ebook img

Artificial Intelligence and Big Data Analytics for Smart Healthcare (Next Generation Technology Driven Personalized Medicine And Smart Healthcare) PDF

277 Pages·2021·10.401 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Artificial Intelligence and Big Data Analytics for Smart Healthcare (Next Generation Technology Driven Personalized Medicine And Smart Healthcare)

ARTIFICIAL INTELLIGENCE AND BIG DATA ANALYTICS FOR SMART HEALTHCARE Next Generation Technology-Driven Personalized Medicine and Smart Healthcare Series ARTIFICIAL INTELLIGENCE AND BIG DATA ANALYTICS FOR SMART HEALTHCARE Edited by M D. L ILTIADIS YTRAS EffatCollegeofEngineering,EffatUniversity,Jeddah,SaudiArabia;KingAbdulazizUniversity, Jeddah,SaudiArabia A S KILA ARIRETE CollegeofEngineering,EffatUniversity,Jeddah,SaudiArabia A V NNA ISVIZI SGHWarsawSchoolofEconomics,Warsaw,Poland;EffatCollegeofBusiness,EffatUniversity, Jeddah,SaudiArabia K T C WOK AI HUI SchoolofScienceandTechnology,HongKongMetropolitanUniversity,Kowloon,HongKongSAR,China Series Editor M D. L ILTIADIS YTRAS A V NNA ISVIZI E D RNESTO AMIANI AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2021ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein. BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-822060-3 ForInformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:StacyMasucci SeniorAcquisitionEditor:RafaelE.Teixeira EditorialProjectManager:SaraPianavilla ProductionProjectManager:MariaBernard CoverDesigner:GregHarris TypesetbyMPSLimited,Chennai,India Dedication To all healthcare specialists, doctors, researchers, and volunteers involved in fighting the Covid-19 pandemic. To our parents. Contents List of contributors xiii 2.3.2 Professionalaccreditationofhealth-care practitioners 17 Preface: artificial intelligence and big data 2.3.3 MLforrecommending(individualized) analytics for smart healthcare: a digital professionaldevelopmentactivitiesand transformation of healthcare primer xvii programs 18 Acknowledgments xxix 2.3.4 Theutilityofnaturallanguage processingtoimproveperformanceat 1. Healthcare in the times of theSCFHS 18 artificial intelligence: 2.3.5 Theutilityofrobotics/RPAtoimprove setting a value-based context 1 performanceattheSCFHS 19 2.4 AIimplementationisanopportunityfor DimitriosM.Lytras,HaraLytraandMiltiadisD.Lytras successfulhuman(cid:1)machinecollaboration 21 2.5 Conclusionandethicalconsiderations 21 1.1 Introduction—mappingthecurrentchallenges References 21 inthehealthdomain 1 Furtherreading 23 1.2 Value-basedapproachtohealthcare 3 1.3 Currentstateofartificialintelligenceutilization 3. Big data infrastructure: data mining, inthehealthdomain/artificialintelligence text mining, and citation context analysis metaphorsanditscontributiontothedigital transformationofhealthcare 5 in scientific literature 25 1.4 Conclusion 8 UsmanAhmad,MohammedAlsaqer,SalemAlelyani,IqraSafder, References 8 SehrishIqbal,Saeed-UlHassanandNaifRadiAljohani Furtherreading 9 3.1 Introduction 25 3.2 Literaturereview 28 2. High-level strategy for implementing 3.3 Dataandmethodology 32 artificial intelligence at the Saudi 3.3.1 Dataandpreprocessing 33 Commission for Health Specialties 11 3.3.2 Featureengineering 34 3.4 Resultsanddiscussion 36 AbdulrahmanHousawi,BasimAlsaywid,MiltiadisD.Lytras, 3.4.1 Trainingandtestingdata 36 AretiApostolaki,AbrarW.Tolah,MahaAbuzenadaand 3.4.2 DiscussionofROCcurves 37 ManalHassanAlmehda 3.4.3 Discussiononprecision(cid:1)recall 2.1 Introduction 11 curves 38 2.2 Literaturereview 14 3.4.4 Discussiononimportantfeatures 38 2.3 CurrentstateofAIutilizationatthe 3.4.5 Evaluation 39 SCFHS 17 3.5 Concludingremarks 40 2.3.1 Matchingprospectivetrainees Acknowledgment 40 (residents)toresidencytraining AppendixA 40 programs 17 References 42 vii viii Contents 4. Place attachment theories: 6. QoS of mobile cloud computing a spatial approach to smart health applications in healthcare 81 and healing 47 Jesu´sPeral,V´ıctorSa´nchez,MargaritaGuerrero, HiginioMoraandDavidGil SarahJorgensenandVasilikiGeropanta 6.1 Introduction 81 4.1 Introduction—smarthealthcare,smart-home 6.2 Cloudcomputingandmobilecloud services,andtheplaceattachmenttheory 47 computing 85 4.1.1 Contributions 49 6.3 QoSinCCandMCC 86 4.1.2 Linkingthisstudytoartificial 6.4 CCandMCCapplicationsinthe intelligenceandbigdata healtharea 87 analytics 49 6.5 NewtrendsofsecurityofCCin 4.2 Literaturereview—usingplaceattachmentto thehealtharea 90 define“home” 50 6.6 EvaluationofperformanceandQoSin 4.2.1 Homeasaplaceforhealing 50 thehealtharea 91 4.2.2 Placeattachmentandthehome 6.7 Conclusion 94 environment 51 Acknowledgments 94 4.3 Methodology—casestudies 52 References 95 4.3.1 Casestudy1—smartlighting 53 4.3.2 Casestudy2—IoTconnectivityof 7. Analysis of Parkinson’s disease based on devices 54 mobile application 97 4.3.3 Casestudy3—personalizationof spaces 55 MiguelTorres-Ruiz,GiovanniGuzma´n,MarcoMoreno-Ibarraand AnaAcosta-Arenas 4.4 Implementation 57 4.4.1 Ascenarioofimplementingthethree 7.1 Introduction 97 casestudies—StGeorge’sHospital, 7.2 Relatedwork 100 PortElizabeth,andathree-dimensional 7.3 Methodsandmaterials 103 analysis 57 7.3.1 Monitoringanddatacollection 103 4.5 Conclusionandrecommendations 58 7.3.2 Datapreprocessing 107 4.6 Futureresearch 59 7.4 Experimentalresults 110 References 59 7.4.1 Themanualdexterityactivity 111 7.4.2 Thewalkingactivity 111 5. Utilizing IoT-based sensors and 7.4.3 Thememoryactivity 114 prediction model for health-care 7.5 Conclusionandfuturework 116 monitoring system 63 Acknowledgments 117 References 117 GanjarAlfian,MuhammadSyafrudin,NormaLatifFitriyani, M.AlexSyaekhoniandJongtaeRhee 8. Mobile Partogram—m-Health technology in the promotion of parturient’s 5.1 Introduction 63 health in the delivery room 121 5.2 Literaturereview 65 5.3 Health-caremonitoringsystem 68 KarlaMariaCarneiroRolim,M´ırianCal´ıopeDantasPinheiro, 5.3.1 Systemdesignandimplementation 68 PlacidoRogerioPinheiro,MirnaAlbuquerqueFrota, 5.3.2 Bloodglucosepredictionmodel 70 Jose´EuricodeVasconcelosFilho,IzabeladeSousaMartins, MariaSolangeNogueiradosSantosand 5.4 Resultanddiscussion 75 FirminaHermelindaSaldanhaAlbuquerque 5.4.1 Health-caremonitoringsystem 75 5.4.2 Bloodglucosepredictionmodel 76 8.1 Introduction 121 5.5 Conclusion 78 8.2 TheMobilePartogramconception—m-Health Acknowledgment 78 technologyinparturientcareinthe References 78 deliveryroom 123 Contents ix 8.3 Participatoryuser-centeredinteractiondesign 10.3.2 Crossareacalculationofship tosupportandunderstandtheconceptionof domain 151 partogramamobile 125 10.3.3 Shipcollisionriskassessment 153 8.4 Identifyingneedsanddefining 10.4 Experimentalresultsandanalysis 154 requirements 126 10.4.1 TheverificationofMonteCarlo 8.4.1 Designofalternatives 129 probabilisticalgorithm 155 8.5 Buildinganinteractiveversion 10.4.2 Simulatethreesituationsofship (high-fidelityprototype) 129 behavior 155 8.6 Evaluation(usability) 130 10.4.3 AISdataexperiment 155 8.7 Finalconsiderations 130 10.5 Conclusion 157 8.8 Teachingassignments 131 References 158 References 132 11. Neurofeedback using video games for 9. Self-evaluation mobile application on attention-deficit/hyperactivity mild cognitive impairment based on disorder 161 Mini(cid:1)Mental State Examination with NighatMir,MuhammadAsmatullahKhanandYumnaAnsari bilingual support 135 11.1 Introduction 161 Lap-KeiLee,Yin-ChunFung,Nga-InWu,Ka-YuenLeung, Tsz-KinTsangandChun-HoHo 11.2 ProblemsofADHD 162 11.3 Background 163 9.1 Introduction 135 11.3.1 Whyneurofeedback 163 9.1.1 Ourcontribution 136 11.3.2 Limitationsofneurofeedback 164 9.2 OverviewoftheMini(cid:1)MentalState 11.3.3 TreatmentsofADHD 164 Examination 136 11.3.4 Supportivetreatments 165 9.3 Ourmobileapplication 137 11.3.5 Neurofeedbacktraining 166 9.3.1 Overviewofthesolution 137 11.3.6 Neurofeedbacktreatment 9.3.2 Userinterfacedesignforseniors protocols 167 andtheelderly 138 11.3.7 Hypothesis 168 9.3.3 Questiontypesoftheevaluation 138 11.3.8 Datacollection 169 9.3.4 Recordtracking 139 11.3.9 Gamearchitecture 172 9.4 Preliminaryevaluation 140 11.4 Conclusionandfuturerecommendations 173 9.4.1 Evaluationwithusers 140 References 173 9.4.2 Discussionwithselectedusers 141 Furtherreading 175 9.4.3 Feedbacksfromnursingdomain experts 142 12. Medical diagnosis in Alzheimer’s 9.5 Conclusionandfutureenhancement 142 disease based on supervised and References 143 semisupervised learning 177 10. Spatiotemporal Big Data-Driven Vessel MingboZhao,YuanGao,ZhaoZhangandBingLi Traffic Risk Estimation for Promoting 12.1 Introduction 177 Maritime Healthcare: Lessons Learnt from 12.2 Notationsandreviewofrelatedwork 179 Another Domain than Healthcare 145 12.2.1 Notations 179 12.2.2 Lineardiscriminantanalysis 179 ZikunFeng,YanLi,ZhaoLiuandRyanWenLiu 12.2.3 Reviewofgraph-basedsemisupervised 10.1 Introduction 145 learning 180 10.2 Shipdomain 148 12.3 Traceratiolineardiscriminantanalysisfor 10.3 Proposedmethod 149 medicaldiagnosis:acasestudyofdementiavia 10.3.1 Trajectorydatainterpolation 149 supervisedlearning 181 x Contents 12.3.1 Animprovedalgorithmsforsolving 13.5.4 Newknowledgeandskillsto thetraceratioproblemof learn 203 TR-LDA 181 13.5.5 Urbanversusruralhealth 203 12.4 Identifyingdementedpatientsvia 13.5.6 Linkeddatabases 204 TR-LDA 184 13.5.7 Optimizingtreatment 204 12.4.1 Datadescriptions 184 13.5.8 Privacy 204 12.4.2 Predictionstage 184 13.6 Researchlimitationsandfutureresearch 12.5 Simulations 185 directions 205 12.5.1 Diagnosisresults 185 13.7 Visionsandconclusion 205 12.5.2 Visualization 186 References 206 12.6 Compactgraph-basedsemisupervisedlearning formedicaldiagnosisinAlzheimer’sdisease: 14. COVID-19 detection from X-ray acasestudyofdementiaviasemisupervised images using artificial intelligence 209 learning 187 AbdulhamitSubasi,SaqibAhmedQureshi, 12.6.1 Reviewofgraphconstruction 187 TayebBrahimiandAkilaSerireti 12.6.2 Identifyingdementedpatientsvia compactgraphsemisupervised 14.1 Introduction 209 learning 190 14.2 DeeplearninginCOVID-19prognosisusing 12.6.3 Simulation 191 X-rayimages 213 12.7 Conclusion 193 14.3 Classificationmethods 217 References 193 14.3.1 Convolutionalneuralnetworks 217 Furtherreading 195 14.3.2 Transferlearning 218 14.4 Resultsanddiscussion 218 13. A support vector machine(cid:1)based 14.4.1 Dataset 218 14.4.2 Experimentalsetup 219 voice disorders detection using human 14.4.3 Performancemeasures 219 voice signal 197 14.4.4 Experimentalresults 219 PakHoLeung,KwokTaiChui,KennethLoand 14.4.5 Discussion 220 PatriciaOrdo´n˜ezdePablos 14.5 Conclusion 221 References 222 13.1 Introduction 197 13.2 Literaturereview 198 15. Empowering the One Health approach 13.3 Methodologyofsupportvector and health resilience with digital machine(cid:1)basedvoicedisorders technologies across OECD countries: detection 199 13.3.1 Programmingtool 199 the case of COVID-19 pandemic 225 13.3.2 VOIceICarfEDericoII(VOICED) ParaskeviPapadopoulouandMiltiadisD.Lytras database 199 13.3.3 Featureextraction 200 15.1 Introduction 225 13.3.4 Voicedisordersdetectionusing 15.2 Aimsandmethodologyofthisstudy 229 supportvectormachine 200 15.3 Findingsandsuggestionsregardingthe 13.4 Performanceevaluationofproposedsupport researchquestions 229 vectormachinealgorithmforvoicedisorders 15.3.1 TheCOVID19caseinOECD detection 201 countries:somebackground 13.5 Researchchallengesofsmarthealth-care information 229 applications 202 15.3.2 Digitaltechnologiesintheserviceof 13.5.1 Datacollection 203 healthandhealthcare 230 13.5.2 Dataselection 203 15.3.3 Multidimensionalframeworkand 13.5.3 Expenditure 203 futurerecommendations 235 Contents xi 15.4 Conclusion 238 16.3.1 Health-caremonitoringandkeeping References 239 well 247 Furtherreading 241 16.3.2 Diseasediagnosisandprediction 247 16.3.3 Drugdiscoveryand 16. An overview of artificial intelligence development 248 and big data analytics for smart healthcare: 16.3.4 Intensivecare 248 requirements, applications, and 16.3.5 Educationandtraining 249 challenges 243 16.4 Challenges 249 16.4.1 Large-scaleopenhealth-care KwokTaiChui,MiltiadisD.Lytras,AnnaVisviziand data 249 AkilaSarirete 16.4.2 Technologytransfer 250 16.1 Introduction 243 16.4.3 PublicacceptanceinAI-and 16.2 Requirementsofsmarthealth-care BDA-basedapplications 250 applications 246 16.4.4 Policyestablishment 251 16.2.1 Missioncriticalapplications 246 16.5 Conclusion 251 16.2.2 Scalabledesign 246 References 251 16.2.3 Cost-effectivedesign 246 16.2.4 User-centereddesign 247 Index 255 16.3 Smarthealth-careapplicationsusingAIand BDAtechniques 247

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.