UNIVERSITY OF CALIFORNIA Santa Barbara Articulating Space: Geometric Algebra for Parametric Design – Symmetry, Kinematics, and Curvature A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Media Arts and Technology by Pablo Colapinto CommitteeinCharge: ProfessorMarkoPeljhan,Chair ProfessorJoAnnKuchera-Morin ProfessorCurtisRoads March2016 ThedissertationofPabloColapintoisapproved: JoAnnKuchera-Morin CurtisRoads MarkoPeljhan,CommitteeChairperson December2015 ArticulatingSpace: GeometricAlgebraforParametricDesign— Symmetry,Kinematics,andCurvature Copyright©2016 by PabloColapinto iii Tofamilyandfriendsandmypartner,BrynDudkowski, manythanksandlove. iv Acknowledgements Withoutthediligentworkofothersthesepageswouldnotbepossible. Notably,theauthor owesanincalculabledebttoProfessorLeoDorst,whosepublications,solutions,suggestions, andhintshavebeenessentialindevelopingthecontainedformulations,andwhosethoughtful commentsprovedvitaltothisdocument’srevision. The PhD committee has provided critical insight, patient guidance, and comaraderie throughout the preparation of this work. Professor Curtis Roads has been an active listener, encouraging artistic exploration and contributing crucial context and terminology. Professor JoAnnKuchera-Morinprovidedendlesssupport,trust,andanempoweringvisiontoadvance our shared knowledge. The committee chair, Professor Marko Peljhan, offered a treasure trove of intuition, analysis, and practical application in identifying the problem at hand and ourcontributionstoit. AttentivereadingsofanddiscussionswithJoanLasenbyandEduardoBayro-Corrochano have proven quite formative as well, and the author would like to extend his thanks to them, asofcoursetoDavidHestenesforencouragingusallto“domore.” Agraciousthanksisdue Pierre Dechant, who provided essential training in the basics of reflection groups. Indeed, many members of the geometric algebra community, including Garret Sobczyk, Dietmar Hildenbrand,andIanBell,havedemonstratedanopennessinsharingtheirexpertknowledge. In addition, this document has directly benefitted from communications with colleagues both at MAT and beyond, including Wesley Smith, who has helped brainstorm and push the GA way, as well as Karl Yerkes, Sölen Kiratli, Peter Flaherty, Charlie Roberts, Lance Put- nam, Graham Wakefield, Matthew Wright, Amichi Amar, F. Myles Sciotto, Angus Forbes, AugustBlack,StephenPope,theAlloSphereresearchgroup,ProfessorGeorgeLegrady,Pro- fessor Marcos Novak, Professor Bhaskar Sarkar, Professor Rita Raley, and Professor Alfred Guzzetti. ResearchhasbeenfundedinpartthroughaRobertW.DeutschFoundationFellowshipvia the AlloSphere Research Facility of the Media Arts and Technology Program at University ofCaliforniaSantaBarbara,andbyanOliviaLongConverseFellowshipgrantedbyUCSB’s GraduateDivision,withadditionalsupportprovidedbyTheSystemicsLabatMAT.Fortheir financialsupport,theauthorwouldliketothanktheAlloSpheredirectorDr. JoAnnKuchera- Morin,theDeutschFoundationPresidentJaneBrown,andtheSystemicsLabdirectorMarko Peljhan, as well as the Graduate Division at UCSB and the Media Arts and Technology Pro- gramadministrativestaff. Ofcourse,anyerrorsoromissionsaretobeattributedtotheauthoralone. v Curriculum Vitae of Pablo Colapinto December 2015 EDUCATION UniversityofCalifornia,SantaBarbara 2007-2015 PhDinMediaArts&Technology,December2015. MScinMediaArts&Technology,February2011. HarvardUniversity 1996-2000 BAinVisualandEnvironmentalStudies,MagnaCumLaudewithHonors. MellonFellow1998-2000;DeturBookAward1997. AWARDS RobertW.DeutschFoundationFellowship 2012-2015 OliviaLongConverseFellowship 2009-2012 PewFellowshipintheArts 2005-2006 PUBLICATIONS Colapinto, P., Composing Surfaces with Conformal Rotors, In Proceedings of Applica- tionsofGeometricAlgebrainComputerScienceandEngineering,Barcelona,2015. Colapinto,P.andPeljhan,M.,GeometricAlgebraforDeployableDesign,InProceedings of the International Association of Shell and Spatial Structures: Future Visions, Amster- dam,2015. Colapinto, P., Boosted Surfaces: Synthesis of 3D Meshes using Point Pair Generators as Curvature Operators in the Conformal Model, Advances in Applied Clifford Algebras, Volume24,Issue1,pp71-78,SpringerBasel,2013. Colapinto, P., Versor: Spatial Computing with Conformal Geometric Algebra, Thesis submitted in partial fulfillment of the requirements for the Master of Science degree in MediaArtsandTechnology,UniversityofCalifornia,SantaBarbara,2011. PRESENTATIONS Functional Geometry: Producing Pure Spaces, C++ Now Conference, Aspen, Colorado, 2015. vi GenericProgrammingofGenericSpaces: Compile-timeGeometricAlgebrawithC++11, C++NowConference,Aspen,Colorado,2014. UpandRunningwithOpenGL.Tutorial,lynda.com,Carpenteria,CA,2014. Laberintorios: Espaciossintéticosylageneracióndemovimientosenálgebrayagua,El EncuentroTransmediayNarrativasAudiovisuales,Bogotá,2013. ElGrupodelosTrece,PanelonLatinAmericaandCybernetics,InternationalSymposium forElectronicArts,Albuquerque,2012. OrganicFormsThroughTwistsandBoosts,InternationalSymposiumforElectronicArts, Istanbul. 2011. Informaciónes Imaginarias: Arte, Tecnología y la Manipulación de la Realidad, Festival InternacionaldelaImagen,Manizales,2008. RESEARCHANDTEACHINGEXPERIENCE AlloSphereResearchFacility 2010-2015 GraduateResearchFellow SantaBarbara,CA Collaboratewithresearcherstodevelopafully-immersive3Denvironmentforartisticand · scientificexploration. UniversityofCalifornia 2007-2015 AssociateandAssistantTeaching SantaBarbara,CA SoundandImage. TeachingAssociateandDeveloperofseriesofmultimediaengineering · coursesforCollegeofCreativeStudies. Contemporary Cultural Theory and Introduction to Film Theory. Teaching Assistant, · FilmandMediaDepartment. Fall2008andWinter2009. Experiments in Optical Computational Techniques. Teaching Assistant, Media Arts and · TechnologyProgram. Spring2008. TempleUniversity/MooreCollegeofArtandDesign Spring2002-2007 AdjunctProfessor Philadelphia,PA DevelopedcourseseriesonMediaArtsProgrammingfordepartmentofPhotographyand · DigitalArts,MooreCollegeofArtandDesign. Philadelphia,PA. Innovated intermediate level courses on the theory and practice of non-linear video edit- · ing in the department of Broadcasting, Telecommunications and Mass Media and the departmentofFilmandMediaArtsatTempleUniversity. Philadelphia,PA. vii ARTISTICPRODUCTION MetropolitanOpera 2011-2013 VisualEffectsPost-ProductionSupervisor NewYorkCity,NY–Lyon,France Directed a team of computer graphics specialists, 3D artists, and software engineers for · large-scaleprojectionintegratedintoproductionofWagner’sParsifal. InstituteofContemporaryArt 2007 MediaArtist Philadelphia,PA Created Pass Back a Revolver, a projection-mapped multimedia installation collabora- · tion with Peter Flaherty, as part of the Locally Localized Gravity exhibit. Available at wolftype.com. LincolnCenterandJapanSociety 2004-2005 3DGraphicsSpecialist NewYorkCity Produced 3D video effects for My Life as a Fairy Tale. Director: Chen Shi-Zheng, Com- · poser: StephinMeritt,Producer: LincolnCenterFestival. Developed creative projections for Dogugaeshi, an innovative puppet theatre. Director: · BasilTwist,Producer: TandemOtter. TECHNICALSKILLS Computer C++forMultimediaEngineering,OpenGL,Lua,Python Mathematics GeometricAlgebrasandSpatialComputing Software 3DModellingandVideoEditing Languages English,Spanish,French viii Abstract ArticulatingSpace: GeometricAlgebraforParametricDesign–Symmetry,Kinematics,and Curvature by PabloColapinto To advance the use of geometric algebra in practice, we develop computational methods for parameterizing spatial structures with the conformal model. Three discrete parameteri- zations – symmetric, kinematic, and curvilinear – are employed to generate space groups, linkage mechanisms, and rationalized surfaces. In the process we illustrate techniques that directly benefit from the underlying mathematics, and demonstrate how they might be ap- plied to various scenarios. Each technique engages the versor – as opposed to matrix – representation of transformations, which allows for structure-preserving operations on ge- ometric primitives. This covariant methodology facilitates constructive design through geo- metricreasoning: incidenceandmovementareexpressedintermsofspatialvariablessuchas lines, circles and spheres. In addition to providing a toolset for generating forms and trans- formations in computer graphics, the resulting expressions could be used in the design and fabrication of machine parts, tensegrity systems, robot manipulators, deployable structures, and freeform architectures. Building upon existing algorithms, these methods participate in the advancement of geometric thinking, developing an intuitive spatial articulation that can be creatively applied across disciplines, ranging from time-based media to mechanical and structuralengineering,orreformulatedinhigherdimensions. ix Contents 1 Introduction: TransformingExpression 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 ProblemDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 GeometricAlgebra 19 2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Beginnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 OrthogonalTransformations . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 CanonicalBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 BasisBlades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.4 GeometricProduct . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.5 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.6 TheMeet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.1 Versors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.2 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.3 ProjectionandRejection . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.4 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.5 TheRemarkableExponential . . . . . . . . . . . . . . . . . . . . . . 32 2.3.6 RationalizingwithRatios . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3.7 ExampleProblem: PreventingCameraRoll . . . . . . . . . . . . . . 36 2.3.8 OtherMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 ConformalGeometricAlgebra . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.1 ConformalMetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.2 Blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4.3 PrimitiveElements . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.3.1 PointsasNullVectors . . . . . . . . . . . . . . . . . . . . 43 2.4.3.2 DirectRepresentation . . . . . . . . . . . . . . . . . . . . 46 2.4.3.3 DualRepresentation . . . . . . . . . . . . . . . . . . . . . 47 2.4.4 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 x
Description: