Reconstruction of Ancestral 16S rRNA Reveals Mutation Bias in the Evolution of Optimal Growth Temperature in the Thermotogae Phylum Anna G. Green,1 Kristen S. Swithers,1 Jan F. Gogarten,2 and Johann Peter Gogarten*,1 1DepartmentofMolecularandCellBiology,UniversityofConnecticut 2DepartmentofBiology,McGillUniversity,Montreal,Quebec,Canada *Correspondingauthor:E-mail:[email protected];[email protected]. Associateeditor:KoichiroTamura Abstract D Optimalgrowthtemperatureisacomplextraitinvolvingmanycellularcomponents,anditsphysiologyisnotyetfully o w understood. Evolution of continuous characters, such as optimal growth temperature, is often modeled as a one- nlo a dimensional random walk, but such a model may be an oversimplification given the complex processes underlying d e tghroewetvholtuetmiopneoraftcuornetionfuaonucsiecnhtaorargcatenriss.mRsecfreonmtatrhteicgleusahnainveeuanseddcayntocseisnteraclosneqteunetnocfetrheecosntesmtrurcetgiioonnstoofinrfiebrotshomeoapltRimNAal, d from allowinginferencesabouttheevolutionofoptimalgrowthtemperature.Here,weinvestigatetheoptimalgrowthtem- h ttp peratureofthebacterialphylumThermotogae.Ancestralsequencereconstructionusinganonhomogeneousmodelwas s used to reconstruct the stem guanine and cytosine content of 16S rRNA sequences. We compare this sequence recon- ://a c a structionmethodwithotherancestralcharacterreconstructionmethods,andshowthatsequencereconstructiongen- d e eratessmallerconfidenceintervalsanddifferentancestralvaluesthanotherreconstructionmethods.Unbiasedrandom m ic walk simulation indicates that the lower temperature members of the Thermotogales have been under directional .o u p selection;however,whenasimulationisperformedthattakespossiblemutationsintoaccount,itisthehightemperature .c o lineages that are, in fact, under directional selection. We find that the evolution of Thermotogales optimal growth m /m temperaturesisbestfitbyabiasedrandomwalkmodel.Thesefindingssuggestthatitmaybeeasiertoevolvefromahigh b e optimalgrowthtemperaturetoaloweronethanviceversa. /a Key words: complex trait evolution, thermophiles, ancestral character reconstruction, nonhomogeneous models, rticle Thermotogae,randomwalk. -a b s tra c Introduction t/3 randomwalk,whichdonotcapturetheprocessesunderlying 0 /1 Theevolutionofcontinuousphenotypictraitsisoftenmod- phenotypictraitevolution. 1 /2 eled as a simple one-dimensional random walk. Under this Optimal growth temperature (OGT) is an example of a A46 3 model,thevalueofatraitmayincreaseordecreaseindefined, continuousphenotypictraitwithmanycomplexunderlying r/1 t2 distincttimeintervals,andthemagnitudeofchangeiscon- factors,anditsevolutionwassuggestedtoproceedaccording i62 c5 stantwitheachstep(Felsenstein1985;Gingerich1993).With to a random walk (Dahle et al. 2011). To date, research has 9 l5 increasingnumberoftimesteps,therateofnetchangeinthe focusedonmanyoftheadaptationsofbiologicalmacromol- e b y trait decreases predictably (Gingerich 1993). Modeling trait ecules (protein, RNA, and DNA) to extreme temperatures, gu e evolutionasarandomwalkprovidesausefulnullhypothesis butunderstandingofhowtheseadaptationsinteracttopro- s t o againstwhichtotestadataset,todeterminewhetheratrait duceaphenotypeandhowsuchphenotypesevolveislimited. n 1 is evolving according to a deterministic process, such as di- In thermophilic organisms, virtually every molecule must 3 A rectional selection. If the rate of change does not decrease adapt in particular ways to remain stable and functional at p overthesumofthetimeintervals,thisisgroundstorejectthe high temperatures. RNA is likely to undergo 30 to 50 bond ril 2 0 nullhypothesisthatevolutionofthisparticulartraitproceeds hydrolysisathightemperatures(GrosjeanandOshima2007). 19 viaarandomwalk.However,eventhoughtheevolutionofa RibosomalandtransferRNAsofthermophileshaveacharac- particulartraitappearstoberandom,thisdoesnotmeanthat teristichighguanine–cytosine(GC)content,whichincreases theprocessesunderlyingtheevolutionofthatparticulartrait the stability of secondary structures (Grosjean and Oshima aretrulyrandom(Gingerich1993).Althoughtraitevolution 2007).RibosomalRNAinparticulardisplaysacorrelationbe- may appear to proceed by a random walk, there may be tweenthestemGCcontentandtheOGToftheorganismin underlying factors that influence and even bias evolution. whichitisfound(GaltierandLobry1997).DNAisproneto Given the wealth of molecular data now available, it may loseitshelicalstructureandundergodepurinationanddepyr- betimetomoveawayfromsimplemodelsliketheunbiased imidationathightemperatures(GrosjeanandOshima2007). (cid:2)TheAuthor2013.PublishedbyOxfordUniversityPressonbehalfoftheSocietyforMolecularBiologyandEvolution.Allrightsreserved.Forpermissions,please e-mail:[email protected] Mol.Biol.Evol.30(11):2463–2474 doi:10.1093/molbev/mst145 AdvanceAccesspublicationAugust21,2013 2463 MBE Greenetal. . doi:10.1093/molbev/mst145 Thermophiles have adapted to these thermodynamic chal- from extant sequences of different composition, lenges by using small ligandbindingandcovalentmodifica- nonhomogeneous substitution models are superior for an- tion of nucleic acids, generation of compact tertiary cestral state reconstruction (Boussau et al. 2008). To date, structures, and efficient DNA repair (Grosjean and Oshima none of these studies have compared inferences about an- 2007).Theproteinsofthermophilesareknowntoundergoa cestraltemperatureobtainedfromsequencereconstruction variety of adaptations, including certain amino acid biases with methods traditionally used to reconstruct ancestral that increase stability (Suhre and Claverie 2003; Zeldovich, character states in evolutionary studies, including Bayesian Berezovsky,andShakhnovich2007),andanincreaseinbind- Markovmodels,Parsimony,andmaximumlikelihood. ing affinity for certain metabolites (Massant 2007). In addi- Although OGT evolution within the Thermotogales may tion,certainmetabolicintermediatesmaybeunstableathigh conformtoapatternsimilartoarandomwalk(Dahleetal. temperatures, leading thermophilic cells to compensate 2011), this does not mean that OGT evolution is truly throughincreasedproductionorsequestrationofthemetab- random or unbiased. A priori, an unbiased random walk olite in question (Massant 2007). Given the complex and appears unlikely, because proteins, DNA, and RNA in ther- D o numerous adaptations required to optimize a cell for mophiles are so meticulously adapted to have highly stable wn growth at high temperatures, it is reasonable to assume structures that there are simply more mutations available loa d thattheevolutionofthistraitisinfluencedbymanyunder- that would disrupt these stable structures, and fewer that ed lyingfactors. would continue to increase stability. Thus, we hypothesize fro m AninterestingmodelcladeforthestudyofOGTevolution that more mutations are available which can lower the h is the Thermotogae phylum. The Thermotogales, currently OGT of an organism than increase it, and this bias should ttp s theonly recognizedorderwithin the phylum Thermotogae, be observable in the evolutionary history of a clade of ther- ://a are an order of anaerobic bacteria whose ribosomal genes mophilicorganisms. ca d indicate a close relation to the Aquificae (Zhaxybayeva Here,westudytheevolutionofOGTintheThermotogales em et al. 2009). However, in bacterial ribosomal phylogenies utilizing30representativesfromtheorder.Weusedaknown ic.o rooted with an archaeal outgroup, the root is frequently correlate of OGT, the GC content of the stem regions of up .c based on the branch leading to the Aquificae, turning the ribosomalRNA(GaltierandLobry1997),andreconstructed o m Thermotogae into the second deepest branching lineage the stem GC content of the 16S rRNA molecule in the /m b (Reysenbach et al. 2005). In contrast to ribosomal proteins Thermotogalesateverynodeinthetree.Thisallowedusto e /a and RNAs, the majority of genes in the genomes of the trace the evolution of thermophily within the clade, and to rtic Thermotogales appear to have been acquired by horizontal show that this trait is not evolving according to a random le -a genetransferfromClostridia(Zhaxybayevaetal.2009).OGTs walk. We compare the inference of the ancestral state for b s within the Thermotogales range from 37 to 80(cid:2)C. Previous OGTfromGCcontentof16SrRNAwithtraditionalancestral tra c work, based on five representatives of the order, suggested state reconstruction methods. We find that no traditional t/3 0 thattheancestortotheThermotogalesgrewatahigherOGT methodagrees withthe values obtainedby ASR, suggesting /1 1 than the extant members of the clade (Zhaxybayeva et al. that sequence reconstruction may be able to reconstruct /2 4 2009).ArecentstudybyDahleetal.(2011)suggeststhatOGT evolutionarypatternsmoreaccurately. 63 in the Thermotogales evolved according to an unbiased /12 randomwalk.Thisstudywasbasedonthepairwisecompar- Results 62 5 9 isons of quantitative phenotypes of extant organisms and 5 Inference of OGT of Ancestral Sequences b produced wide confidence intervals (CIs) for predicted y OGT and stem GC content in the Thermotogae show a g values that did not reject the random walk hypothesis. We ue strong correlation (r=0.845, P<0.001; fig. 1b). This correla- s proposethatconsideringsequencedatawillallowforbetter t o tionremainsdetectablewhenthephylogeneticsignalissub- n resolutionofevolutionaryhistoriesandprocesses. 1 tractedfromtheanalysisusingFelsenstein’s(1985)methodof 3 Traditional techniques of ancestral character estimation A phylogenetically independent contrasts (PIC) (r=0.377, p rely on a single numeric values of the trait in the extant P<0.05;fig.1a). ril 2 organisms, and use different methods of averaging these 0 traitstoestimatetheancestralvalue.Becausetheyrelyonly We calculated a correlation line between the stem GC 19 content and OGT in the Thermotogae, T ¼(cid:3)53:53 onsinglenumericvaluesandmethodsofaveraging,theymay opt +169:45(cid:4)C , where T is the OGT and C is the stem not provide realistic reflections on evolutionary processes. GC opt GC GCcontent.WeusedthislinetopredicttheOGTofthelast Ancestral sequence reconstruction (ASR) to infer ancestral common ancestor of the Thermotogae, with an estimated characters has recently emerged as an alternative to these OGTof76(cid:5)3.2(cid:2)C.Seetable1forcompletelistofancestral traditionaltechniquesofancestralcharacterestimation,and OGTs. has proved particularly useful for examining historic OGTs (Galtier et al. 1999; Boussau et al. 2008; Zhaxybayeva et al. Random Walk Simulation 2009; Groussin and Gouy 2011; Hobbs et al. 2012). Instead ofsimplyaveragingextantvalues,ancestralstatereconstruc- WesimulatedevolutionofstemGCcontentfromtheances- tiontakesintoaccountalloftheaminoacidsornucleotides tral node of the tree, using a random walk simulation with in a sequence, and can simulate their evolution using 10,000replicates,andusedthesimulatedvaluestoestablisha complex models. When reconstructing ancestral sequences 95% CI of values produced by a random walk for each tip. 2464 MBE EvolutionofOGTintheThermotogaePhylum . doi:10.1093/molbev/mst145 haveonstemGCcontent.Theresultsareshownintable3. This table indicatesthat there are a greater numberof pos- sible mutations that decrease the stem GC content (n=2,279) than there are that increase (n=1,120) or do notaffectit(n=1,278). Levene’s Test for Homogeneity of Variance was used to comparethevariancesofthesetwosetsofpossiblechanges, positive and negative. We found that there is a significant differenceinthevariances,withthevarianceofthenegative groupbeinggreater(P=<0.001). Biased Random Walk Simulation D To attempt to explain the tendency of the GC content to o w decrease,thedistributionofphenotypiceffectsproducedby nlo a pointmutationstotheT.maritimaMSB8ribosomewasused d e tloowsimsteumlatGeCevcoolunttieonntodfothneoTlohnergmeroftaollgoauletss.idTehethliene9a5g%esCwIfitohr d from randomwalkevolution,unlikeintherandomwalksimulation h ttp that did not use the estimated substitution probabilities. s However, many of the lineages with high stem GC content ://a c a now fall outside the 95% CI, including T. maritima MSB8, d e m Thermotogasp.RQ2,T.neapolitana,T.petrophila,T.neapo- ic litana,T.petrophila,T.naphthophila,andT.thermarum. .o u p .c o Comparison of Ancestral Character Reconstruction m /m Methods b e Theresultsofeachancestralreconstructionmethod,exclud- /artic ingBayesTraits,werecomparedwiththe ancestralstem GC le contentvaluesobtainedfromsequencereconstruction.The -ab s G-testwasusedtotestthecongruenceoftheCIs.Thet-test tra c wasusedtotestfordifferenceinmeansizeofCIgenerated. t/3 0 The results are summarized in table 4. No reconstruction /1 1 method produced both values congruent with those esti- /2 4 mated by ASR and CIs of a similar size, as indicated by the 6 3 G-testandt-testresults. /12 FIG.1. (a)ThecorrelationbetweenOGTandstemGCcontentinthe CIsforreconstructedstemGCcontentwerecalculatedby 62 5 Thermotogae,whenindependentcontrasts(ICs)areused,withregres- 9 10,000 replicate sequence reconstructions in Bppancestor, 5 sionline.r=0.377,P=<0.05.Somepointshavenegativevaluesbecause b sampling from the probability distribution for each site, y independentcontraststakethedifferencebetweenexistingphenotypes. g rather than using the most probable nucleotide (table 5). u (b) The correlation between OGT and stem GC content in the es Thermotogae,withregressionline.r=0.845,P=<0.001. The95%CIfortotalGCcontentwasused,becausecalcula- t o n tion of the secondary structures for 10,000 replicates was 1 3 computationally unfeasible. A comparison of CI generated A p Noneofthelineagesfellabovethe95%CI.Wefoundthatthe byeachmethodisprovidedintable4. ril 2 Using the constant-variance random walk model imple- 0 stem GC content in organisms Petrotoga mexicana, 1 mentedinBayesTraits,theancestralnodewasreconstructed 9 P. halophila, P. olearia, and P. sibirica was below the 95% atastemGCcontentof0.727,whichfallsoutsideofthe95% CI (see table 2). Taken alone, this could suggest direc- CIgeneratedbytheGCcontentofthesequencereconstruc- tional evolution to decrease stem GC content, or a tion (0.751–0.777). The 95 credibility interval for the con- higher probability of mutations that decrease the stem GC stant-variance random walk model was 0.699–0.755, which content. overlapswiththe95%CIgeneratedbytheGCcontentofthe sequencereconstruction,althoughthisisalargeCIrange.The Simulation of Changes to the Thermotoga maritima directionalrandomwalkforBayesTraitsestimatedanances- ribosome tralstemGCcontentof0.791,whichwashigherthantheCI To determine whether it is more probable to accumulate produced by sequence reconstruction. The 95 credibility mutations that increase or decrease GC content, we simu- interval for the directional random walk model was 0.752– lated all possible point mutations to the T. maritima MSB8 0.829, which overlaps with the credibility interval produced ribosome, and calculatedthe effectsthese mutationswould bysequencereconstruction,thoughtheCIisagainlarge. 2465 MBE Greenetal. . doi:10.1093/molbev/mst145 Table 1. Predicted Ancestral OGTs for Each Node, with 95% CIs, Table 2. Actual rRNA Stem GC Content of Extant Thermotogales Calculated from a Linear Regression between OGT and Stem GC Compared with Results of an Unbiased Random Walk Simulation. Content of Extant Organisms. Extant 2.5th 97.5th Node Predicted OGT Lower Bound Upper Bound GC percentile percentile 1 75.93 72.70 79.17 Content 2 76.79 73.38 80.20 Fervidobacterium changbaicum 0.728 0.649 0.881 3 77.60 74.02 81.18 Fervidobacterium gondowanense 0.703 0.645 0.887 4 77.87 74.23 81.51 Fervidobacterium islandicum 0.733 0.655 0.875 5 78.12 74.43 81.81 Fervidobacterium nodosum 0.714 0.645 0.884 6 77.87 74.23 81.51 Kosmotoga olearia 0.732 0.686 0.844 7 77.87 74.23 81.51 Marinitoga camini 0.664 0.655 0.876 8 75.42 72.28 78.55 Marinitoga hydrogenitolerans 0.659 0.656 0.874 9 74.19 71.29 77.10 Marinitoga okinawensis 0.681 0.653 0.875 D o 10 69.12 66.90 71.34 Marinitoga piezophila 0.688 0.636 0.893 wn 11 68.87 66.67 71.07 Mesotoga prima 0.664 0.654 0.875 loa d 12 74.97 71.92 78.01 Petrotoga halophila 0.631 0.634 0.895 ed 13 71.49 69.02 73.96 Petrotoga mexicana 0.628 0.633 0.899 fro 14 68.96 66.75 71.16 Petrotoga mobilis 0.631 0.631 0.898 m h 15 69.23 67.01 71.46 Petrotoga olearia 0.637 0.642 0.887 ttp s 16 70.01 67.72 72.31 Petrotoga sibirica 0.631 0.648 0.881 ://a 17 70.29 67.97 72.62 Thermosipho africanus 0.714 0.644 0.882 ca d 18 70.11 67.80 72.41 Thermosipho atlanticus 0.731 0.660 0.868 em 19 71.80 69.28 74.31 Thermosipho geolei 0.720 0.670 0.857 ic.o 20 76.18 72.90 79.47 Thermosipho japonicus 0.729 0.668 0.862 up 21 71.16 68.73 73.59 Thermosipho melanesiensis 0.722 0.644 0.880 .co m 22 66.10 63.96 68.23 Thermotoga elfii 0.719 0.656 0.875 /m 23 59.51 56.65 62.36 Thermotoga hypogea 0.745 0.673 0.856 be 24 59.20 56.29 62.11 Thermotoga lettingae 0.723 0.669 0.860 /artic 25 61.20 58.62 63.78 Thermotoga maritima MSB8 0.774 0.689 0.841 le 26 53.35 49.22 57.48 Thermotoga naphthophila 0.771 0.683 0.845 -ab s 27 54.30 50.39 58.21 Thermotoga neapolitana 0.778 0.682 0.847 tra c 28 53.26 49.12 57.41 Thermotoga petrophila 0.777 0.682 0.845 t/3 0 29 52.98 48.77 57.19 Thermotoga sp. RQ2 0.775 0.684 0.843 /1 1 Thermotoga subterranea 0.729 0.656 0.873 /2 4 Thermotoga thermarum 0.764 0.680 0.848 6 3 /1 Of the models of ancestral reconstruction tested, only NOTE.—Columns2and3showtheupperandlowerboundsofthe95%CIofthe 26 unbiasedrandomwalksimulation.Theitalicizedvaluesaretheextantvaluesthatfall 2 5 restrictedmaximumlikelihood(REML)performsadequately. outsidetheCIgeneratedbythesimulation. 9 5 PIC, generalized least squares with a Brownian (GLSB) and b y Grafen (GLSG) model fail the t-test for size of CIs, meaning gu e that the CIs produced by those methods are significantly s Table 3. Effect of Simulated Point Mutations on Stem GC Content t o larger than those produced by ASR. Squared change parsi- n of Thermotoga maritima MSB8 16S rRNA. 1 mony(SCP)failstheG-testforoverlapofCIs,meaningthat 3 n % Mean Change Variance A SCPfailstoproduceestimatessimilartothoseproducedby p ASR.Theonlymethodthatdoesnotfailbothofthesetestsis Increase 1120 23.9 0.00118 7.19E(cid:3)009 ril 2 REML, indicating it produces similar estimates and CIs to Neutral 1278 27.3 0 0 019 Decrease 2279 48.7 (cid:3)0.0009938 8.14E(cid:3)009 thosemadebyASR. Boththerandomanddirectionalmodelsimplementedin BayesTraits produced ancestral values with CIs that over- lapped the CI produced by ASR, though these CIs were traditional methods of ancestral character state reconstruc- quite large. The directional model produced an estimate of tion.Theadvantageofthisapproachisthatitcalculatesthe ancestral stem GC content much higher than ASR did, and propertyattheancestralnodebasedonsequencereconstruc- the random model produced a much lower estimate than tion, a procedure that relies on well-established models of ASR. sequence evolution, and does not rely on averaging of extant values of character states. In addition, this method Discussion does not reduce the value of the trait to a single numeric InthisarticleweusedASRtoreconstructancestralcharacter estimate,andinsteadconsidersthenucleotidesequenceun- states, and systematically compared this method with derlyingthatestimation.Theaccuracyofthemethodbased 2466 MBE EvolutionofOGTintheThermotogaePhylum . doi:10.1093/molbev/mst145 Table 4. Comparison of Ancestral State Reconstruction Methods. Method No. CI that Overlap Ga Pa Mean CI Sizeb Tc dfc Pc REML 29 2.975 0.08456 0.0279 1.0243 28.584 0.3134 SCP 21 15.9239 6.59E-05 0.021 (cid:3)6.627 51.065 2.00E(cid:3)08 PIC 29 2.975 0.08456 0.9732 8.9922 28.001 9.51E(cid:3)10 GLSB 28 0.1642 0.6853 0.3347 8.1825 28.004 6.59E(cid:3)09 GLSG 28 0.1642 0.6853 1.1825 19.2598 28.002 2.20E(cid:3)16 NOTE.—Thefollowingmodelsweretested(seetextfordetails):Brownianmotionwithrestrictedmaximumlikelihood(REML),squaredchangeparsimony(SCP),phylogenetically independentcontrasts(PIC),generalizedleastsquareswithaBrownianmotionmodel(GLSB),andGrafenmodel(GLSG). aTheoverlapofCIsgeneratedbytheancestralstatereconstructionmethodswiththosegeneratedbyancestralsequencereconstructionwasexaminedusingaG-test.Columns2 and3showtheG-teststatisticandPvalue(alowPvalueindicatesthatthetestedCIsareunlikelytohavecomefromthesamedistribution). bThemeansizeofCIgeneratedbyeachreconstructionmethod(meanCIsize)wascomparedwiththatgeneratedbyancestralsequencereconstruction(0.0246)usingat-test. cThefinalcolumnsshowthet-teststatisticandPvalue(alowPvalueindicatesasignificantdifferenceinCIsize). D o w n lo a doesnotrelyonpairwisedistancebetweentheextantspecies d Table 5. Results of Evolutionary Simulation of rRNA Stem GC e Content Using Distribution of Possible Point Mutations. to test for random walk evolution, as pairwise distances are d fro not independent data points (Felsenstein 1985). Indeed, m Organism ExCtoannttenGtC 2.50% 97.50% when our method of ancestral character estimation based http on sequence reconstruction is compared with conventional s Fervidobacterium changbaicum 0.728 0.659 0.741 methods, the conventional methods perform poorly, either ://ac Fervidobacterium gondowanense 0.703 0.636 0.73 a failing to reconstruct values within the CIs of our sequence d Fervidobacterium islandicum 0.733 0.663 0.743 em FKeorsvmidootboagcateorlieuamrianodosum 00..771342 00..66492 00..775371 bstarsuecdtemdeptohiondts,orrenpdroerdinugcinthgeveesrtyimlaartgeespCrIsacotincatllhyeuirserleecsos.n- ic.oup Our analyses indicate that the ancestor to the .c Marinitoga camini 0.664 0.634 0.726 o ThermotogaegrewatarelativelyhighOGT,76(cid:5) 3(cid:2)C.The m Marinitoga hydrogenitolerans 0.659 0.64 0.729 /m majorityoflineagesinthiscladehaveundergoneadecreasein b Marinitoga okinawensis 0.681 0.63 0.724 e OGT over time (e.g., Mesotoga prima has undergone a de- /a Marinitoga piezophila 0.688 0.621 0.718 creaseof39(cid:2)C),whereasafewhavemaintainedorincreased rtic Mesotoga prima 0.664 0.642 0.732 le theirOGT,butonlybyasmallamount(e.g.,thelineagelead- -a Petrotoga halophila 0.631 0.596 0.703 b Petrotoga mexicana 0.628 0.595 0.705 ingtoT.maritimaMSB8hasundergoneanincreaseof4(cid:2)Cin stra Petrotoga mobilis 0.631 0.589 0.7 its OGT since its divergence from the ancestral node). ct/3 Althoughthisdiffersfromearlieranalysesthatsuggestedan 0 Petrotoga olearia 0.637 0.601 0.706 /1 Petrotoga sibirica 0.631 0.602 0.707 ancestralgrowthtemperaturemorethan80(cid:2)C(Zhaxybayeva 1/2 4 Thermosipho africanus 0.714 0.682 0.752 et al. 2009), our results are based on a data set with many 63 more taxa and a more sophisticated method of sequence /1 Thermosipho atlanticus 0.731 0.677 0.75 2 Thermosipho geolei 0.72 0.675 0.748 reconstruction (i.e., nonhomogeneous implementation of 625 Thermosipho japonicus 0.729 0.68 0.751 substitutionmodels). 95 Thermosipho melanesiensis 0.722 0.663 0.743 Initialevolutionarysimulationsseemedtoindicatethatthe by g Thermotoga elfii 0.719 0.663 0.743 lower temperature members of the Thermotogae are not ue Thermotoga hypogea 0.745 0.677 0.749 evolving according to an unbiased random walk, and are in st o Thermotoga lettingae 0.723 0.669 0.746 fact under directional selection. We have shown that the n 1 Thermotoga maritima MSB8 0.774 0.698 0.759 extantvaluesofstemGCcontentinthemajorityoflineages 3 A p TThheerrmmoottooggaa nneaapphothliotapnhaila 00..777718 00..669964 00..775587 faalflsewwitohrignatnhisem95s,%PC. Imperoxidcauncead, Pb.yhthaelospimhiulal,atPio.nosl.eHaroiaw,eavnedr, ril 20 1 Thermotoga petrophila 0.777 0.699 0.759 P.sibiricafallbelowthe95%CIofthevaluesobtainedfrom 9 Thermotoga sp. RQ2 0.775 0.695 0.758 thesimulation.Theseresultswouldindicatethattheseline- Thermotoga subterranea 0.729 0.666 0.745 ages have been undergoing directional evolution toward a Thermotoga thermarum 0.764 0.689 0.755 lower stem GC content, and thus a lower OGT, if not for themutationbiasthatfurthersimulationsrevealed. NOTE.—ThistableshowstheextantGCcontentalongwithupperandlowerbounds ofthe95%CIofsimulatedvalues.Extantvaluesthatareaboveorbelowthe95%CI Weprovideevidencethatatraitmayappeartobeunder areitalicized. directional selection when in fact there is a mutation bias affecting that trait. This was done by a simulation of point on sequence reconstruction has been demonstrated in pre- mutationstotheT.maritimaMSB816SrRNA,whichdem- vious studies, which were able to successfully reconstruct onstratedthatthenumberofpossiblemutationsthatwould sequences from deep nodes in the tree of life, and use decreasethestemGCcontentisalmosttwiceaslargeasthe those sequences to make evolutionary inferences (Boussau number of mutationsthatwouldincrease it.Thereisalsoa etal.2008;GroussinandGouy2011).Inaddition,ourmethod significantly greater variance in the number of possible 2467 MBE Greenetal. . doi:10.1093/molbev/mst145 decreases,indicatingthatitmaybepossibletomakegreater changes over a shorter period of time. However, when this distributionofpossiblemutationsisusedtosimulateevolu- tion along the tree, the high stem GC content lineages are foundtobeoutsidethe95%CIforevolutionaccordingtoa random walk. The high stem GC content lineages, and not the low ones, are the lineages under directional selection, whichisonlydetectedwhentheproperdistributionofpos- sible mutations is used to simulate evolution. This demon- strates that a one-dimensional random walk does not adequatelyreflectthepossiblemutationsthatunderlieevo- lution ofOGT,andmay failtodetectevolutionary patterns suchasdirectionalselection. D o ThelineagesthathaveundergoneadecreaseinstemGC w n content,andthereforeadecreaseinOGT,tendtobefound loa d onlongerbranches,evenwhenbranchlengthsarecalculated e d independentlyofstemGCcontent(fig.2).Onemayassume fro m that this sharp decrease in stem GC content, and therefore h OGT,isduetodirectionalselection,mutationbias,oracom- ttp s binationofthetwo.However,thisfailstoprovideanexpla- ://a c nationforwhythoselineagestendtobefoundatagreater a d distance from the root, because the branch lengths are cal- em culatedindependentlyofstemGCcontent,whichispresum- ic.o ably the trait under selection (fig. 3). This may be due up .c to increased directional selection on certain organisms to o m adapt to lower OGT, so more mutations are allowed to /m b reachfixation,orduetoanincreasednumberofmutations e /a thatbecomenondetrimentaltotheorganismasitgainsthe rtic ability to survive at lower temperatures. A previous study le -a providesevidenceforthesecondexplanation,demonstrating b s bybiophysicalsimulationthatthemaximumpermissiblemu- tra c tation rate, that is, the rate above which populations go t/3 0 extinct, in thermophiles is less than one-third of the maxi- /1 1 mum permissible rate in mesophiles (Zeldovich, Chen, and /2 4 Shakhnovich2007),insupportoftheearlierobservationthat 63 high temperature lineages are more slowly evolving (Woese /12 6 1987). 25 We acknowledge the possibility that one substitution FIG.2. ChangesinstemGCcontentasafunctionofthelengthofthe 95 branchonwhichtheyoccur(a),andpercentchangeinstemGCcon- b model is not adequate to reflect the evolution of both the y tentforabranchlengthofoneasafunctionofthebranchlengthon g stemandloopregionsofthe16SrRNAmolecule.However, ue which each change occurs (b). Under a random walk simulation, we s attempts,tocreateaphylogenyusingonlythestemregionsof expect the rates of change to converge to 0 as the branch lengths t on the alignment, resulted in poorly supported tree topologies increase. 1 3 thatwereincongruentwiththewell-supportedtreeproduced A p byusingtheentiresequences.Itispossiblethatthealignment ril 2 ofonlystemregionsdoesnotcontainadequateinformation mutations in the 16S rRNA that cause a decrease in stem 0 1 to recover the correct tree topology (see alignment 3, sup- GC content, and therefore a decrease in OGT. Presumably, 9 plementarydata,SupplementaryMaterialonline),orthatthe there are also more possible mutations that would cause a substitution models available do not adequately reflect the decrease in the fitness of finely adaptive protein and DNA evolution of the stem regions. Advancement of models of structures in thermophiles than there are those that would site-dependentevolutionwillprovidebettertoolstoaddress increase it. Therefore, adaptation to lower temperatures is thisquestion(Williamsetal.2011). likely easier for a thermophile than further adaptation to even higher temperatures. This suggests that it is relatively Conclusions moredifficulttoadaptfromalowertohighertemperature, WehaveshownthatmanylineagesintheThermotogaehave and relatively easy to adapt from a higher to lower adapted to lower OGT over time, whereas few have main- temperature. tained or increased their OGT by a small amount. Because Itisimportanttoaddresstheorderofeventsinthispro- there is a higher GC content in thermophiles, our observa- posed process of adaptation to lower OGT. Organisms that tions can be explained by the larger number of possible have undergone a steep decrease in stem GC content, and 2468 MBE EvolutionofOGTintheThermotogaePhylum . doi:10.1093/molbev/mst145 History of the Thermotogales taxa. These sequences were downloaded from the NCBI 0 8 Thermotoga gp. 1 GenBankdatabase. 0. Thermotoga gp. 2 Thermosipho The 16S rRNA sequences were initially aligned using ● ●●● Fervidobacterium muscle v. 3.8.31 (Edgar 2004) with the default settings. The ● Marinitoga ● 5 Petrotoga alignmentwasthenrefinedtoincludestructuralinformation 7 Other 0. usingRNASalsa(Stocsitsetal.2009),usingstringencysettings nt e s1,s2,ands3=0.9,andaconstraintstructurefileforT.mar- nt o itima MSB8, obtained from the Comparative RNA Website C 0 GC 0.7 and Project (Cannone et al. 2002). See supplementary data, m Supplementary Material online, for the full structural align- Ste mentof16Ssequences. 5 Todeterminethebestsubstitutionmodeltouseforcon- 6 0. structing a tree from the alignment, we used the phangorn D o package for R (Schliep 2011). This software tests the substi- wn tutionmodelsJC,F81,K80,HKY,SYM,andGTR,withapro- loa 0 d 0.6 0.0 0.5 1.0 1.5 2.0 2.5 3.0 pnoeirtthioenrtooffiinnvdartihaentmsoitdese,lgwaimthmtaherabteestcafittegtoortiehse, bdoattah.,Tahnids ed fro m Length of Branches from Root manoddGelaswcuaselG2T00R3)+toGcr+eaIt.eWatereuesferdomPhtyhMeaLligvn.3m.0e(nGtu(ifingd.o4n), http s FIG.3. EvolutionofthestemGCcontentintheThermotogaelineage using the parameters specified by model test, and allowing ://a overtime,whichisrepresentedbydistancefromtheroot.Thedifferent c estimationoftheratecategoriesandproportionofinvariant a d genera in the clade are labeled, “other” represents Kosmotoga and sitesfromthedataset. em Mesotoga. From this graph we can see that the lineages with higher ic stemGCcontentareonshorterbranchesandhaveonlyincreasedtheir .o u stem GC content slightly over time, whereas the lineages that have Ancestral Sequence Reconstruction p.c o lowerstemGCcontentareonmuchlongerbranchesandhaveexpe- We used the BppML program in the Bio++ package m rienced dramatic decreases over time. Note that for this figure, the (Dutheil and Boussau 2008) to refine the branch lengths of /m b branchlengthswerecalculatedfromsubstitutionsthatdidnotaffect e thetreeproducedinPhyMLandoptimizethemodelparam- /a thestemGCcontent. eters for ASR. To refine this tree, we defined a rtic le nonhomogeneous substitution model using GTR + G + I, -a b withadifferentsetofparametersoneachofthefourmajor s tra therefore OGT, must have already been able tosurvive at a clades on the tree: the more thermophilic Thermotogales c lower temperature. After moving into a lower temperature group (genera Thermotoga, Thermosipho, and t/30 /1 niche,where thetemperatureissurvivablebutnotoptimal, Fervidobacterium), the less thermophilic Thermotogales 1 /2 theirproteinsandrRNAwouldhavebeguntoadapttofunc- group, the bacterial outgroup, and the archaeal outgroup. 4 6 tion optimally atthe new temperature.This would be facil- The parameters of the model were optimized in BppML 3/1 2 itatedbythegreaternumberofpossiblemutationsavailable (Dutheil and Boussau 2008), and used to reconstruct the 6 2 to decrease the stem GC content. In addition, a greater ancestral sequences at each node of the tree in 59 5 number of mutations would be permissible at these lower Bppancestor(DutheilandBoussau2008). b y temperatures(Zeldovich,Chen,andShakhnovich2007). g u e Materials and Methods Gap Inferences in Ancestral Sequences st o n Weinferredthepositionofgapsintheancestralsequences. 1 Sequence Alignment and Tree Reconstruction Thereconstructedancestralsequenceswerethelengthofthe 3 A p The 16S rRNA sequences of 30 members of the originalalignment,butcontainednogaps,becausegapsare ril 2 Thermotogales were downloaded from the GenBank data- nottreatedasacharacterinthesubstitutionmodelweused. 0 1 base at NCBI. See table 6 for accession numbers and OGT Tocalculatethepositionofgapsintheancestralsequences, 9 information obtained from characterization articles. wechangedallofthegapsinexistingsequencestoCs,andall Phenotype data on OGTs were obtained from characteriza- ofthenucleotidestoAs.WethenusedtheF84substitution tion articles (see table 6). Organisms that have not model in Bppancestor to determine ancestral sequences, been characterized were not included in the study. For which represent the position of gaps as nucleotides, for all the purpose of tree and ASR, our data set also included oftheextantnodes.Thesubstitutionmodelisappropriatefor bacterialandarchaealoutgroups:Thermoanaerobacterpseu- ourapplicationbecausenoguanineorthymine,whichdonot dethanolis (CP000924.1), The. tengcongensis (NR_074701.1), represent anything in our model, will be introduced to the Carboxydothermus hydrogenoformans (NR_074395.1), sequences.Thismodelhasthreeparameters:theGCcontent Hydrogenobaculumsp.Y04AAS1(NR_074960.1),Aquifexaeo- is theta, the G/(G + C) ratio is theta1, and the A/(A + T) licus (AJ309733.1), Sulfurihydrogenibium sp. YO3AOP1 ratio is theta2 (PERL scripts are available in supplementary (NR_074557.1), Pyrococcus furiosus (NR_074375.1), and data,SupplementaryMaterialonline).Moreimportantly,the Thermococcus kodakerensis (NR_028216.1), for a total of 38 GC content (or in this case C content, i.e., the number of 2469 MBE Greenetal. . doi:10.1093/molbev/mst145 Table 6. Thermotogae Species Used in This Study, 16S Sequence Accession Numbers, and OGT. Organism Accession No. OGT Source Thermotoga maritima MSB8 NR_102775.1 80 Huber et al. 1986) Thermotoga sp. RQ2 AJ872273.1 80 Swithers et al. (2011) Thermotoga neapolitana NR_074959.1 80 Jannasch et al. (1988) Thermotoga petrophila CP000702.1 80 Takahata et al. (2001) Thermotoga naphthophila NR_074952.1 80 Takahata et al. (2001) Thermotoga lettingae NR_074951.1 65 Balk et al. (2002) Thermotoga elfii NR_026201.1 66 Ravot et al. (1995) Thermotoga subterranea NR_025969.1 70 Jeanthon et al. (1995) Thermotoga hypogea NR_029205.1 70 Fardeau et al. (1997) Thermotoga thermarum CP002351.1 70 Windberger et al. (1989) D Thermosipho atlanticus NR_029020.1 65 Urios et al. (2004) o w Thermosipho geolei NR_025389.1 70 Haridon et al. (2001) n lo Thermosipho japonicus NR_024726.1 72 Takai and Horikoshi (2000) ad e Thermosipho africanus NR_102773.1 75 Huber et al. (1989) d Thermosipho melanesiensis CP000716.1 70 Antoine et al. (1997) fro m Fervidobacterium islandicum NR_044730.1 70 Nam et al. (2002) h Fervidobacterium changbaicum NR_043248.1 77.5 Cai et al. (2007) ttps Fervidobacterium nodosum NR_074093.1 70 Patel et al. (1985) ://a c Fervidobacterium gondowanense NR_036997.1 66.5 Andrews and Patel (1996) ad e Kosmotoga olearia NR_044583.1 65 Dipippo et al. (2009) m ic Mesotoga prima CP003532.1 37 Nesbø et al. (2012) .o u Marinitoga hydrogenitolerans NR_042320.1 60 Postec et al. (2005) p.c Marinitoga piezophila NR_027541.1 65 Alain et al. (2002) om Marinitoga okinawensis NR_041466.1 57.5 Nunoura et al. (2007) /m b Marinitoga camini NR_028907.1 55 Wery et al. (2001) e/a Petrotoga mexicana NR_029058.1 55 Miranda-Tello et al. (2004) rtic Petrotoga halophila NR_043201.1 60 Miranda-Tello et al. (2007) le-a Petrotoga mobilis NR_074401.1 60 Lien et al. (1998) bs Petrotoga olearia NR_028947.1 55 L’Haridon et al. (2002) trac Petrotoga sibirica NR_025466.1 55 L’Haridon et al. (2002) t/3 0 /1 NOTE.—Incaseswhereanoptimalgrowthrangewasgiveninthecharacterizationarticle,themidpointwasusedastheOGT. 1/2 4 6 3 /1 2 gaps),willremainconstantthroughoutthetree,becausethe ancestral sequences were inferred, we determined the stem 62 5 extantsequencesallhaveasimilarnumberofgaps,andpre- GCcontentofallofthesequences,ancestralandextant,using 9 5 sumablythe16Ssequenceshavenotshortenedorlengthened in-house PERL scripts (available in supplementary data, b y significantly over time. We used Bppancestor to calculate SupplementaryMaterialonline). gu e these three parameters based on the input sequences, and st o thenreconstructedancestralsequencesfromthoseparame- n Confirming Correlation between OGT and Stem 1 ters.WethenusedthepositionofCsintheoutputancestral 3 GC Content A sequences to infer the position of gaps in the actual recon- p structed ancestral sequences using in-house PERL scripts We calculated a regression equation between the OGT and ril 2 0 stemGCcontentofextantspecies.Ascomparisonsbetween 1 (available in supplementary data, Supplementary Material 9 traitsofrelatedspeciesarepronetocorrelationduetoshared online).Acomparisonofthismethodwithanotheravailable ancestry,thatis,thetraitsofrelatedspeciesarenotindepen- methodofgapreconstructionisprovidedinthesupplemen- dentdatapoints,weusedindependentcontrasts(Felsenstein tarydata,SupplementaryMaterialonline. 1985),asimplementedintheapepackageforR(Paradisetal. 2004) to confirm that these two traits are correlated in the Determination of Stem GC Content of Ancestral Thermotogae. Sequences The structure of the ancestral sequences was inferred using Calculating Time Intervals and Step Size for Random RNASalsa(Stocsitsetal.2009)withstringencysettingss1,s2, Walk Simulation s3=0.9andaconstraintstructurefileforT.maritimaMSB8. A full alignment of the extant and reconstructed ribosomal AfterweinferredtheOGTateverynodeinthetree,wethen sequences can be found in the supplementary data, calculatedthechangeinstemGCcontentalongeachbranch Supplementary Material online. After the structures of the ofthetree.Inourtree,thebranchlengthsaredeterminedby 2470 MBE EvolutionofOGTintheThermotogaePhylum . doi:10.1093/molbev/mst145 P. sibirica P. olearia 26-29 P. mobilis P. halophila 22 P. mexicana M. camini 24 M. okinawensis 20 23 25 M. piezophila M. hydrogenitolerans Ms. prima 21 K. olearia F. gondowanense 19 18 F. nodosum 1 F. changbaicum 17 D F. islandicum o 12 w Ts. melanesiensis n lo 13 Ts. africanus ad Ts. japonicus e 1415 Ts. geolei d fro Ts. atlanticus m 2 h T. thermarum ttp 8 T. hypogea s 9 T. subterranea ://a 10 ca T. elfii d 11 e 3 T. lettingae 0.01 m T. napthophila ic.o T. petrophila up 4-7 T. neapolitana .co m T. sp RQ2 /m T. maritima str. MSB8 b e /a FIG.4. 16SrRNAtreeproducedusingtheGTR+G+ImodelinPhyML.Thetreeisrootedusing16SrRNAsfrombacterialandarchaealgenomesas rtic theoutgroup(seeMaterialsandMethodssection).Theblackdotsindicatenodeswithgreaterthan75%bootstrapsupport.Thegraydotsindicate le -a nodeswithlessthan75%bootstrapsupport.Thedashedlineindicatesthepositionoftheoutgroup.Thenodesarelabeledcorrespondingtotable1. b s tra c thenumberofdifferencesbetweensequences,andthetraitof branchesforuseinthesimulation.Thesimulationresultedin t/30 interestisabiasinthesequence—thereforethetwoarenot 10,000 values for the possible phenotype at each node, ob- /11 /2 independent. To determine a time-variable independent of tainedaccordingtoarandomwalkmodeloftraitevolution. 4 6 thetraitbeingmeasured,wewrotePERLscripts(availablein We simulated all possible point mutations to the 3/1 2 supplementary data, Supplementary Material online) to de- T. maritima MSB8 16S rRNA sequence using an in-house 6 2 terminethenumberofchangesalongeachbranchthatdid PERLscripttomakeallthepossiblepointmutations(available 59 5 notaffectstemGCcontent.Thesesumswerethenscaledso in thesupplementarydata,Supplementary Materialonline). b y thatthelowestnumberofchangesthatoccurredonabranch The resulting sequences each had one point mutation. The g u e (n=0)correspondedtoabranchlengthof0,andthelargest secondarystructureofthesesequenceswasdeterminedusing s number within the Thermotogae group (n=100) corre- RNAsalsa with constraint values of 1, appropriate for the t on 1 sponded to a branch length of 1. These calculated branch highlysimilarsequences.In-housePERLscriptswereusedto 3 lengthswereallincreasedby10(cid:3)9,toavoiddividingbyzeroin calculatethenumberofmutationsthatincreased,decreased, Ap caseswhenthebranchlengthwas0.Thesecalculatedbranch ordidnotaffectthestemGCcontent(fig.5). ril 2 0 lengthswereusedforthefollowingrandomwalkanalysis. A second random walk simulation was performed using 1 9 the probability of the possible point mutations in the Testing the Data against a Random Walk Simulation T. maritima ribosome. Evolution was again simulated from theroottothetips,samplingfromthedistributionofpossible Ancestralreconstructiondatawereusedtotestthehypoth- point mutations. The number of samples per branch was esisthatevolutionofOGTintheThermotogaeproceedsbya calculated by multiplying the branch length (which gives randomwalk,usingstemGCcontentasaproxyforOGT.This the substitutions per site) by the length of the entire wasdoneusingthefunctionrTraitCont,availableintheape sequence, 1,462. Evolution was simulated in this fashion packageforR(Paradisetal.2004),whichsimulatesevolution 10,000times. ofacontinuouscharacterfromtherootofagivenphylogeny tothetips.WesimulatedtheevolutionofthestemGCcon- tent10,000times,alongthetreewithbranchlengthscalcu- Ancestral Character State Reconstruction lated as explained above. One outlier was excluded when Usingthephylogenygeneratedabove,wecomparedvarious calculating the standard deviation of the change along the methods of ancestral character state reconstruction. To 2471 MBE Greenetal. . doi:10.1093/molbev/mst145 point estimates, it was also possible to generate CIs for these estimates. As a much more conservative test of the congruence between methods, we also used the number of nodes on a tree for which the CIs for the nodes had any overlap. By definition, our expected frequency of overlap in CIs should be >0.05, whereas point estimates should fall in theCIs95%ofthetime.WealsotestedwhetherCIswereof significantlydifferentsizesbetweenthereconstructionmeth- odsbyusingt-tests. In addition, we tested two models of trait evolution in BayesTraits (Pagel et al. 2004); a constant-variance random walkmodelandadirectionalrandomwalkimplementedina Bayesian framework. These two models of trait evolution D o w were compared using likelihood ratio test (Pagel 1999). n lo BayesTraitsallowsforthereconstructionofthemostrecent a d commonancestorofalltaxainthetree,andestimatesfrom ed thetwomodelsofcharacterevolutionwerecomparedwith fro m the results estimatedfrom the GC content of the sequence h datatoseewhetherpointfellwithinthe95%CIandwhether ttp s CIsandcredibilityintervalsoverlapped.Defaultsettingswere ://a c used in BayesTrait with the exception of the rate deviance a d e parameter,whichwassetat0.15fortherandomwalkand0.1 m ic for the directional walk to get an acceptance ratio between .o u 20%and40%assuggestedintheBayesTraitsmanual. p .c o m Supplementary Material /m b e Supplementary data are available at Molecular Biology and /a Evolutiononline(http://www.mbe.oxfordjournals.org/). rticle -a b s Acknowledgments tra c The authors thank Kenneth Noll, Pascal Lapierre, David t/30 Williams,TimothyHarlow,andOlgaZhaxybayevafordiscus- /11 /2 sions and the Biotechnology Bioservices Center of the 4 6 UniversityofConnecticut,Storrs,USA,fortechnicalsupport. 3/1 2 This work was supported by a US National Science 6 FIG. 5. Histogram of the number of possible mutations that cause a 2 decrease(a)oranincrease(b)inOGT.Thehistogramsareshownwith FoundationGrant(DEB0830024toJ.P.G.andDGE-1142336 595 equalyaxesandxaxesofthesamelengthtodemonstratethehigher to J.F.G.) and the Canadian Institutes of Health Research’s b y numberofmutationsthatdecreasethestemGCcontent. Strategic Training Initiative in Health Research’s Systems gu e BiologyTrainingProgram(toJ.F.G.). s t o n comparedifferentreconstructionmethods,weimplemented References 13 A atemrsauxsiimngumaBlirkoewlihnoiaondmreoctoionnstmruoctdieoln(Sfocrhlcuotnetrinetuoalu.s19c9h7a)r,aacs- AlainEAK,,PrMieaurrteDin,sBsiorrnienVTJL,.M20ir0o2s.hMniacrhinenitokogaMpiLe,zoBpohnilcah-sOp.smnoovl.o,vaskroayda- pril 20 shaped, thermo-piezophilic bacterium isolated under high hydro- 1 well as reconstructions based on least squares (i.e., PIC; 9 static pressure froma deep-sea hydrothermal vent. Int J Syst Evol Felsenstein 1985), GLSB and GLSG model (Martins and Microbiol.52(4):1331–1339. Hansen1997;Cunninghametal.1998),andSCP(Maddison AndrewsKT,PatelBK.1996.Fervidobacteriumgondwanensesp.nov.,a 1991);allimplementedintheAPEpackageforR(Paradisetal. new thermophilic anaerobic bacterium isolated from nonvolcani- 2004;RDevelopmentCoreTeam2012).REMLresultsinun- cally heated geothermal waters of the Great Artesian Basin of Australia.IntJSystBacteriol.46(1):265. biased estimates of the variance of the Brownian motion Antoine E, Cilia V, Meunier JR, Guezennec J, Lesongeur F, Barbier G. process, whereas maximum likelihood gives a downward 1997.Thermosiphomelanesiensissp.nov.,anewthermophilican- biassoweusedtherestrictedmaximumlikelihoodapproach aerobicbacteriumbelongingtotheorderThermotogales,isolated fortheBrownianmotionmodel(Heyde1997). from deep-sea hydrothermal vents in the southwestern Pacific Totestthecongruenceofourreconstructedestimatesof Ocean.IntJSystBacteriol.47(4):1118. Balk M, Weijma J, Stams AJ. 2002. Thermotoga lettingae sp. nov., a ancestral stem GC content with those estimated from the novel thermophilic, methanol-degrading bacterium isolated from sequence data, we used G-tests (Sokal and Rohlf 1995). a thermophilic anaerobic reactor. Int J Syst Evol Microbiol. Although reconstruction estimates were often given as 52(Pt4):1361. 2472
Description: