholdersinunderstandingtheimpactsofusingsmart- phones, mobileapps,and computer games as atherapeutic approach toenhancing socialskillsofASDchildren. Ovalle-Magallanesetal.presentedanoverviewandfuturetrendondeeplearning- basedcoronarystenosisdetectioninX-rayangiographyimages.Thebasicmethod- ologies of convolutional neural networks, attention modules, vision transformers, andquantumcomputingareexplained.Theuseofhybridmethodsforenhancingthe effectivenessofdeeplearningmodelsisdescribed.Challengesandfuturedirections onstenosisdetectionmethodsarealsodiscussed. Hoppeetal.conductedasystematicliteraturereviewonthepotentialbenefitofAI inthehealthcaresector.ThemainfactorsconcerningAIinhealthcareareanalysed, whichincludemanagementtasks,medicaldiagnostics,medicaltreatment,anddrug discovery. Utilising structural equation modelling, medical diagnostics, and drug discoveryisidentifiedaspositiveandsignificantinfluencingfactorswithrespectto thepotentialbenefitofAIinhealthcare.Variousrecommendationstofurtherexploit thepotentialofAIinhealthcareareprovided. Beltempoetal.analysedthebarriersassociatedwithAIinthehealthcaresector. Basedonasystematicliteraturereview,severalkeybarriersconcerningAIinhealth care are identified and examined, namely disagreement in data protection, lack of compatibilitywithethicalaspects,qualityoftrainingdata,knowledge,andtrustof physiciansinAI-supportedsystems.Opinionssolicitedfrominterviewswithmedical professionalsandAIdevelopersarecomparedanddiscussed.Potentialresolutions Preface vii toundertaketheidentifiedbarriersarederived,contributingtowardsadvancingAI forthehealthcaresectorinfuture. The editors are grateful to all authors for their contributions and to Springer editorialteamfortheirsupportthroughoutthecompilationofbothvolumesofthis edition. We sincerely hope that the selected chapters in both volumes offer new knowledgeandideasforreaderstodesign,develop,andimplementAI/MLsystems fordeliveringbetterhealthcareservicesandrealising4Pmedicineforthebetterment ofoursociety. Victoria,Australia CheePengLim Adelaide,Australia AshleshaVaidya Kusuatsu,Japan Yen-WeiChen Gurugram,India VaishnaviJain Liverpool/Shoreham-by-Sea,UK LakhmiC.Jain May2022 Contents 1 ArtificialIntelligencefortheFutureofMedicine ................. 1 RocíoB.RuizandJuanD.Velásquez 1 Introduction ............................................. 2 2 HowDoMachinesLearn? ................................. 3 2.1 MachineLearningProcess ......................... 4 2.2 MachineLearninginMedicine ..................... 6 3 ArtificialIntelligenceinMedicine .......................... 6 4 AIApplicationsinMedicine ............................... 8 4.1 PredictiveMedicine ............................... 9 4.2 ParticipatoryMedicine ............................ 11 4.3 PersonalizedMedicine ............................. 16 4.4 PreventiveMedicine .............................. 19 5 Summary ............................................... 19 References .................................................... 22 2 ASurvivalAnalysisGuideinOncology .......................... 29 SmarandaBelciug 2.1 Introduction ............................................. 29 2.2 SurvivalAnalysis ........................................ 31 2.3 Kaplan–MeierSurvivalCurve .............................. 34 2.4 TheLogrankTest ........................................ 36 2.5 TheHazardRatio ........................................ 39 2.5.1 CoxRegressionModel ............................ 41 2.6 Conclusions ............................................. 45 References .................................................... 45 3 Social Media Sentiment Analysis Related to COVID-19 Vaccinations .................................................. 47 EvridikiKapoteli, VasilikiChouliara, ParaskevasKoukaras, andChristosTjortjis 3.1 Introduction ............................................. 48 3.2 LiteratureReview ........................................ 51 ix x Contents 3.2.1 MachineLearning-BasedSentimentAnalysis Studies .......................................... 51 3.2.2 Lexicon-BasedSentimentAnalysisStudies ........... 54 3.2.3 HybridSentimentAnalysisStudies .................. 56 3.3 Methodology ............................................ 57 3.3.1 MethodologyOutline .............................. 57 3.4 Experiments ............................................. 57 3.4.1 Dataset .......................................... 57 3.4.2 DatasetPre-Processing ............................ 58 3.4.3 SentimentAnalysis ............................... 58 3.5 ExperimentalResults ..................................... 61 3.6 Conclusion .............................................. 64 3.6.1 Discussion ....................................... 64 3.6.2 OverviewofContribution .......................... 65 3.6.3 FutureDirections ................................. 66 References .................................................... 66 4 Healthcare Support Using Data Mining: A Case Study onStrokePrediction ........................................... 71 GeorgiosMichailidis, MichailVlachos-Giovanopoulos, ParaskevasKoukaras,andChristosTjortjis 4.1 Introduction ............................................. 72 4.1.1 DataMining ..................................... 73 4.1.2 DataMininginHealthcare ......................... 74 4.1.3 ApplicationsofDataMininginHealthcare ........... 75 4.1.4 ChapterOverview ................................ 76 4.2 LiteratureReview ........................................ 76 4.2.1 DataMiningApplicationsinHealthcare .............. 77 4.2.2 Machine Learning Concepts Related withHealthcareSupport ........................... 80 4.3 MethodologyandResults .................................. 82 4.3.1 MethodologyOutline .............................. 82 4.3.2 Experiments ..................................... 83 4.4 Conclusion .............................................. 89 4.4.1 Discussion ....................................... 89 4.4.2 IssuesandChallengesofDataMininginStroke PredictionandHealthcare .......................... 89 4.4.3 FutureDirectionsandInsights ...................... 90 References .................................................... 91 5 A Big Data Infrastructure in Support of Healthy andIndependentLiving:ARealCaseApplication ................ 95 ValerioBellandi 5.1 Introduction ............................................. 95 5.2 Architecture ............................................. 97 5.2.1 HomeHub ....................................... 99

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.