ebook img

Artificial Intelligence and Machine Learning for Healthcare: Vol. 1: Image and Data Analytics PDF

239 Pages·2022·6.296 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Artificial Intelligence and Machine Learning for Healthcare: Vol. 1: Image and Data Analytics

Intelligent Systems Reference Library 228 Chee-Peng Lim · Ashlesha Vaidya · Yen-Wei Chen · Tejasvi Jain · Lakhmi C. Jain   Editors Artificial Intelligence and Machine Learning for Healthcare Vol. 1: Image and Data Analytics Intelligent Systems Reference Library Volume 228 SeriesEditors JanuszKacprzyk,PolishAcademyofSciences,Warsaw,Poland LakhmiC.Jain,KESInternational,Shoreham-by-Sea,UK The aim of this series is to publish a Reference Library, including novel advances and developments in all aspects of Intelligent Systems in an easily accessible and wellstructuredform.Theseriesincludesreferenceworks,handbooks,compendia, textbooks,well-structuredmonographs,dictionaries,andencyclopedias.Itcontains wellintegratedknowledgeandcurrentinformationinthefieldofIntelligentSystems. Theseriescoversthetheory,applications,anddesignmethodsofIntelligentSystems. Virtuallyalldisciplinessuchasengineering,computerscience,avionics,business, e-commerce,environment,healthcare,physicsandlifescienceareincluded.Thelist oftopicsspansalltheareasofmodernintelligentsystemssuchas:Ambientintelli- gence,Computationalintelligence,Socialintelligence,Computationalneuroscience, Artificiallife,Virtualsociety,Cognitivesystems,DNAandimmunity-basedsystems, e-Learningandteaching,Human-centredcomputingandMachineethics,Intelligent control,Intelligentdataanalysis,Knowledge-basedparadigms,Knowledgemanage- ment, Intelligent agents, Intelligent decision making, Intelligent network security, Interactive entertainment, Learning paradigms, Recommender systems, Robotics and Mechatronics including human-machine teaming, Self-organizing and adap- tive systems, Soft computing including Neural systems, Fuzzy systems, Evolu- tionarycomputingandtheFusionoftheseparadigms,PerceptionandVision,Web intelligenceandMultimedia. IndexedbySCOPUS,DBLP,zbMATH,SCImago. AllbookspublishedintheseriesaresubmittedforconsiderationinWebofScience. · · Chee-Peng Lim Ashlesha Vaidya · · Yen-Wei Chen Tejasvi Jain Lakhmi C. Jain Editors Artificial Intelligence and Machine Learning for Healthcare Vol. 1: Image and Data Analytics Editors Chee-PengLim AshleshaVaidya InstituteforIntelligentSystemsResearch DepartmentofGeriatricandRehabilitation andInnovation Medicine DeakinUniversity RoyalAdelaideHospital WaurnPonds,VIC,Australia Adelaide,SA,Australia Yen-WeiChen TejasviJain CollegeofInformationScience HCLTechnologiesLimited andEngineering Noida,India RitsumeikanUniversity Kusatsu,Shiga,Japan LakhmiC.Jain KESInternational Shoreham-by-Sea,UK ISSN 1868-4394 ISSN 1868-4408 (electronic) IntelligentSystemsReferenceLibrary ISBN 978-3-031-11153-2 ISBN 978-3-031-11154-9 (eBook) https://doi.org/10.1007/978-3-031-11154-9 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Advancesindigitalandcomputingtechnologieshavedrivenarapidgrowthinartifi- cialintelligence(AI)andmachinelearning(ML)andtheirapplicationstoavarietyof sectors,includingthemedicalandhealthcaredomains.Nowadays,electronicmedical recordsanddiagnosticimagingofpatientscanbereadilycollectedandanalysedby utilising AI and ML systems to derive insights and assist medical professionals in making accurate clinical decisions. As a result, effective and efficient services pertainingtodiseasesdiagnosisandprognosis,treatments,rehabilitation,andother patient-caretaskscanberealisedforimprovinghealthcaredelivery. Inthiseditionon“ArtificialIntelligenceandMachineLearningforHealthcare”,a totalof21chaptersfromresearchersandpractitionersaroundtheworldarepresented. Divided into two volumes, the first covers selected AL/ML-based image and data analyticsolutionstoaddressavarietyofmedicalandhealthcareproblems,whilethe secondpresentsseveralcurrentmethodologiesandfuturetrendsinadvancementof AL/MLforhealthcare. Thereare11chaptersinthisfirstvolume.AgeneraloverviewofAI/MLisgiven in the first chapter. Other selected chapters describe various AL/ML models, e.g. supportvectormachine,convolutionalneuralnetworks,decisiontrees,graph-based models,forhealthcareresearch,development,andapplicationsfromtheimageand dataanalyticperspectives.Asummaryofeachchapterinthisvolumeisasfollows. Belciug provided an overview of AI in healthcare. The importance of AI in medicine is first elucidated. A number of commonly used AI and ML models are described,whichincludethedecisiontree,randomforest,Bayesianclassifier,multi- layerperceptron,andconvolutionalneuralnetworks.Theadvantagesandlimitations of AI for healthcare are explained, and several successful AI-based applications aredescribed.UsefulresourcespertainingtoAIandMLforhealthcareandrelated domainsarealsopresented. Precision medicine, a concept that focuses on customisation of healthcare, e.g. diagnosis,treatmentandfollow-up,forindividualpatients,isarecenttopicofinterest. Jinetal.developedaradiogenomicsmethodtodiscoverimagingbiomarkersrelated tobreastcancer.Basedonmagneticresonanceimaging(MRI),asequentialforward v vi Preface floatingselectiontechniquecoupledwithasupportvectormachine(SVM)isdevel- oped for predicting genetic test results with respect to breast cancer. Good results arereportedanddiscussed. Data-driventechniquesareusefulforprocessingMRItoimproveimagequality and temporal resolution. Placidi et al presented a GReedy Adaptive Data-driven Environment(GRADE)forintelligentradialsampling.Itusesthepowerspectrum of a reconstructed image and AI-based super-resolution strategies in an iterative acquisition/reconstruction process to reduce data redundancy. The method leads to high-quality images as compared with those from other under-sampling radial modalities. To facilitate automatic and accurate liver tumour detection in multi-phase computedtomography(CT)images,Jainetal.proposedadomainadaptation-based methodtoovercomethelackofannotateddataissueintrainingdeeplearningmodels. The domain shift problem in different phases of liver CT images is discussed. To addresstheassociateddomaingap,adversariallearningschemewithananchor-free objectdetectorisemployed.Inaddition,amaximumsquarelossfunctionformid- leveloutputfeaturemapsisformulatedtoimprovetheperformance.Theproposed domainadaptationmethodoutperformsothermodelstrainedwithnormalsettingsin severalexperimentalstudies. On the other hand, to tackle the similar issue on unavailability of large sets of labelled data for supervised learning, Andreini et al. developed a new approach to generate synthetic images. The method can be applied to semantic segmentation, wherethegeneratedimagescanbeusedtoaugmentrealdatasetsformodeltraining. A multi-stage approach is designed, whereby the generation procedure is carried out in multiple steps, in order to simplify the overall generation task. Based on retinal fundus and chest X-ray images, the multi-stage approach is effective and computationallyeconomicingeneratinghighresolution,realisticimagestobeused fortrainingdeeplearningmodels. Arrhythmia is a fatal cardiovascular disease with the symptoms of fast heart- beat,slowheartbeat,orirregularheartbeatrhythms.SiaoandRamliinvestigatedthe convolutional neural network (CNN) for arrhythmia classification based on elec- trocardiogram(ECG)signalsandimproveditsperformancebyleveragingthelong short-term memory (LSTM) model. ECG signals are pre-processed with filtering, segmentation,andmedianwaveselection.TheresultsindicatethattheCNN-based solution is useful for atrial fibrillation diagnosis, contributing towards healthcare advancement. Colorectal cancer is a leading cause of mortality, and early and accurate detec- tion of polys in colonoscopies plays a significant role in increasing the survival rate of patients. Automatic polyp detection systems are useful tools for assisting medicaldecision-making.Nannietal.devisedanensembleofCNNmodelsanddata augmentation methods for polyp segmentation. The results from five benchmark problemsindicateefficacyofthedevelopedensembleapproachforsegmentingpolys incolonoscopyimages. Preface vii To help patients with Autism Spectrum Disorder (ASD) in communication, de Luise et al. analysed head bouncing actions recorded in diverse circumstances. Ashorttrackingandlightweightprocessingapproachisappliedtoavideotestset concerningautisticindividuals.Aworkflowforprocessingstimmingandcollecting relevantmetadataisdevised.MLmodelsareadoptedfortuningthetrackingprocess. Theresultsindicategoodprecisionindetectingspecificindividual’sautisticverbal behaviours. Patients in medical wards exhibit multiple pathologies, which lead to burdens in terms of activities, risks, and costs for the health system. Landa et al. investi- gatedtheuseofAI-basedmodellingmethodologiespertainingtomedicalwardsina mediumhospitalsetting.Unsupervisedmethodologiescombiningtheself-organising map(SOM)andK-meansclusteringareexploited.Patientsareorganisedinspecific diagnosis-relatedgroups,andtheSOMisleveragedtoidentifytheunderlyingcluster features.Thedevelopeddata-drivensolutionoffersaneffectivemethodologytostudy resourceutilisationinhospitalenvironments. Pridayetal.conductedastudytocreateperson-centredcaremeasuresforhearing rehabilitation. A dashboard, which is an AI-based infrastructure, is designed and developedtobringtogethertherelevantdatasourcesforanalysisandinterpretation with respect to defined goals. The process to ensure the right patient data samples whicharecollectedandfedintothesystemtoachievemeaningfulcaremeasuresis described,whilethebarriersfacedwhencollatingandinterpretingthemeasuresof thedashboardinpracticeareexplained. ImplicationsontheimplementationofAI forimprovingperson-centredcarearediscussed. Graphs offer a ubiquitous and expressive form of data representation, which is useful for elucidating information on entities and their interrelationships. Bongini et al. exploited the properties of Graph Neural Networks (GNNs) in processing datawithminimallossofstructuralinformationtotacklethreebiologicalproblems. Specifically, graph-based models for the prediction of protein–protein interfaces, prediction of drug side effects, and generation of molecular graphs are developed. Thefindingsareinlinewiththeoreticalexpectationsontheexpressivecapabilitiesof GNNs,whichindicatemanypossiblefuturedirectionsforresearchandapplication ofnewandexistinggraph-basedmodelsforsolvingbiologicalproblems. Theeditorswouldliketothankallauthorsandreviewersfortheircontributionsand theSpringereditorialteamfortheirhelpinthispublication.Thechapterspresented in this volume are just a small selection to cover the rapidly changing AI and ML paradigmsinthehealthcaredomain,aimingtoinspireresearchersandpractitioners tofurtheradvanceAIandMLtechnologiesforadvancingthehealthcaresector. WaurnPonds,Australia Chee-PengLim Adelaide,Australia AshleshaVaidya Kusatsu,Japan Yen-WeiChen Noida,India TejasviJain Shoreham-by-Sea,UK LakhmiC.Jain May2022 Contents 1 AnIntroductiontoArtificialIntelligenceinHealthcare ........... 1 SmarandaBelciug 1.1 IntroductiontoArtificialIntelligence ........................ 2 1.2 ArtificialIntelligenceinHealthcare ......................... 3 1.2.1 NaturalLanguageProcessing(NLP)Technology ...... 5 1.2.2 MachineLearning(ML)Algorithms ................. 5 1.2.3 ArtificialNeuralNetworks ......................... 6 1.2.4 BayesianClassifier ................................ 6 1.2.5 Classification/DecisionTrees.RandomForest ......... 7 1.2.6 SurvivalRegressionModels ........................ 8 1.2.7 ClusterAnalysis .................................. 8 1.3 AdvantagesofArtificialIntelligenceinHealthcare ............ 9 1.4 LimitationsofArtificialIntelligenceinHealthcare ............ 11 1.5 Successful Applications of Artificial Intelligence inHealthcare ............................................ 12 1.6 Conclusions ............................................. 13 Appendix ..................................................... 13 References .................................................... 15 2 Radiomics:ApproachtoPrecisionMedicine ..................... 17 ZeJin, TaiguangYuan, YukikoTokuda, YasutoNaoi, NoriyukiTomiyama,andKenjiSuzuki 2.1 Introduction ............................................. 18 2.2 MaterialsandMethods .................................... 19 2.2.1 BuildingofaDatabase ............................ 20 2.2.2 SegmentationofTargetVolume ..................... 21 2.2.3 ExtractionandSelectionofUsefulRadiomics Features ......................................... 22 2.2.4 Model Building Based on Machine Learning Technologies ..................................... 25 2.3 ResultsandDiscussion .................................... 25 ix x Contents 2.4 Conclusions ............................................. 26 References .................................................... 28 3 ArtificialIntelligenceBasedStrategiesforData-DrivenRadial MRI ......................................................... 31 GiuseppePlacidi, LuigiCinque, FilippoMignosi, MatteoPolsinelli,andAlessandroSciarra 3.1 Introduction ............................................. 32 3.2 RelatedWork ............................................ 34 3.2.1 SparseSamplingStrategies ......................... 34 3.2.2 ContributionoftheManuscript ..................... 37 3.3 ProblemStatementandFrameworkDescription ............... 38 3.3.1 Relationship Between Radial Projections andImage ....................................... 38 3.3.2 ImageReconstruction,ResolutionandNoise .......... 41 3.3.3 Super-Resolution ................................. 44 3.3.4 FrameworkDetails ................................ 46 3.3.5 NoiseThresholdT ................................ 49 3.4 ResultsandDiscussion .................................... 50 3.5 Conclusion .............................................. 53 References .................................................... 55 4 UnsupervisedDomainAdaptationApproachforLiverTumor DetectioninMulti-phaseCTImages ............................ 61 RahulKumarJain, TakahiroSato, TaroWatasue, TomohiroNakagawa, YutaroIwamoto, XianhuaHan, LanfenLin,HongjieHu,XiangRuan,andYen-WeiChen 4.1 Introduction ............................................. 63 4.1.1 Domain-ShiftProblem ............................. 63 4.1.2 DomainAdaptation ............................... 65 4.2 DomainAdaptationUsingAdversarialLearning .............. 66 4.2.1 Anchor-freeDetector .............................. 66 4.2.2 Proposed Multi-phase Domain Adaptation Framework Using Adversarial Domain ClassificationLoss ................................ 67 4.3 ProposedMulti-phaseDomainAdaptationFramework UsingAdversarialLearningwithMaximumSquareLoss ....... 69 4.3.1 MaximumSquareLoss ............................ 70 4.3.2 OverallFrameworkwithAdversarialDomain ClassificationandMaximumSquareLoss ............ 70 4.4 Experiments ............................................. 71 4.4.1 ImplementationDetails ............................ 71 4.4.2 Dataset .......................................... 71 4.4.3 Evaluation ....................................... 72 4.4.4 Results .......................................... 73

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.