Articulation and Finger Forces in Saxophone and Clarinet playing Am Institut f(cid:252)r Wiener Klangstil der Universit(cid:228)t f(cid:252)r Musik und darstellende Kunst Wien zur Erlangung des akademischen Grades eines Ph.D. (Doctor of Philosophy) im Fachgebiet der Musikalischen Akustik eingereichte Dissertation von Alex Michael Hofmann Datum der Einreichung (submitted): 29. 1. 2015 Datum der Disputation (defended): 11. 6. 2015 Datum der Ver(cid:246)(cid:27)entlichung (published): 17. 6. 2015 Begutachter: Ao. Univ.-Prof. Dr. Wilfried Kausel Univ.-Prof. Dr. Christoph Reuter Abstract Professional woodwind players practise for years until they are able to pro- duce virtuosic performances. While performing, they have to control various parameters at the same time, e.g., (cid:28)ngerings, blowing, lip position and tongue articulation. This thesis puts a focus on tongue articulation measurements and (cid:28)nger force measurements in saxophone and clarinet performance. Three empirical studies as well as physical modelling sound synthesis address the question of how players control the instrument to produce expressive tone transitions. First, in a sound production experiment on the saxophone and the clarinet, the participants had to perform melodies which require di(cid:27)erent techniques to play the tones (tongue-only actions, (cid:28)nger-only actions, combined tongue and (cid:28)nger actions) in three tempo conditions. A strain gauge sensor-equipped reed was used to investigate tongue actions of the players during performance. Timing analysis of the captured data showed that in the slow tempo, a com- bination of tongue and (cid:28)nger actions improved the timing. However, in the fast tempo condition, the timing precision of combined tongue-(cid:28)nger actions was close to the level of (cid:28)nger-only actions, which suggests that the (cid:28)ngering 1 technique has a dominant in(cid:29)uence on the timing of saxophone performances and clarinet performances. Second, (cid:28)nger forces applied to the tone holes of the clarinet were measured. Clarinet students and professional clarinetists performed two tasks (expressive performance task, technical exercise task) on a sensor equipped Viennese Clar- inet. Although the individual (cid:28)nger force pro(cid:28)les had overlapping tendencies within the two groups of participants, the expressive performance task showed higher (cid:28)nger forces. For the technical exercise task the mean (cid:28)nger forces were lower. In particular, the group of professional players used the lowest (cid:28)nger forces for the technical exercise task. Third, in a listening experiment, it was questioned whether motor expertise in music performance has an in(cid:29)uence on the ability to discriminate articu- lation techniques in saxophone sounds. Listeners with di(cid:27)erent expertise in 1 published in Hofmann and Goebl (2014) music making (saxophonists, musicians not playing the saxophone, and non- musicians) participated in an AB-X listening test. Their task was to discrim- inate saxophone phrases containing legato, portato and staccato articulation. All participants could easily discriminate between staccato articulation and portato articulation, whereas most errors occurred when the listeners tried to discriminate between legato and portato phrases. In this case, the group of saxophonists showed the best results, which indicates that expertise in saxo- 1 phone playing helped to facilitate the task . Finally, the articulation parameters obtained during the experiments were appliedtoaphysicalmodelinanattempttosimulatetonguedandnon-tongued tone transitions. 1 published in Hofmann and Goebl (2014) Zusammenfassung Saxophonistinnen,Saxophonisten,KlarinettistinnenundKlarinettistenben(cid:246)ti- gen jahrelanges Training um saubere Ton(cid:252)berg(cid:228)nge und (cid:29)(cid:252)ssige L(cid:228)ufe im ausdrucksstarken Spiel erzeugen zu k(cid:246)nnen. W(cid:228)hrend des Spielens haben sie unter anderem die Finger, die Atmung, den Lippendruck und f(cid:252)r bestimmte Artikulationstechniken auch die Zungenbewegungen zu koordinieren. Saubere Artikulation, ohne Nebenger(cid:228)usche erfordert sehr viel (cid:220)bung, da f(cid:252)r einige Artikulationstechniken die Zunge direkt das schwingende Blatt ber(cid:252)hrt. Der Fokus dieser Arbeit liegt in der Untersuchung von Zungenartikulation und Fingerkr(cid:228)ften im Saxophon- und Klarinettenspiel. In einer ersten empirischen Studie spielten Saxophonistinnen, Saxophon- isten, Klarinettistinnen und Klarinetisten eine technische (cid:220)bung, bei deren Umsetzung verschiedene Spieltechniken koordiniert werden mussten (die Zun- genbewegungen allein, die Fingerbewegungen allein, kombinierte Zungen- und Fingerbewegungen). Es wurde ein spezielles Sensoreinfachrohrblatt entwickelt, welches es erlaubt in den Blattschwingungen einen Zungen-Blattkontakt zu erkennen. Die Ergebnisse konnten zeigen, dass in einem langsamen Spieltem- po die Kopplung von Zungen- und Fingerbewegungen zu einer verbesserten Rhythmik beitrugen. Allerdings war auch zu beobachten, dass im schnellen Tempo die gekoppelten Bewegungen vorwiegend von den Fingerbewegungen beein(cid:29)usst waren. Somit kann man schlussfolgern, dass, obwohl die Zunge den akustischen Tonbeginn steuert, die Finger einen st(cid:228)rkeren Ein(cid:29)uss auf 1 die Spielpr(cid:228)zision haben . EinezweiteStudiemitstudierendenundprofessionellenKlarinettenspielerin- nen und Klarinettenspielern fokussierte auf die Fingerkr(cid:228)fte beim Schlie(cid:255)en der Tonl(cid:246)cher. Eine an der Technnischen Universit(cid:228)t eigens daf(cid:252)r entwickelte Wiener Klarinette mit Kraftsensoren wurde f(cid:252)r diese Messungen verwendet. Obwohl die einzelnen Fingerkraftpro(cid:28)le beider Gruppen gro(cid:255)e (cid:220)berlappun- gen zeigten, wurde dennoch deutlich, dass ausdrucksstarkes Spielen zu einem erh(cid:246)hten Einsatz von Fingerkr(cid:228)ften f(cid:252)hrte. Beim Spielen einer technischen (cid:220)bung wurden demnach im Mittel geringere Fingerkr(cid:228)fte gemessen und ger- ade die Gruppe der professionellen Spielerinnen und Spielern zeigte in diesem Fall den geringsten Fingerkrafteinsatz. 1 ver(cid:246)(cid:27)entlicht in Hofmann und Goebl (2014) IneinemH(cid:246)rexperimentwurdeuntersucht,obExpertiseimMusizierenauch zu einer verbesserten Unterscheidungsf(cid:228)higkeit von verschieden artikulierten Ton(cid:252)berg(cid:228)ngenf(cid:252)hrt(legato,portato,staccato).VondendreiTeilnehmergrup- pen (Laien, Musizierende die kein Saxophon spielen und Saxophonspielende) zeigten die Saxophoninstinnen und Saxophonisten die besten Ergebnisse. Das l(cid:228)sst die Schlussfolgerung zu, dass bei der Unterscheidung von Artikulation in Saxophonmusik m(cid:246)glicherweise (cid:228)hnliche Verarbeitungsvorg(cid:228)nge im Gehirn 1 statt(cid:28)nden, wie bei der Verarbeitung von Sprache . Abschlie(cid:255)end wurden die sich ver(cid:228)ndernden, physikalischen Parameter, wel- che eine Artikulation mit Zunge von der Artikulation ohne Zunge unterschei- den auf ein physikalisches Model (cid:252)bertragen. Durch diese Resynthetisierung der Kl(cid:228)nge wurde verst(cid:228)rkt deutlich, welchen Ein(cid:29)uss die Zungenartikulation auf die Ton(cid:252)berg(cid:228)nge aus(cid:252)bt. Diese Einschwingvorg(cid:228)nge genauer zu studieren, k(cid:246)nnte ein Schwerpunkt f(cid:252)r zuk(cid:252)nftige Forschung darstellen. 1 ver(cid:246)(cid:27)entlicht in Hofmann und Goebl (2014) Acknowledgements This research was carried out within a funded FWF project on (cid:16)Measurement and analysis of (cid:28)nger forces in clarinet playing(cid:17) (P23248-N24). The FWF project was a collaboration between the Institute of Sensor and Actuator Sys- tems at the Vienna University of Technology and the Institute of Music Acous- tics (IWK) at the University of Music and Performing Arts Vienna. Parts of this work were additionally funded through the MDW-Doktoratsstipendium. I would like to thank, the leaders of this research project, Dr. Walter Smetana and Dr. Werner Goebl, for giving me the opportunity to work within their research groups. First, I would like to especially give thanks to Dr. Werner Goebl for his im- mense support and guidance throughout the last three years. Thank you for discussing all my research ideas, the progress of my experiments, and for your encouraging words during lunch and co(cid:27)ee breaks. Furthermore, I am very grateful to my supervisors Prof. Dr. Wilfried Kausel and Prof. Dr. Christoph Reuter for supporting my research ideas and giving me helpful advise, espe- cially with measurement techniques and signal processing methods. I am also thankful to Dr. Vasileios Chatziioannou for the inspiring collaboration when it came to physical modelling of articulation techniques and for the perfect working atmosphere while we were sharing an o(cid:30)ce. At this point I would like to express my gratitude to Dr. Caroline Cohrdes for her support over all the years and for her indispensable help on statistical methods. The support I have received at the IWK was fantastic. In particular, I would like to thank Alexander Mayer for his technical support in the labo- ratory, Konstantin Zabranski for his support with signal processing, Laura Bishop, Gerald Golka, Michael Weilguni, Saranya Balasubramanian, and Tat- jana Statsenko for the inspiring discussions. v Furthermore, I could not have completed this thesis without the help of all the participants who supported my research with their expertise, whether to perform with the sensor instruments or listening to the sound stimuli. Espe- cially, I would like to thank Prof. Oto Vrhovnik, and Dr. Barbara Schickbichler for their support with organising the saxophone study and Dominika Knapp for conducting the listening test. Additional thanks goes to Kerstin H(cid:246)ller and Lila Scharang for their helpful advise when preparing the clarinet study and for testing di(cid:27)erent sensor setups on the clarinet. I am also very thankful to Katya Checkovich for proof reading parts of this thesis and for her mental support in the last months of writing. At this place I’d also like to say (cid:16)Thank you!(cid:17) to all my mentors over the last decades without their passion for music, their knowledge about music and their patience to teach music, I would not be able to write this thesis. Jan von Klewitz, you ignited my passion for saxophone performance and your encouragement made me (cid:28)nally decide to study music. Prof. Michael Beil, thank you for opening my ears to new music, electro-acoustic compositions and new media art. I am also very thankful to Prof. Dr. Stefan Weinzierl and Prof. Douglas Repetto from Technische Universit(cid:228)t Berlin for giving me the opportunity to work as their teaching assistant. Prof. Dr. Herbert Hellhund and Matthias Schubert at HMTM-Hannover, thank you for giving me the chance to develop my personal approach to jazz, live-electronics and saxophone performance and for giving me the freedom to explore music and technology in parallel. Joachim Heintz from Incontri at HMTM-Hannover, thank you for being my mentor in computer music, live- electronics and sound synthesis, thank you for introducing me to the family of Csound experts, and thank you for all your support and especially for being a good friend! Last but not least, I am profoundly grateful to my parents for supporting me over all these years of education. Contents Abstract i Zusammenfassung iii Acknowledgements v Contents vii 1 Introduction 1 1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Measuringmusician-instrumentinteractiononsingle-reedwood- wind instruments 5 2.1 Sound production on single-reed woodwind instruments and the required player actions . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Investigation of articulatory tongue movements in wood- wind performance . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Instrument shapes and (cid:28)ngerings . . . . . . . . . . . . . 7 2.1.3 Tongue and (cid:28)nger coordination in woodwind performance 9 2.2 Development of sensor reeds . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Measuring articulation during performance . . . . . . . . . . . . 19 2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 vii 2.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Finger force sensors on saxophone and clarinet . . . . . . . . . . 31 2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Production and perception of legato, portato and staccato ar- ticulation in saxophone playing 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Experiment 1: Production task . . . . . . . . . . . . . . . . . . 46 3.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.2 Results and discussion . . . . . . . . . . . . . . . . . . . 52 3.3 Experiment 2: Listening test . . . . . . . . . . . . . . . . . . . . 60 3.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . 62 3.4 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 Finger forces in clarinet playing 67 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 Performance experiment . . . . . . . . . . . . . . . . . . . . . . 70 4.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 Application of performance measurements to physics based sound synthesis 93 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Physical modelling . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2.1 Modelling articulation on single-reed woodwind instru- ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Description: