ebook img

ARTICLES Geochronology of Bimodal Alkaline Volcanism in the Balcones Igneous Province, Texas PDF

21 Pages·2009·0.96 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ARTICLES Geochronology of Bimodal Alkaline Volcanism in the Balcones Igneous Province, Texas

ARTICLES Geochronology of Bimodal Alkaline Volcanism in the Balcones Igneous Province, Texas: Implications for Cretaceous Intraplate Magmatism in the Northern Gulf of Mexico Magmatic Zone William R. Griffin, Kenneth A. Foland,1 Robert J. Stern, and Matthew I. Leybourne2 Department of Geosciences, University of Texas at Dallas, P.O. Box 830688, MS FO21, Richardson, Texas 75083, U.S.A. (e-mail: griffi[email protected]) ABSTRACT Small-volumeLateCretaceousmonogeneticalkalinevolcanismalongthesouthernmarginofNorthAmericaresulted in a broad igneous belt more than 1200 km long from the Trans Pecos region of west Texas to central Mississippi, collectivelyforminganorthernGulfofMexicomagmaticzone(NGMMZ).Thelocusofigneousactivityisassociated with the discontinuity separating MesoproterozoiccratoniclithosphereandJurassictransitionallithosphere,azone approximating thesouthernmarginofLaurentia,thesubsurfacetrendofthePennsylvanianOuachitaorogenicbelt, and the trace of the Miocene Balcones fault zone in Texas. Althoughpreviousstudieshaveattemptedtodetermine the ages of igneous activity in the region, few well-constrained geochronologic data using modern high-resolution techniques are available. We determined the age of eruption for the Balconesigneousprovince(BIP),a400-km-long subsegment of the NGMMZ, using modern 40Ar/39Ar and U-Pb geochronology methods. Our results suggest that previously reported 40K/40Ar and 40Ar/39Ar ages underestimate the age of igneous activity by as much as 17%. New ages from this study, along with reevaluation of previous results, suggest that BIP igneous activity occurred intwo discretephases,eachlastingonly2.6m.yr.andseparatedby2.7m.yr.:oldermaficvolcanismoccurredbetween81.5 and 84.1 Ma and younger felsic volcanism between 76.2 and 78.8 Ma. The total interval of 8 m.yr. for BIP igneous activity is much shorter thanhad previouslybeeninferred.ThebestgeochronologicresultsareobtainedfromU-Pb dating of zircon mineral (phonolites) separates and 40Ar/39Ar dating of phlogopite (nephelinites and basanites) and amphibole (phonolites) separates. Online enhancements: appendix tables. Introduction The southern margin of North America experi- 1997). The magmatism is constrained to have oc- encedwidespreadalkalinemagmatismduringLate curred between 108(cid:2)5 Ma (Prairie Creek com- Cretaceous time, ranging from west Texas to cen- plex, AR; Zartman 1977) and 66(cid:2)5 Ma (Jackson tral Mississippi, collectively forming a northern Dome, MS; Merrill 1983). It is important to un- Gulf of Mexico magmatic zone (NGMMZ; fig. 1; derstand the temporal history of a magmatic field e.g., Byerly 1991). The timing and duration of this because time-space relationships provide testable activity are poorly understood because of a lack of criteria to distinguish between various magmatic modernhigh-resolutiongeochronologicdata(Baksi models(i.e.,mantleplumes,edgeconvection,lith- osphericdelamination).Zartman(1977)recognized ManuscriptreceivedJuly18,2008;acceptedAugust1,2009. that alkaline rocks are commonly emplaced after 1DepartmentofGeologicalSciences,OhioStateUniversity, cessation of orogeny or in anorogenic settings and 275 Mendenhall Lab, 125 South Oval Mall, Columbus, Ohio that tectonic setting is often poorly understood in 43210,U.S.A. thegenesisofalkalinerocksuites,contendingthat 2OceanExploration,GNSScience,Box30-368,LowerHutt 5040,NewZealand. accuratedatingisessentialforunderstandingtheir [TheJournalofGeology,2010,volume118,p.1–21](cid:1)2010byTheUniversityofChicago. Allrightsreserved.0022-1376/2010/11801-0001$15.00. DOI:10.1086/648532 1 2 W. R. GRIFFIN ET AL. Figure 1. Filtered (40–250-km wavelengths passed) gravity map ofthe southernmarginofNorthAmerica(afterG. R. Keller, pers. comm., 2008). The Laurentian margin defines the discontinuity between Mesoproterozoic Texas cratoniclithosphereandJurassictransitionallithosphere.SegmentsofthelargernorthernGulfofMexicomagmatic zonearelabeledasfollows:TPpTransPecos,BIPpBalconesigneousprovince,SWARpsouthwestArkansas,MU p Monroe uplift, and JD p Jackson Dome. The thick dashed lines represent possible extensions of the Laurentian margin; the thin dashed line represents the inferred track of the Great Meteor hot spot (after Duncan 1984). origins. This is certainly true for the NGMMZ, km-long, 100-km-wide subsegment of the larger where a mantle plume origin has been suggested NGMMZ.New40Ar/39ArandU-PbresultsfromBIP (CoxandVanArsdale2002)andmagmatismispre- mineral separates are presented,evaluated,andin- dictedtohavemigratedalongahotspottrackfrom tegratedwithresultsfrompreviousstudiestomore W to E through the region. A review of the litera- tightly constrain the timing and duration of BIP ture shows that alkaline volcanic complexes are magmatic activity. BIP magmatism resulted in variable with respect to the duration of activity in 1200(EwingandCaren1982)intrusiveanderuptive individual complexes, ranging from short-lived centers along the reactivated discontinuity be- monogeneticfieldsthatcompletetheirentireerup- tween Grenville-age (1.1–1.3-Ga) Texas craton and tive cycles over a few decades or less to long-lived Jurassic (∼160–180-Ma) transitional lithosphere of polygenetic fields with repeated eruptive cycles the northern margin of the Gulf of Mexico basin. over10sto1100m.yr.(Nielsen1981;Fitton1987; Thisdiscontinuityisalsoapproximatedbythesub- Barker 1996; Edwards and Russell 1999, 2000; surfacetrendofthePennsylvanian(∼300-Ma)Oua- Ngounounoetal.2000;Ulrychetal.2000;Yongtao chitaorogenicbeltandtheMiocene-age(25–10-Ma) andAnchun2003;GourgaudandVincent2004;Bai- Balconesfaultzone(Gallowayetal.1991)insouth ley and Woolley 2005; Cook et al. 2005; Johansen centralTexas(fig.2).Low-degreepartialmeltsfrom etal.2005;Lie´geoisetal.2005).Testingmodelsfor the focal zone (FOZO) and the FOZO (cid:1) high-m the tectonic setting of alkalic provinces requires (HIMU)asthenosphericsourcesintheuppermantle precise and accurate geochronology data. produced a suite of monogenetic volcanic rocksin Thisstudy focusesonthegeochronologyofLate compositional range of melilite olivine nephelin- CretaceousalkalinemagmatismintheBalconesig- ites, olivine nephelinites, nepheline basanites, al- neousprovince(BIP)ofTexas(fig.2).Thisisa400- kali basalts, phonotephrites, tephriphonolites, and JournalofGeology GEOCHRONOLOGY OF THE BIP 3 Figure 2. Map of the Balcones igneous province (after Griffin 2008). Numbered locations correspond to sample locationswhereageswerederived,asdetailedintable3.Phonoliticoutcropsareindicatedbyanasterisknexttothe location number. phonolites (Griffin 2008; Griffin et al. 2009). On was isotopically dated by Baldwin and Adams thebasisofthemajor,trace,andradiogenicisotope (1971).Tuffassociatedwiththeoutcropwasfound compositions of BIP igneous rocks, we have sug- to interfinger with Upper Dessau (Upper Austin gestedthatthelocationandstyleofmagmatismin group, Upper Santonian) strata. The Santonian theBIPwereintimatelylinkedtoanimportantlith- stage is constrained between 83.5(cid:2)0.7 and ospheric discontinuity (Griffin 2008; Griffin et al. 85.8(cid:2)0.7Ma(Gradsteinetal.2005).Fracturingof 2009); however, the temporalaspectsarelessclear Dessau strata near Pilot Knob was interpreted by because of the paucity of modern, high-resolution Strong (1957) as evidence for the timing of volca- geochronological data. Previous studies of the BIP nism,givingasomewhatolderagethantheaverage used 40K/40Ar techniques to date a number of vol- 40K/40Ar whole-rock age of 79.5(cid:2)3 Ma (Baldwin canic centers (Burke et al. 1969; Baldwin and Ad- and Adams 1971). Young et al. (1982) contended ams 1971), but only a few ages using higher- thattheearliestmagmatismatPilotKnobwascon- precision 40Ar/39Ar techniques are available temporaneous with the middleDessauFormation, (Miggins et al. 2004), and no U-Pb zircon ages are andtheydiscussedareasproximaltothecenterthat reported.AlthoughtheBIPcanbeseeninthefield werecoevalwiththeboundarybetweentheAustin to consist of many low-volume, monogenetic vol- and Taylor groups. canoesandplugs,existingradiometricagessuggest Stratigraphic relationships elsewhere in the BIP protracted activity from 100–66 Ma, on the basis are less clear than at Pilot Knob. In a literature of the stratigraphic relationshipsofpyroclasticde- review of the BIP, Matthews (1986)concludedthat positsandfossiliferoussediments(Barker1996),to magmatism occurred between the Coniacian and asshortas82–72Ma,onthebasisof40Ar/39Argeo- the Campanian stages (Austin and Taylor groups) chronology (Miggins et al. 2004). and separated the province into threesegmentson Stratigraphic relations are difficult to determine thebasisofvariationsoftheapparentstratigraphic at most BIP volcanic centers because of poor ex- ages.Thenorthernsegmentincludedcentersinthe posure. The stratigraphically best-studied outcrop eastern extreme of the BIP (including Pilot Knob), is Pilot Knob, at the northeastern extreme of the centered on Travis County (fig. 2). Magmatism BIP(fig.2,43;Strong1957;BarkerandYoung1979; there was contemporaneous with Santonian to Ewing and Caren 1982; Young et al. 1982), and it Campanian strata (Austin andTaylorgroups;Mat- 4 W. R. GRIFFIN ET AL. thews 1986); this corresponds to an absolute age Mexico began by rifting, attenuating the Ouachita rangeof89.3(cid:2)1to70.6(cid:2)0.6Ma(Gradsteinetal. lithosphere,anditculminatedinseafloorspreading 2005). The central segment, southeast of Bexar duringmid-Jurassictime(∼160Ma),about80m.yr. County (fig. 2), contains no exposures of igneous before the onset of BIP magmatism (Sawyer et al. rock,butsubsurfacecentershavebeencutbydrill- 1991).Thediscontinuitybetweenthecratoniclith- ing interpreted to be contemporaneous with Con- osphere of North America and attenuated transi- iacian to Santonian strata of the Austin Group tional lithosphere on the NW flank of the Gulf of (89.3(cid:2)1 to 83.5(cid:2)0.7 Ma; Gradstein et al. 2005), MexicooceanicbasinlocalizedtheLateCretaceous stratigraphically older than the igneous centers in BIP magmatism (Griffin 2008; Griffin et al. 2009). the northern subprovince (Matthews 1986). The The location of the BIP along this discontinuity is southern segment is the locus of the most intense consistent with a number of different magmatic magmatism,asindicatedbythehighest-concentra- mechanisms explored by Griffin (2008), including tion BIP volcanoes and plugs, and is centered on edge convection (King and Anderson 1998), lith- UvaldeCounty(fig.2).Matthews(1986)concluded osphericdelamination(i.e.,KayandKay1993),and thatmagmatisminthesouthernsegmentwasstrat- lithospheric rifting (Corti et al. 2003). Although igraphically younger than that in the central and strongly alkaline, silica-undersaturated intraplate northernsegments,contemporaneouswithSanton- melts, such as those of the BIP, are commonly as- ian and Campanian strata (Austin and Taylor sociatedwithcontinentalrifting(i.e.,Mitchelland groups) to Maastrichtian strata (Escondido Forma- Platt1983).Griffin(2008)concludedthatnomajor tion), corresponding to an age range of 89.3(cid:2)1 to rifting events occurred in the region during Late 65.5(cid:2)0.3 Ma (Gradstein et al. 2005). Our experi- Cretaceous time. Instead, stress regimes imposed enceinthefieldwasthatthestratigraphicrelations on the region (Bird 2002) were sufficient to create of volcanic horizons, as well as intrusive relation- small degrees of extension perpendicular to the ships, were difficulttoobservebecauseofpoorex- lithosphericdiscontinuity,allowinglow-degreede- posure,sowearguethatthebestmethodoffurther compression melting of volatile-enriched upper definingtheageanddurationofmagmatisminthe mantle sources with FOZO and HIMU affinities. BIP is by isotopic methods. BIPigneousactivityincludesshallowmarineerup- This study provides new constraints on the age tionsofnephelinitesandbasanites,aswellasshal- of the BIP by reporting results of 40Ar/39Ar and U- lowintrusionsofphonolite.Thediscontinuitywas Pb analyses of high-purity amphibole, phlogopite, reactivated as late as Miocene time (25–10 Ma), and zircon mineral separates. These data are used forming the Balcones escarpment (Galloway et al. to address the followingquestions:(1)Whichmin- 1991);however,thereactivationoccurredlongafter eralsandtechniquesprovidethemostreliableages BIP igneous activity ended. of BIP igneous activity? (2) What was the timing and duration of BIP magmatism? (3) Were the var- Methods iousBIPlithologiescomagmaticorconfinedwithin discretetimeintervals?Answerstothesequestions Approximately45kgofbulkrockwascollectedat can provide general insights regarding the differ- eachsamplinglocation.Allsampleswereprepared ences between monogenetic and polygenetic mag- attheUniversityofTexasatDallasDepartmentof matismandthefactorsinfluencingthedurationof Geoscience sample preparation lab by removing activity in the region. weatheredsurfaceswitharocksaw,crushingthem a steel-jaw crusher, washing and drying the rock chips,andpowderingtheminaBicodiskmillpul- Geologic Background verizer to pass through a 60-mesh sieve, followed The geological history of the BIP region is related by an 80-meshsieve.Powdersplitsbetween60–80 totectoniceventsassociatedwiththetectonicevo- and 80–100 mesh were preserved for zircon (felsic lution of the southern margin of North America. rocks), amphibole, and nepheline-K-feldspar con- This includes accretion of Mesoproterozoic (1.3- centrate (felsic rocks) and phlogopite (mafic rocks) Ga) lithosphere resulting from the Grenville orog- separation. eny, followed by the accretion of Pennsylvanian- Tensampleswereprocessedforzirconextraction age (320–300-Ma) lithosphere associated with the (onemeliliteolivinenephelinite,twoolivineneph- Ouachita orogeny (Galloway et al. 1991) and the elinites, one phonotephrite, and six phonolites). opening of the Gulf of Mexico in Early Mesozoic The sieved materialforzirconseparationwascon- time (∼200–160 Ma). The opening of the Gulf of centrated for heavy minerals on a shaker table, JournalofGeology GEOCHRONOLOGY OF THE BIP 5 dried,andpassedthroughaFrantzisodynamicsep- sidedtape,in1#6-mmrows.Thegrainswerecast arator. The 1.6-A (maximum) nonmagnetic split into 25#4-mm epoxy disks and polished to1-mm was subjected to heavy-liquid separation in meth- finish. Transmitted light images were made on an yleneiodineandhandpickedunderabinocularmi- opticalmicroscopetorevealthesurfacetexturesof croscope. Zircon in the mafic rocks is very rare to the grains. The grain mount disk was then Au- nonexistent,withonesampleyieldingasinglecrys- coatedbystandardsputter-coatingtechniques,and tal that produced an age (although the degree of cathode luminescence (CL) images (fig. 3) were uncertainty was high) consistent with that of madeusingaJEOL5600LLVscanningelectronmi- phlogopite separates recovered from other mafic croscope to reveal the interior zonation of each samplesinthearea.Otherzirconsfrommaficsam- grain. The grain mounts were then washed in a ples yielded much older (xenocrystic) ages or were saturatedEDTAsolution,dried,andgold-coatedfor discordant;theseneverthelessprovideinformation introduction to the SHRIMP-RG. aboutBIPbasement.Zirconabundanceinthephon- Analysesofindividualzirconsbeganbyrastering otephrite and phonolites ranges from abundant to a primary O2(cid:2) ion beam at an intensity of 4–6 nA nonexistent. One sample yielded a large popula- for 120 s to remove the Au coat and surface con- tion, two yielded moderate populations, two tamination from the analytical spot. The primary yielded small populations, and one yielded no zir- ion beam was focused to approximately 20–40 mm con. As was found in the mafic samples,thefelsic and rastered over the analytical spot for 12 min to rocks carry rare zircons yielding much older (xen- produce secondary ions from an ablation spot ap- ocrystic) ages, although compared with the mafic proximately 1–2 mm deep. Peaksfor90Zr16O,204Pb, 2 rocks, those make up a smaller proportion of the background (0.050 amu above 204Pb), 206Pb, 207Pb, total populations recovered. Future work aimed at 208Pb, 238U, 232Th16O, and 234U16Oweresequentially recovering zircon from the BIP should concentrate measured. An autocentering procedure performed the effort on the felsic rocks only because the re- on guide peaks of variable or low abundance (i.e., sults obtained from mafic zircons were not useful 90Zr16O at 0.165 amu below the 204Pb peak) im- 2 in determining the age of eruption and cooling for proved peak center location reliability and elimi- individualoutcrops.Baddeleyiteseparationwasnot nated isobaric interferences. attempted but should be in future studies. Data were processed off-line at the end of each Ninemaficand11felsicsampleswereprocessed analytical session, using SQUID 1.02 (Ludwig for 40Ar/39Armineralseparation.Crushedsplitsfor 2001),byJ.WoodenattheSUMAC,usingthemeth- phlogopite, amphibole, and nepheline-K-feldspar ods of Williams (1997) and Ireland and Williams concentrate separation were washed to remove (2003).Commonleadcorrectionswereachievedby fines, dried, and passed through a Frantz isody- model age curve fitting of the uncorrected analyt- namic separator; magnetic splits 0.3–0.4 and 0.4– ical data to Stacey and Kramers’s (1975) lead evo- 0.5 A were targeted for phlogopite and amphibole, lution model. Results were calibrated relative to respectively. Further concentration was achieved thezirconstandardR33,a419-Maquartzdioriteof byheavy-liquidseparationinBromoformandhand- the Braintree complex (Black et al. 2004). Initial picking under a binocular microscope. Phlogopite calibrationoftheinstrumentwasperformedbyan- was targeted in the mafic rocks, even though rare alyzing four or five R33 grains at the beginning of inmostsamples,becausenoothersuitablemineral the analytical run for each new grain mount,with targets exist for 40Ar/39Ar geochronology. Amphi- calibration checks performed throughout the ses- bole was targeted for separation in the felsic rocks sion by analysisofan R33 grain aftereveryfouror because it is the most common suitable mineral fiveunknowns.Zirconsfromsixphonolitesamples for 40Ar/39Ar analyses. Nepheline-K-feldspar con- were analyzed during analytical sessions in 2004– centrates were recovered from the 1.6-A nonmag- 2006.Relativetotheacceptedvalueof419Ma,18 neticFrantzsplit.Futureworkrequiringmicasep- analyses of R33 produced an average of 418.9(cid:2) arates should focus on the mafic rocks, and work 2.1 Ma during 2004, 15 analyses produced an av- requiring amphibole separates should focusonthe erage of 419.0(cid:2)2.7 Ma during 2005, and 15 anal- felsic rocks of the BIP. ysesproducedanaverageof418.9(cid:2)3.5Maduring Zircons were analyzed at the USGS sensitive 2006(tablesA1,A2,availableintheonlineedition high-resolution ion microprobe reverse geometry or from the Journal of Geology office). Analytical (SHRIMP-RG) instrument housed at the Stanford spots were chosen on individual grains according University Microanalysis Center (SUMAC). Zir- to zircon morphology, the surface texture as re- cons were mounted on glass slides, using double- vealed in the reflected light images, and the zo- Concordiaage(Ma) (cid:2)81.18.9 (cid:2)77.21.6(cid:2)77.92.3(cid:2)77.01.4(cid:2)77.91.5HiU(cid:2)75.91.7(cid:2)78.62.7(cid:2)77.92.5(cid:2)76.82.0(cid:2)75.723HiU(cid:2)77.41.9 (cid:2)76.633(cid:2)77.01.8(cid:2)771.4(cid:2)79.31.7(cid:2)77.71.9(cid:2)77.31.5(cid:2)778290 (cid:2)78.88.4(cid:2)3.6416Discordant 6 98 onnt Errororrelatioefficie .154 .184.158.524.377.676.255.246.346.264.331.563.243 .107.322.351.335.289.303.309 .291.077.393 cc Pb-corrected 207235206238Pb/UPb/U(%error)(%error) .90(8.9).1115(1.4) .08(5.6).0121(1.0).09(9.5).0122(1.5).08(1.7).0120(.9).08(2.5).0122(.9).08(1.2).0126(.8).08(4.4).0118(1.1).09(7.0).0123(1.7).08(4.7).0122(1.6).08(5.0).0120(1.3).08(3.4).0118(1.1).08(1.7).0124(.9).08(5.1).0121(1.2) .06(13.3).0120(1.4).08(3.7).0120(1.2).08(2.6).0121(.9).08(3.2).0124(1.1).08(4.2).0121(1.2).08(3.3).0121(1.0)1.05(4.5).1288(1.4) 1.62(3.2).1640(.9).07(14.2).0131(1.1)1.82(2.0).1711(.8) 204 206b/Pberror) 8(8.8) 8(5.5)9(9.4)7(1.4)4(2.3)8(.9)6(4.3)4(6.8)7(4.4)4(4.8)0(3.2)4(1.4)3(4.9) 2(13.2)9(3.5)0(2.5)5(3.0)6(4.0)4(3.2)4(4.3) 9(3.0)8(14.2)3(1.8) P% 8 057788495167 6877589 197 207 ( .05 .05.05.04.04.04.04.05.04.04.05.04.04 .03.04.04.04.04.04.05 .07.03.07 ples 238206U/Pb(%error) 8.97(1.4) 82.95(1.0)82.22(1.5)83.24(.9)82.26(.9)79.61(.8)84.40(1.1)81.49(1.7)82.22(1.6)83.43(1.3)84.67(1.1)80.33(.9)82.79(1.2) 83.52(1.4)83.24(1.2)82.59(.9)80.79(1.1)82.39(1.2)82.85(1.0)7.76(1.4) 6.10(.9)76.55(1.1)5.85(.8) usProvinceSam Total207TotalPb/238206206U/PbPb(%error)(%error) 8.89(1.2).07(2.3) 82.17(1.0).06(1.8)83.01(1.4).05(3.6)83.25(.9).05(1.5)82.09(.9).05(1.7)79.61(.8).05(.9)84.10(1.1).05(2.4)81.96(1.7).05(4.7)82.35(1.6).05(4.5)83.09(1.3).05(2.9)84.71(1.1).05(3.2)80.27(.9).05(1.3)82.44(1.2).05(2.9) 81.97(1.3).05(3.3)83.15(1.2).05(3.1)82.41(.9).05(1.6)80.58(1.1).05(2.3)82.02(1.2).05(2.0)82.62(1.0).05(2.4)7.72(1.4).06(2.1) 6.07(.9).08(1.3)75.84(.9).05(2.7)5.87(.8).07(1.1) conesIgneo 204Pb-corrected 208232Pb/Thagej(1;Ma) 614(74) 79(1)85(4)78(1)79(1)80(1)78(6)89(4)79(2)77(2)82(2)81(1)80(2) 76(2)71(2)78(1)77(2)76(2)79(2)665(66) 914(33)77(8)1060(26) edfromBal 204Pb-corrected 207206Pb/Pbagej(1;Ma) 558(192) 234(126)450(208)85(34)70(55)137(21)128(100)387(153)182(102)(cid:2)34(116)241(74)19(33)63(118) (cid:2)618(361)144(82)50(59)73(72)(cid:2)22(97)117(75)580(93) 982(62)(cid:2)362(368)1130(36) mZirconGrainsRecover 207208Pb-correctedPb-corrected 206238206238Pb/UPb/Uageagejj(1;Ma)(1;Ma) 684.2(8.3)685.3(8.6) 76.9(.8)76.6(1.3)77.1(1.1)76.6(1.3)77.0(.7)76.6(1.0)77.9(.7)77.7(1.0)80.4(.7)80.7(.9)75.8(.8)75.9(.9)78.0(1.3)76.9(1.6)77.7(1.3)77.6(1.8)77.0(1.0)76.7(1.2)75.4(.9)74.8(1.0)79.9(.7)79.5(1.0)77.4(.9)76.7(1.3) 77.8(1.0)77.3(1.9)76.8(.9)77.5(1.0)77.6(.7)77.5(.9)79.3(.9)79.6(1.0)78.0(.9)78.6(1.6)77.3(.8)77.1(.9)786.7(10.5)785.0(10.4) 978.6(8.5)984.0(9.0)84.5(.7)84.2(.8)1013.1(7.5)1015.2(7.7) d sultsfro Pb-correcte 206238Pb/Uagej(1;Ma) 681.5(8.9) 77.3(.8)77.9(1.2)77.0(.7)77.9(.7)80.5(.7)75.9(.8)78.6(1.3)77.9(1.2)76.8(1.0)75.7(.8)79.8(.7)77.4(.9) 76.7(1.1)77.0(.9)77.6(.7)79.3(.8)77.8(.9)77.3(.8)781.3(10.2) 978.7(8.4)83.7(.9)018.0(7.3) Re 204 1 MP-RG 232hTh/238Um) 18.39 452.13841.02451.73051.36151.7698.1942.96711.6051.9120.90861.64361.52 722.3781.54621.1270.96032.1360.7511.22 45.5686.4853.47 Tp 22976 123485 633575 1 RI (p 2 217 3 1 1 H m) 8 892884459335 3174762 386 S Up 4 082876294654151739484536 2973256182775 83911 p 1 114 2 1 b ( U-P Comm.206Pb(%) .45 1.35.10.00.18.14.49.29.12.15.39(cid:2).08.38 .45.28.15.25.21.38(cid:2).17 .44(cid:2).05.19 Table1. Sample,grainandspotno. G-UV01:1.1G-UV03:1.12.13.14.15.16.17.18.19.110.111.112.1(cid:2)GUV05:1.12.13.14.15.16.17.1G-UV06:1.12.13.1 6 (cid:2)76.51.9HiU(cid:2)79.31.9(cid:2)73.93.2(cid:2)73.14.5…(cid:2)79.85.6(cid:2)78.32.0(cid:2)75.31.9HiTh/U(cid:2)78.924(cid:2)76.84.0(cid:2)82.7120(cid:2)75.91.9(cid:2)78.92.0HiU(cid:2)73.13.2Discordant(cid:2)78.43.6(cid:2)78.22.4(cid:2)74.64.1(cid:2)7.262.0(cid:2)80.52.3(cid:2)77.51.9 (cid:2)81.22.2(cid:2)76.21.9(cid:2)94.02.6 Discordant(cid:2)782300(cid:2)78321 7 36993 742138900214868483 653 033 97162…388917879678246918 956 262 34202 233342133502122224 131 744 ..... .................. ... ... 2)2)2)2)1)2)5)3)3)2)2)6)4)2)3)2)4)4)3)5)8)3)4)2) 4)3)4) 8)4)4) 1.1.1.2.3.4.3.1.1.1.1.2.4.1.1.1.2.1.2.1.2.1.1.1. 1.1.1. 1.1.1. (((((((((((((((((((((((( ((( ((( 964548527830183649227161 797 192 122111221222312212221222 214 399 111111111111111111111111 111 822 000000000000000000000000 000 211 ........................ ... ... (3.2)(2.4)(5.6)(31.6)(13.8)…(14.7)(3.3)(3.3)(3.1)(2.9)(9.4)(23.2)(3.3)(3.2)(2.1)(33.5)(5.0)(17.9)(6.2)(10.4)(4.3)(6.5)(2.5) (7.1)(3.6)(8.5) (2.5)(2.9)(3.3) 78857 888899188859789788 889 806 00000 000000200000000000 000 211 ..... .................. ... 4.1.1. 2.9)2.1)5.5)31.5)13.4) 14.3)3.1)3.1)2.9)2.6)9.0)22.8)3.1)3.0)1.7)33.4)4.8)17.8)6.0)10.0)4.2)6.4)2.2) 6.9)3.3)8.3) 1.8)2.6)3.0) (((((…(((((((((((((((((( ((( ((( 41432 256739296981155542 090 552 57623 788406777792176469 563 915 44434 444455144425445444 444 066 00000 000000100000000000 000 100 ..... .................. ... ... 2)2)2)2)1)2)5)3)3)2)2)6)4)2)3)2)4)4)3)5)8)3)4)2) 4)3)4) 8)4)4) 1.1.1.2.3.4.3.1.1.1.1.2.4.1.1.1.2.1.2.1.2.1.1.1. 1.1.1. 1.1.1. (((((((((((((((((((((((( ((( ((( 653052706866765280302602 974 304 718666281212441147698567 800 577 3.9.0.6.7.4.0.1.5.8.1.3.6.4.1.9.7.7.1.1.5.2.9.2. 8.4.8. 3.7.7. 878888888788788787888878 786 2.9)1.6)1.8)6.0)13.4)11.4)14.3)3.1)2.6)2.1)1.8)9.0)9.3)2.9)2.5)1.7)7.5)3.6)7.5)4.2)10.0)2.6)3.5)2.2) 4.0)2.5)3.0) 1.8)1.7)1.9) (((((((((((((((((((((((( ((( ((( 556546555556655555556555 555 167 000000000000000000000000 000 100 ........................ ... ... 2)2)2)8)1)2)5)3)3)2)2)6)6)2)3)2)1)4)2)5)8)3)4)2) 4)3)3) 8)4)4) 1.1.1.1.3.3.3.1.1.1.1.2.2.1.1.1.2.1.2.1.2.1.1.1. 1.1.1. 1.1.1. (((((((((((((((((((((((( ((( ((( 610752704076081236702432 937 383 709562280132430150668317 393 567 3.9.9.4.7.0.0.1.5.8.1.3.2.4.1.9.5.8.0.1.5.2.9.2. 8.3.7. 3.7.7. 877888888788888787888878 786 2)2)4)2)4) 0)2)7)2)2)3)0)1)3)1)0)6)5)4)8)3)6)2) 3)3)3) 9)3)7) (((11 2((((16(((1(1(((2( ((( 322 7785808(0(…4(746481832((17673834(936(7171765(82 818094 4(4(4( 59 6 90 5 5 3 787 1 9 577 3 1 0)1)2)2)4) 1)3)3)0)1)9)8)3)1)1) 0)2)4)1)2)3)2) 9)0)8) 2)6)4) 75323 4777690774 1542055 680 356 ((193 3((((14((( 141211( 1(2 ((( 33(((…(2019((795 ((((((8 (6( 179 35857 8237064979 9972515 645 957 (cid:2) 135 511(cid:2) 281 8777821 5 6 767 91 49 22 4(cid:2) (cid:2) 1 1 (cid:2)(cid:2) 1 (cid:2) (cid:2) 1.1)1.2)1.0)1.6)2.3)2.6)3.0)1.0)1.0)1.2)1.0)2.1)2.1)1.1)1.0)1.2)1.8)1.2)1.8)1.3)2.2)1.1)1.1)1.0) 1.3)1.0)1.7) 29.1)10.8)11.2) (((((((((((((((((((((((( ((( ((( 432473954977492610579793 201 748 6.0.9.5.2.9.6.8.5.1.8.6.7.5.9.0.5.2.9.8.4.7.0.7. 1.6.4. 0.7.3. 787777777877777878777787 879 188 677 1 (1.0)(.9)(1.0)(1.4)(2.3)(2.6)(2.9)(1.0)(1.0)(1.0)(.9)(2.0)(2.1)(.9)(1.0)(1.0)(1.6)(1.2)(1.7)(1.2)(2.1)(1.0)(1.1)(1.0) (1.1)(1.0)(1.3) (28.3)(10.4)(10.7) 704459922171489990128963 536 382 6.1.9.5.3.8.9.8.5.2.8.6.6.5.8.0.4.2.9.8.3.7.0.7. 1.6.4. 8.0.3. 787777777877777878777787 879 898 577 1 (.9)(.9)(1.0)(1.6)(2.2)(3.2)(2.8)(1.0)(1.0)(1.0)(.9)(2.0)(3.6)(.9)(1.0)(1.0)(1.7)(1.2)(1.8)(1.2)(2.1)(1.0)(1.1)(.9) (1.1)(1.0)(1.3) (26.0)(10.1)(10.4) 593017833890899034527655 221 221 6.0.9.4.3.5.9.8.5.1.8.7.3.5.8.1.3.2.8.8.4.7.0.7. 1.6.4. 7.7.3. 787777777877877878777787 879 088 677 1 745252297383377768898363 801 169 894511220931182152232502 644 844 ...............1......... ..1. ... 159554695787745927422730 764 901 2176 0579 30151211722 116 265 795 2 05 929 1 1 3 2 332 1 1 1 1 676972647212456156835763 924 758 593233256015518992894390 712 330 8031 7726 176 4 2 730 489 11 21 11 1 1 1 711744618498158340874241 198 200 210452012101711001331142 303 322 (cid:2)..1..(cid:2).1.(cid:2)...(cid:2)..1.1........1.(cid:2)... ... 1.(cid:2).. G-UV15:1.12.13.14.15.16.17.18.19.110.1011.1012.1013.1014.1015.1016.1017.1018.1019.1020.1021.1022.1023.1024.10G-UV16:1.12.13.1G-UV26:1.12.13.1 7 8 W. R. GRIFFIN ET AL. Table2. 40Ar/39ArResultsfromAmphibole,Phlogopite,andNepheline-K-FeldsparMineralSeparatesfromBalcones Igneous Province Samples, with Applicable Notes 39Ar wt% t t released t int p ic Sample Lithology Mineral Runno. mg K (Ma) (Ma) (%) (Ma) MSWD G-UV03 Phonotephrite Amphibole 71C47 6.73 .2 77.8 77.4(cid:2)1.2 67 79.8(cid:2)1.7 26 G-UV05 Phonolite Amphibole 72B21 9.5 .9 76.9 76.2(cid:2).6 82 76.0(cid:2).5 5 G-UV10 Phonolite Amphibole 77A2 1.41 1.1 77.9 78.0(cid:2)1.3 96 77.3(cid:2).8 1 G-UV10 Phonolite Amphibole 77A2 77.6(cid:2).7 66 G-UV16 Phonolite Amphibole 77A3 5.89 .96 78.6 78.4(cid:2).8 97 77.8(cid:2).7 2 G-UV16 Phonolite Amphibole 77A3 78.1(cid:2).4 60 G-410 Phonolite Amphibole 72B17 4.36 1.2 71.6 76.3(cid:2).4 49 76.4(cid:2).7 5 G-UV26 Phonolite Amphibole 77A5 5.78 1.1 77.9 77.2(cid:2).6 97 76.9(cid:2).6 2 G-UV26 Phonolite Amphibole 77A5 77.0(cid:2).3 71 G-UV30 Olivinenephelinite Biotite 77A6 3.88 5 83.4 83.5(cid:2).5 75 83.9(cid:2).5 2 G-UV33 Nephelinebasanite Biotite 77A7 5.3 5.5 83.1 83.5(cid:2).5 86 83.6(cid:2).6 2 G-UV34 Nephelinebasanite Biotite 77A8 .37 5.5 81.5 81.5(cid:2)1.6 85 81.3(cid:2)2.8 2 G-UV03 Phonotephrite Nepheline-K-feldspar 71C48 5.13 4.3 73.1 74.4(cid:2).4 56 74.0(cid:2).8 60 concentrate G-UV03 Phonotephrite Nepheline-K-feldspar 71C49 10.4 3.9 73.0 74.8(cid:2).4 55 73.5(cid:2)1.1 204 concentrate Note. t pintegrated(ortotal-gas)age;derivedfromthesummationofallfractionsoftheincremental-heatinganalysis.t p int p plateau age; derived from the incremental-heating age spectrum. All quoted age uncertainties are at the 2j level. t p isotope- ic correlationage;derivedfromthe36Ar/40Arversus39Ar/40Arregression.ThereliabilityofthelistedagemustbeevaluatedtheMSWD, amounts of Ar, number of gas fractions used, and general age spectrum results. These regressions are included to augment and illustratethegeneralreleasepatternbutgenerallydonotprovidemorereliableagesthantheagespectra. nationofeachzirconasrevealedinCLimages(fig. standard (PM-1) that has a 40Ar/39Ar age of 165.3 3).Spotswerechosentoavoidcracksandespecially Ma; an uncertainty of (cid:2)1% is assigned to thisage dark (high-uranium) orbright(low-uranium)zones in order toallowforuncertaintiesinthestandards withineachgrain.AnalyticalresultsforU-Pbanal- againstwhichPM-1wascalibrated.Theageforthis ysesofzirconsfortheBIPsamplesaresummarized monitor was determined by simultaneous cross- in table 1. calibration with several monitors, including the The 40Ar/39Ar measurements were performed in FishCanyonTuffbiotitestandard(FCT-3),withan the Radiogenic Isotopes Laboratory at Ohio State age of 27.84 Ma. All factors and constantsare pro- University. The general procedures have been de- vided in table A3, available in the online edition scribed previously (see Foland et al. 1993 and ref- or from the Journal of Geology office. erencestherein),exceptfortheuseofanewnoble- Threekindsof40Ar/39Aragesarereportedintable gas mass analysis system. Sized aliquots of 2. The total gas age (t ) represents an integrated int phlogopiteandamphiboleseparateswereirradiated agederivedbysummingallgasfractions.Totalpla- under a high neutron flux for about 25 h in the teau age (t ) is determined by heating the sample p McMaster Nuclear Reactor at McMaster Univer- to a given temperature and deriving an apparent sity in Hamilton, Ontario. The aliquots were sub- agefromthegasfractionreleased.Aseriesofheat- sequently heated incrementally to successively ing steps at increasing temperature produces a se- higher temperatures, using a custom-built, resis- ries of gas release increments through which iso- tance-heating, high-vacuum, and low-blank fur- chrons are drawn. Meaningful plateau ages must nace. Step-heating was continuous, with ramp have the following characteristics: (1) plateau gas times from one temperature to another of about 1 ages must be well-defined plateaus by contiguous min and with dwelltimesofabout30 minateach release of 150% of total 39Ar, (2) plateau gas frac- temperature. These incremental-heating fractions, tions must form well-defined isochrons, (3) iso- typically about 20–25 steps, were analyzed by chron ages and plateaus must be concordant, and static-gas mass analysis with a MAP 215-50 mass (4) 40Ar/36Ar must not differ significantly from the spectrometer. atmospheric value of 295.5(cid:2)0.5 (Lanphere 1999). Corrections for interfering reactions producing Isotope correlation, or reverse isochron, age (t ) is ic Ar from K, Ca, and Cl were made using factors derivedbyplotting36Ar/40Arversus39Ar/40Ar.With determined from interference monitors that were the ordinate intercept representing the inverse of irradiatedalongwiththemineralaliquots.Theage theatmosphericArratioandtheabscissaintercept monitor used was an intralaboratory muscovite representingthe39Ar/40Arreleasedduringtheheat- JournalofGeology GEOCHRONOLOGY OF THE BIP 9 Figure 3. Cathode luminescence images of typical zircon grains from Balcones igneous province samples. Dashed circlesrepresenttheionablationspotsfromwhichageswerederived.Zircongrainsexhibitednormalcompositional banding (G-UV03 grains 1, 9; GUV05 grains 1, 3), as well as complex compositional banding, although both types produced concordant ages. ing steps, ages are derived from the slope of the 289(cid:2)6, 271(cid:2)18, 295(cid:2)40, 296(cid:2)6, and 282(cid:2) isochron. The t agesprovidethemostmeaningful 7).Analysesofthephonoliteamphibolesproduced p resultsbecausetheymustadheretothepreviously t ages ranging from 71.6 to 77.9 Ma and an age int defined criteria and are derived from a pooled age of 77.8 Ma from the phonotephrite (fig. 4; table 2); of multiple step-heating increments.Gasfractions errors are not calculated for t ages. The t ages int p released at the highest- and lowest-temperature rangedfrom76.2(cid:2)0.6to78.4(cid:2)0.8Ma(2j)forthe stepstendtoproducehigheruncertaintiesthanthe phonolite amphiboles, and the age was 77.4(cid:2)1.2 intermediate heating steps and can be eliminated Ma(2j)forthephonotephriteamphiboles.Plateaus from the plateau age calculation (e.g., Lanphere rangeinwidth(total39Arrelease)fromalowof49% 1999). The t ages are not as precise as the t ages (phonolite sample G-410; all other phonolites ic p becausetheyarerelatedtohowwelltheisochrons 160%) to 97% in amphibole from the felsic rocks. fit the data. The tint ages are the least preferredbe- The tic ages range from76.4(cid:2)0.7 (MSWDp5) to cause they are derived from the summation of all 77.8(cid:2)0.7(MSWDp2)forthephonolites,andthe gasreleasefractionsanddonotexcludethehighest- age was 79.8(cid:2)1.7 (MSWDp26) for the phono- andlowest-temperatureheatingstepsthattypically tephrite (fig. 4; table 2). contain the greatest uncertainty. Phlogopite separated from two nepheline bas- anites produced t ages of 81.5 (initial int 40Ar/36Arp300(cid:2)7) and 83.1 Ma (initial Results 40Ar/36Arp299(cid:2)11), t ages of 81.5(cid:2)1.6 and p 40Ar/39Ar Geochronology. Amphiboles were sepa- 83.5(cid:2)0.5 Ma (2j; these plateau ages consist of rated from five phonolite and one phonotephrite 75%–86% total 39Ar release), and t ages of ic sample, phlogopites were separated from one oli- 81.3(cid:2)2.8 (MSWDp2) and 83.6(cid:2)0.6 vine nephelinite and two nepheline basanites, and (MSWDp2)Ma.Phlogopiteseparatedfromtheol- a nepheline(cid:1)K-feldspar concentrate was separated ivinenepheliniteproducedat ageof83.4Ma(ini- int from a phonotephrite. Sample locations are given tial40Ar/36Arp298(cid:2)6),a t age of83.5(cid:2)0.5Ma p in table 3 and figure 2. Detailed results for the 11 (2j),andat ageof83.9(cid:2)0.5Ma(MSWDp2;fig. ic analysesare listed in tableA3andshowninfigure 4; table 2). 4.Resultsaresummarizedintables2and3.Results Nepheline separates were prepared for dating; forthe11analysesarethatallsamplesyieldedini- however, the presence of K-feldspar in the more tial 40Ar/36Ar, close to atmospheric (298(cid:2)5, evolved phonolites made the separation difficult, 310(cid:2)9, 300(cid:2)3, 298(cid:2)6, 300(cid:2)7, 299(cid:1)11, owingtothecommonphysicalcharacteristics(sim- t n a d r 6,co 2, p MA MA (cid:2)1edis MA(cid:2)2. grou U-Pb(Ma) Xenocryst(cid:2)77.26.61W (cid:2)77.78.74W Single-grain83.64onexenocryst,on (cid:2)77.32.99W(cid:2)76.21.9,81.2(cid:2)94.02.6Nocoherentage Xenocryst s u pl k Aroc 40K/oler(Ma) 40 wh e 4039Ar/Aroncentrat(Ma) (cid:2)4.4 (cid:2)8.4 (cid:2)9.6(cid:2)8.29 nce c 74. 74. 80.80.4 vi o r P nesIgneous 4039Ar/Armineral(Ma) (cid:2)77.41.2amphibole (cid:2)76.2.6amphibole (cid:2)78.01.3amphibole(cid:2)77.6.7amphibole (cid:2)78.4.8amphibole(cid:2)78.1.4amphibole(cid:2)76.3.4amphibole(cid:2)77.2.6amphibole(cid:2)77.0.3amphibole(cid:2)83.5.5phlogopite(cid:2)83.5.5phlogopite(cid:2)81.51.6phlogopite (cid:2)72.41.15K-feldspar o c al B omthe Fig.2ocation 13 35 6 7 7 1213 13 49 23 23 27 30 31 36365 r l f s t ul s ee Re nitnit AllGeochronology Lithology OlivinenephelinitePhonotephrite PhonotephritePhonolite Olivinenephelinite Phonolite Phonolite PhonolitePhonolite Phonolite Phonolite Phonolite Phonolite Olivinenephelinite Nephelinebasanite Nephelinebasanite MeliliteolivinebasaMeliliteolivinebasaPhonolite of ail et 225 D 000 000 3. e 0103 0305 06 10 10 1516 16 26 26 30 33 34 CB-CB-CB- ble mpl UVUV UVUV UV UV UV UVUV UV 410 UV UV UV UV UV 01-01-01- Ta Sa G-G- G-G- G- G- G- G-G- G- G- G- G- G- G- G- M-M-M- 10

Description:
and. 83.5. 0.7. Ma (Gradstein et al. 2005). Fracturing of. 85.8 . a steel-jaw crusher, washing and drying the rock chips, and powdering them in a Bico
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.