coatings Article Photocatalytic Behavior of Water-Based Styrene-Acrylic Coatings Containing TiO Sensitized 2 with Metal-Phthalocyanine Tetracarboxylic Acids ValentinRaditoiu1,AlinaRaditoiu1,*,MonicaFlorentinaRaduly1,VioricaAmariutei1, IoanaCatalinaGifu1,2andMihaiAnastasescu2 1 NationalResearchandDevelopmentInstituteforChemistryandPetrochemistry—ICECHIM,202Splaiul Independentei,060021Bucharest,Romania;[email protected](V.R.);[email protected](M.F.R.); [email protected](V.A.);[email protected](I.C.G.) 2 InstituteofPhysicalChemistry“IlieMurgulescu”,202SplaiulIndependentei,060021Bucharest,Romania; [email protected] * Correspondence:[email protected];Tel.:+40-21-688-4119 AcademicEditor:AlessandroLavacchi Received:6November2017;Accepted:8December2017;Published:12December2017 Abstract: Thestudypresentstheresultsregardingthephotocatalyticbehaviorofsomewater-based styrene-acrylic coatings containing TiO nanoparticles sensitized with metal-phthalocyanine 2 tetracarboxylic acids. Coating materials have been studied in terms of color characteristics, photocatalytic behavior, and resistance to self-degradation depending on the structure of phthalocyanine sensitizers. Coatings that were exposed to Xenon light showed degradation of the organic sensitizer rather than of the binder. Photocatalytic tests using methylene blue as a standardcontaminantindicatedthatthecoatingcontainingTiO nanoparticlessensitizedwithFe(III) 2 phthalocyanine tetracarboxylic acids showed the highest efficiency both in ultraviolet or visible light. Inthiscase,theUVlightinducedaphotodegradationratethatwasgreatlyincreasedofabout fifty times comparatively with that induced by LED light and was determined by two different mechanisms,butsidereactionslikemethyleneblueandsensitizerselfdestructionarepossibleto occur simultaneously. Photocatalytic materials of this type are suitable to be used as decorative coatingsespeciallyforindoorapplications. Keywords: photocatalysts;titaniumdioxide;phthalocyanines;waterbornecoatings;LEDlight 1. Introduction Photocatalysisrepresentsanactivefieldofresearchduringthelastyears. Manyeffortshavebeen madeinordertofindnewtypesofphotocatalyticmaterials,whichareabletopromotegeneration ofspeciesthatreactwithdifferenttypesoforganiccompoundsandtoefficientlyremovepollutants fromaqueousmediaorfromsolidsurfaces[1–3]. Besidesclassicalsemiconductingoxides,namely TiO and ZnO, only CeO has proved a convenient behavior for this type of applications, despite 2 2 therapidrecombinationofphoto-generatedelectronsandholes. However,TiO remainsthemost 2 importantphotocatalystduetoitsconvenientsemiconductingproperties(bandgap), outstanding chemicalresistanceandavailability[4,5]. PhotocatalyticpropertiesofTiO wereintensivelyinvestigatedinrelationshipwithcrystallinity, 2 shapeandsizeoftheparticles,thepresenceofdefects,ordopingcompounds[6–8]. Elucidationof photocatalytic mechanisms for different types of materials, substrates, organic pollutants, and irradiation wavelengths leads to a rapid development of highly efficient photocatalytic materials basedontitania. Unfortunately,photocatalyticactivityoftitaniamaterialsismaximumwhenthey Coatings2017,7,229;doi:10.3390/coatings7120229 www.mdpi.com/journal/coatings Coatings2017,7,229 2of17 areexposedtoUVradiationbecauseelectron-holepairsareefficientlygeneratedduringirradiation withlighthavingawavelengtharound380nm. Moreover,thereareseveralmajordrawbacksoftitania photocatalyst,whichareduetotherapidelectron-holerecombinationandthewidebandgapofthe materials,whichlimitslightabsorptiontotheUVregion[9,10]. Inaddition,UVradiationrepresents lessthan5%ofsolarenergydistributionandthiswasthemainreasonoftheeffortsmadetoproduce photocatalyststhatusevisiblelight,whichrepresentsaround43%ofsolarenergy[11]. Assomephotocatalyticmaterialsaresuitabletobeusedforindoorapplications,manyefforts aremadetodevelopnewphotocatalyst,whichcouldbeusedonthetunnelsandtheunderground parking’swallsthatareexposedtopollution,especiallyduetotheenginesemissions. Theeffectcould beenhancedbyconcomitantusageofnewecologicalfriendlysourcesofartificiallight,suchasLED’s thatprovideanintenselevelofilluminationandshifttherangeofmaximumphotocatalyticefficiency in the visible light domain. Therefore, among research related to optimize nanoparticle’s shape, size,andmorphology[12–15]agreatdealofattentionwaspaidtothemodificationoftitania-based photocatalyst with metal and non-metal atoms to shift the optimum range of action to the visible domainofthespectrum[16],buttherecombinationofphoto-generatedspeciesremainsanimportant challenge. Anotherstrategyisrelatedtothedevelopmentofheterojunctionsbetweensemiconducting oxidesanddifferentphotosensitizingmaterials[17–19]. Phthalocyanines can be one of the most efficient and stable class of photosensitizers for TiO 2 photocatalystsoperatingundervisiblelightirradiation,assomestudieshavealreadyreported[20–29],but theanchoringgroupsthatcouldbindthemonthenanoparticlessurface[30]decisivelydeterminetheoverall efficiency.Studiesrelatedtothestabilityofseveralcouplingfunctionalities,suchascarboxyl,phosphate, sulfonate,acetyl,silyl,hydroxyl,oraminorevealthatcarboxylgroupsexhibitaverygoodstabilityduring photocatalyticprocesses[31]. Moreover,asithadalreadybeenfound,photocatalyticcoatingsthatwere basedonorganicbinderscanbeobtainedifanappropriatefillerisusedinordertoreducethephotoactivity ofthesemiconductorandconsequentlytoretardtheself-destructionofthecoating[32,33]. Theobjectiveofourworkwastoobtainandtoevaluatevisiblelightresponsivecoatingsthatwere capableofeffectivephotocatalysisinweaklightorintheabsenceofUVradiation,especiallyforindoor applicationswhereLEDsareusedaslightsources. Thestudyshouldalsodeterminetheexistenceofa possibledeactivationeffectcausedbytheembeddingofphotocatalystsinthefilmbuildingmaterial bypreventingthecontactwiththecontaminant. Furthermore, itwasimportanttoelucidateifthe self-degradation of the coating organic components caused by the interaction with photocatalysts occursduringthedegradationprocesses,andwhichisthelevelofself-degradation. 2. MaterialsandMethods 2.1. Materials Parmetol A26 and Parmetol DF12 were purchased from Brenntag BV Nederland (Dordrecht, TheNetherlands). DowChemicalCo. (Midland,MI,USA)providedLatexDL450,DowanolDPnB andCellosizeHEC.OMYACARB5TNwasobtainedfromOMYAInt. AG(Oftringen,Switzerland), whileAeroxideP25wasprovidedbyEvonikInd. (Essen,Germany)BYK034waspurchasedfrom BYK-ChemieGmbH(Wesel,Germany)andADDAPTDISP500wasobtainedfromADDAPTChemicals BV(Helmond,TheNetherlands). Isopropylalcoholandaqueousammoniasolution(25wt%)were purchasedfromNovachim(Bucharest,Romania),wereoflaboratoryreagentgradeandwereused asreceived. De-ionizedwaterwasusedinexperiments, whileweobtainedmetal-phthalocyanine tetracarboxylicacids(MPcTC,whereM=Ni,Al,Co,Zn,Fe(III),Cu,Mn)inlaboratoryfollowinga well-knownmethod[34]andweusedthemassensitizersforTiO . 2 2.2. SurfaceModificationofTiO withMetal-PhthalocyanineTetracarboxylicAcids 2 Amixtureof1.9gTiO powder(P25)and0.05gMPcTCwasaddedto50mLisopropylalcohol 2 containing0.2mLammoniaaqueoussolution(25wt%)undervigorousstirringuntilafinesuspension Coatings2017,7,229 3of17 isobtained. Thereactionmasswasheatedunderreflux5handtitaniumdioxidenanoparticlesthat weremodifiedwithMPcTC’swereseparatedbycentrifugationat4000rpm,washedwithde-ionized water,filteredanddriedinanoven,at120◦C,for10h. 2.3. CharacterizationofTiO SensitizedwithMetal-PhthalocyanineTetracarboxylicAcids 2 Diffuse reflectance UV-Vis spectra of powders were recorded on a Jasco V570 spectrometer (JASCO Int. Co., Ltd., Tokyo, Japan) equipped with a Jasco ILN-472 integrating sphere (150 mm), usingSpectralonasareference. TheopticalbandgapwascalculatedusingJascoVWGA-589—band gap measurement software (Ver. 1.03C, JASCO Int. Co., Ltd., Tokyo, Japan). Diffuse reflectance Fourier-transforminfrared(DRIFT)spectrawasobtainedonthephotocatalyticpowdersmixedwithKBr byusinganEasiDiffaccessoryfromPikeTechn.Inc.(Fitchburg,WI,USA)attachedtoaJascoFT-IR6300 instrument(JASCOInt. Co.,Ltd.,Tokyo,Japan),intherange400–4000cm−1 (30scansataresolution of 4 cm−1). X-ray diffraction (XRD) analysis was performed on powders using a Rigaku SmartLab X-raydiffractometer(Rigaku,Tokyo,Japan)withverticalgoniometer,inparallelbeamgeometry,atroom temperature,andusingaCuKαradiation(λ=1.54056Å).Themorphologyofthenanoparticleswas examinedbytransmissionelectronmicroscopy(TEM)onaJEOL200CXScanning-Transmission(JEOL, Tokyo,Japan)Electronmicroscopeatanacceleratingvoltageof200kV.Nitrogensorptionisothermswere recordedonaQuantachromeNova2200eautomatedgasadsorptionsystem(QuantachromeInstruments, BoyntonBeach,FL,USA),attheliquidnitrogentemperature(−196◦C).Allofthesampleswereoutgassed at300◦Cfor3hundervacuumpriortonitrogenadsorption.BETsurfaceareawascalculatedaccording toBrunauer-Emmett-Tellerequation,totalporevolumewasestimatedfromtheamountofgasadsorbed andthemicroporessurfaceareaandvolumeweredeterminedusingt-plotanalysis. 2.4. PreparationofStyrene-AcrylicCoatings ThepaintformulationwasprovidedbyChimcolor(Bucharest,Romania),andisshowninTable1. Inatypicalprocedure,thepreservatives,defoamingagent,coalescentanddispersantweremixedwith waterusingadoublesuctiondiscLaboratoryDissolver(ATPEngineeringB.V.,Almere,TheNetherlands). AfterthepHadjustmentto9withtheaqueousammoniasolution,thebinderwasslowlyaddedand the mixture was homogenized. Finally, the thickener was added to the mixture and a stirring at a rateof1500rpmwasmaintained30min. Inordertoobtainphotocatalyticcoatings,TiO sensitized 2 withphthalocyaninesandthestyrene-acrylicpaintpreviouslyobtainedwerehomogenizedusingan Automatic Pigment Muller (J. Engelsmann AG, LudwigshafenamRhein,Germany). Coatings with a thickness of 50 ± 1 µm were applied, using an Elcometer 3570 film applicator (Elcometer Ltd., Manchester, UK), on glass slides, previously degreased and cleaned in Piranha solution. The films weredriedatroomtemperature(25±2◦C)for48handusedassuchforphotocatalyticexperiments andcoatingscharacterization. ThicknessofthecoatingswasdeterminedwithaTROTECBB25layer thickness-measuringdevice(TKLGmbH,Heinsberg,Germany). Table1.Theformulationofwaterbornecoatings. Component Role(ActiveSubstance) Quantity(wt%) Water medium 20.3 preservative(mixtureof5-Chloro-2-methyl-and ParmetolA26 0.1 2-Methyl-2H-isothiazol-3-one) ParmetolDF12 preservative(mixtureofisothiazolinones) 0.1 BYK034 defoamer(mixtureofparaffinbasedmineraloilsandsilicones) 0.2 ADDAPTDISP500 dispersant(ammoniumpolyacrylate) 0.4 Ammonia(5wt%)solution pHadjustment(ammonia) 0.1 LatexDL450 binder(styrene-acrylic) 18.7 DowanolDPnB coalescent(dipropyleneglycoln-butylether) 1 OMYACARB5TN filler(CaCO3) 48.5 CellosizeHEC thickener(hydroxyethylcellulose) 10.6 Coatings2017,7,229 4of17 2.5. CoatingsCharacterizationandEvaluationofPhotocatalyticPerformances DiffusereflectanceUV-Visspectrawererecordedoncoatingsthatweredepositedonglassslides usingthesameapparatusasinthecaseofphotocatalysts. ColormeasurementsinCIEL*a*b*system were performed using Jasco VWTS-581 color analysis software (Ver. 2.00A, JASCOInt. Co.,Ltd., Tokyo,Japan)fora10◦standardobserverandunderilluminantD65.Colormodificationsarequantified byitsattributes: hue(H*),chroma(C*),andlightness(L*). Thetotalcolordifferenceiscalculatedfrom theequation: (cid:113) ∆E∗ = (∆L∗)2+(∆a∗)2+(∆b∗)2 (1) whereL*isthelightness,a*andb*arered-green,respectively,yellow-bluecolorcomponentsandthe calculateddifferencesindicatehowmuchthetwostatesofasampledifferfromoneanother,whilethe compositionisevaluatedusing: (cid:113) ∆H∗ = (∆E∗)2−(∆L∗)2−(∆C∗)2 (2) whereH*ishueandC*ischroma. ACAM200opticalcontactangleandsurfacetensiongoniometer (KSVInstruments,Helsinki,Finland)wasusedtoassesscoatingswettability. Atomicforcemicroscopy (AFM) was performed in noncontact mode on a Park Systems XE 100 microscope (Park Systems, Suwon, Korea). Specular reflection of the coatings was measured with the Multi Gloss 268Plus gloss-meterfromKonicaMinoltaInc. (Tokyo,Japan). Coating’sphotocatalyticactivitywasevaluatedbyperformingphotodegradationexperiments usingMethyleneBlue(MB)asamodelcontaminantandUV-VisspectroscopytodetectchangesofMB concentrationduringphotochemicalreactions. MethyleneBluesolutionof1g/Linwaterwassprayed onthesurfaceofthecoatingsthatweredepositedonglassslides,followedbydryingfor2hat120◦C inanoven. Sampleswereirradiatedinahomemadechamberusingvisiblelightgeneratedbytwo LEDprojectorsof100Weach(SuperBrightLEDsInc.,St. Louis,MO,USA),providingawarmwhite light(correlatedcolortemperature2700–3000K).Theirradianceof30±1W/cm2wasmeasuredat thesurfaceofthesampleswithaDeltaOHM-HD2302.0Light-meter(DeltaOHMSrl,Padova,Italy) equippedwithLP471RADradiometricprobeforeffectiveirradiancemeasurementinthespectral range400–1050nm. Forcomparisonpurposes,similarsampleswereirradiatedinanATLAS-Xenotest 150S+apparatus(2200W,AtlasMaterialtestingSolutions,MountProspect,IL,USA),accordingto ISO105-B02[30]normalconditions(irradianceof42±2W/cm2intherange300–400nm). Duringthe photocatalyticexperiments,theconcentrationofMBwasmeasuredfromvisiblediffusereflectance spectraandthedegradationefficiency(%)wascalculatedfromthemostsignificantminimumofthe reflectancespectrumusing: R −R DE= t 0 ×100 (3) R 0 whereDEisdegradationefficiency(%),R representsthereflectanceatvariousintervalsofexposureto t light,andR theinitialreflectanceofthecoating. 0 Total organic carbon (TOC) was determined by using a Multi N/C 2100 TOC analyzer from AnalyticJenaAG(Jena,Germany). Sampleswerepreparedbyextractionindistilledwaterofallthe solublespecies(MB,sulfonicacidsandphenolsarewatersolublespecies)thatwerelocatedatthe surfaceoftheinitialandLEDlightexposedphotocatalyticcoatings. 3. ResultsandDiscussion 3.1. CharacterizationofthePhotocatalysts Inordertoobtainthedesiredeffectofincreasingthephotocatalyticactivityinthevisiblerangeof thespectrum,itwasnecessarytoestablishtheoptimalconcentrationofsensitizerthatwasdeposited ontotheP25surface. Asaresultoftheexperiments,a2.5wt%sensitizertoP25wasestablishedas Coatings2017,7,229 5of17 optimal. Atthisconcentration,maximizationofvisibleradiationabsorptionisachieved,sothatin theabsenceofUVradiationthephotocatalyticprocessescanbecarriedoutwithinacceptabletime limits,attheusualloadingofthestudiedcoatingswithphotocatalysts,aswillbefurtherdemonstrated. Asaresult,itensuredtheavoidanceofdyeaggregationonP25surfaceandtheformationofsensitizer islands, as well as ensuring an adequate intensity of the obtained colors so that the coatings also provideadecorativeeffect. TheKubelka-MunktransformedUV-VisreflectancespectrashowthepresenceoftwoQ-bands, corresponding to π–π* transitions, frequently denoted as α-Q-band and β-Q-band, situated at 607–650nmand668–703nm, respectively. Thefirstbandisattributedtotheformationofdimeric species,whilethelastoneisduetomonomers,aswasalreadyreportedforphthalocyaninederivatives insolution[35]. Inthecaseofallthephotocatalysts,theabsorptionbandsofphthalocyaninesensitizers are red shifted and broadened because of interactions with the solid host. It is obvious from the spectrathatinthecaseofFe(III)PcTCsensitizedphotocatalystwasobtainedthelargestred-shifted andbroadenedabsorptionspectrum,havingahighratiobetweenα-andβ-Q-bandintensities,ascan beobservedinFigure1a. Figure 1. (a) Kubelka-Munk transformed reflectance spectra and (b) diffuse reflectance Fourier-transforminfrared(DRIFT)spectraofP25-Fe(III)PcTC. ThisbehaviorcanbeexplainedbyastronginteractionbetweentheFe(III)PcTCmonomericspecies andP25hostingmaterialduetothepresenceofcarboxylstronganchoringgroupsinthestructureofthe sensitizer[31].Furthermore,theopticalbandgapthatwascalculatedfromthediffusereflectancespectra showsthatphotophysicalpropertiesinthevisiblerangearesignificantlyimprovedinallthecasesof photocatalystssensitizedwithMPcTCincomparisontoP25,ascanbeobservedinTable2.Theresults demonstratetheeffectivenessofthephthalocyaninesensitizersbearingcarboxylgroupsthatwillbe beneficialforthephotocatalyticpropertiesinthevisiblerange,inaccordancetootherreports[36]. Table2.Absorptiondataandbandgapofthephotocatalysts. AbsorptionPeaks(nm) α/βQ-Band WidthofQ-Band EnergyBand Photocatalyst α-Q-Band β-Q-Band IntensityRatio AbsorptionPeaks(nm) Gap(eV) P25 – – – – 3.38 P25-NiPcTC 607 668 1.25 150 3.34 P25-AlPcTC 637 694 1.01 183 3.17 P25-CoPcTC 610 670 1.2 165 3.32 P25-ZnPcTC 637 686 0.97 148 3.18 P25-Fe(III)PcTC 650 703 1.17 174 3.34 P25-CuPcTC 609 678 1.25 165 2.74 P25-MnPcTC 639 674 1.01 149 3.34 Coatings2017,7,229 6of17 TheDRIFTspectraofthephotocatalystsischaracterizedbythepresenceofabroadbandthatis centeredat3330cm−1 thatcorrespondstothehydroxylgroupsinvolvedinhydrogenbondsanda shoulderat3195cm−1,whichisduetothestretchingvibrationofC–Haromaticbondscorresponding tothephthalocyaninesensitizer. Groupsthatareinvolvedinsuchinteractionscanbelongtocarboxyl groupsorhydroxylgroupsontheTiO surfaceandtoadsorbedwatermolecules. Animportantpeakis 2 situatedat3690cm−1andcorrespondstothestretchingvibrationsofhydroxylisolatedgroupsonthe titaniasurface. Anotherimportantbroadpeakthatiscenteredat1630cm−1isduetotheH Obending 2 vibrationscombinedwithtwootherbandsduetotheC=Ostretchingvibrationofthecarboxylgroups situatedat1719cm−1. Nexttoit,the–C–N=stretchingvibrationlocatedat1664cm−1asashoulder, demonstratethepresenceofthephthalocyaninesensitizeronthephotocatalystsurface,asitcanbe observedfromFigure1b. Theabsorptionpeakat1380cm−1maybeassignedtothecarboxylateion, whileat1335cm−1 islocatedthestretchingvibrationofC=Caromaticgroups. Othercharacteristic peaks are located at 1094 and 713 cm−1, due to the aromatic –CH deformation while at 738 and 504cm−1aresituatedbandscorrespondingtotetrahedronandoctahedronTi–Osymmetricstretching vibrations. DRIFTspectraclearlydemonstratethattheinteractionbetweenphthalocyaninesensitizers andTiO isachemicalonethroughthecarboxylgroups. 2 TheanalysisofXRDspectra,ascanbeseeninFigure2a,showsthatallofthediffractionpeaks canbeindexedtotetragonalstructuresofanataseandrutile,accordingtoPDFCardNos.: 00-064-0863 and00-021-1276,respectively. Figure2.(a)X-raydiffraction(XRD)pattern;(b)TEMimageand(c)nitrogenadsorption-desorption isothermofP25-Fe(III)PcTC.P/P istheratiobetweentheequilibriumandthesaturationpressure 0 ofnitrogen. Interplanardistances(d )werecalculatedusingBraggEquation: hkl d =λ/(2sinθ) (4) hkl whereλistheX-raywavelengthandθistheBraggangle. Thelatticeconstantsofthetetragonalphases, calculatedbyRietveldrefinementsofthediffractiondata,werea=3.7885andc=9.5188Åforanatase Coatings2017,7,229 7of17 anda=4.6025andc=2.9556Åforrutile. Themediumsizeoftheparticleswasaround17–20nm,and itwascalculatedfromthemostintensepeaksofthespectrum,usingScherrerEquation: D =0.94λ/(β cosθ) (5) p 1/2 whereD istheaveragecrystallitesize,β isthefullwidthathalfmaximum,whilealloftheother p 1/2 parametershavethesamesignification,aswaspreviouslystated. ThecompositionofP25,determinedfromdiffractiondata,is88.8wt%anataseand11.2wt% rutileremainessentiallyunchangedafterdopingwithphthalocyanines. ForFe(III)PcTC,themost intense peaks were recorded at 5.51◦, 14.10◦, 26.84◦, and 42.65◦ 2θ. For the other phthalocyanine sensitizers thediffraction peaksaresituated inthe same regions. However, ifwe will analyzethe spectraofthephotocatalystswewillobservetheinfluenceofphtalocyaninedopingmaterialsonthe structureofP25titaniaphotocatalyst. Additionally,ashiftofthepeakcorrespondingtorutile(110)to higher2θanglestakesplaceforallthephotocatalysts,whichisverylikelycausedbytensilestress, aswasalreadyobservedinothercases[37]. Theexplanationofthisbehaviormightberelatedtothe existenceofstructuresimilaritiesbetweenphthalocyaninesensitizersandrutile,whichcanleadto favorableinteractionsonthisfaceofthecrystalsthroughcarboxylgroups. Thereby,acharacteristic peakofFe(III)PcTCwasfoundat26.842◦,andforrutile,(110)peakwasobservedat27.375◦ inP25 photocatalyst,whileinTiO -Fe(III)PcTCthepeakisshiftedto27.428◦ 2θ. Thisbehaviorisexplained 2 bythepreferenceofcarboxylgroupstobindonthetitaniasurfacethroughbidentatechelatingmode andthepresenceoffoursuchchelatinggroupsinthestructureofphthalocyanines,togetherwiththe existenceofamixtureofisomersleadtodifferentbindinggeometries. However,itisclearthatthe structuralchangesthatarecausedbythistypeofinteractionsdidnotalterthecrystallinestructure, composition,orsizeofP25photocatalyst. Evidenceinthissenseisrepresentedbythesimilarintensity ofthepeaksandcrystallitesizeofP25nanoparticlesthatisnotaffected,ascanbeobservedfromfull widthathalf-maximumofthepeaks—about0.51forallofthesamples. TheanalysisofP25-MPcTCTEMimagesconfirmsthepresenceofphotocatalystnanoparticleswith sizesaround20nmandawell-definedcrystallinestructurethatisnotalteredbecauseofdepositionof thesensitizeronthesurfaceofP25nanoparticles. Moreover,allMPcTCthataredepositedontoP25 surfacearenotamorphousanddonotexhibitfilmogeniccharacter,andtherearenoagglomerated particlesduetothesensitizercrystallizationandaggregation,ascanbeobservedinFigure2b. Textural parameters define the behavior of the materials during photocatalytic processes. The nature and size of phthalocyanine sensing molecules could change essentially photocatalysts porosityortheirspecificsurfacearea. However,inthecaseofP25photocatalyststhatweresensitized withphthalocyaninestheBET(Brunauer-Emmett-Teller)surfaceareaandtheporesizedonotsuffer majorchanges,ascanbeobservedinTable3. Nitrogenadsoptionisothermsforallthesamplesare similarandshowatypeIVhysteresisloop(Figure2c). Table3.Texturalpropertiesofthephotocatalysts. Photocatalyst BETSurfaceArea(m2/g) PoresVolume(BJH)(cm3/g) MicroporesDiameter(BJH)(nm) P25 57 0.43 24 P25-NiPcTC 55 0.33 24 P25-AlPcTC 56 0.34 24 P25-CoPcTC 53 0.30 24 P25-ZnPcTC 50 0.31 34 P25-Fe(III)PcTC 54 0.23 31 P25-CuPcTC 54 0.38 33 P25-MnPcTC 53 0.44 34 Coatings2017,7,229 8of17 3.2. CoatingsProperties Watercontactangleatthesurfaceofthecoatingsshowsaslighthydrophobiccharacterobtained whenP25sensitizedwithphthalocyaninedyesisusedforphotocatalyticcoatings. Besidesthebinder, only the organic dyestuff molecules, which are bound onto the surface of the P25 nanoparticles and hinder the Ti–OH groups, are able to determine the hydrophobic nature of the coatings. The hydrophobic character of the photocatalysts, and as a consequence the water contact angle ofthecoatings,hasthehighestvalueofabout97◦ inthecaseofP25-ZnPcTCphotocatalyticcoating, whilethelowestvaluewasmeasuredforP25-NiPcTCcoating,asshowninFigure3. Surprisingly,films thatareexposedtoLEDlightshowasmallvariationofthewatercontactangleafter160hofexposure. Forallofthesamples,itisquiteevidentthataslightincreaseofthevalueswasrecordedduringthe exposuretovisiblelight. Thephenomenonisrelatedtoapossiblecontinuationofthecrosslinking process,whichiscommontowaterbornecoatings. Asitisalreadyknown[38],thistypeofcoatings ischaracterizedbyalongdryingtime. Therefore,onlyanadvancementofthecrosslinkingprocess canexplainthehighervaluesofthewatercontactanglerecordedattheendoftheexposuretovisible light. Wecanpresumethatthiscanbeareasonforanincreasedcontactareabetweenthecontaminant andthephotocatalyticcoatings,whichwillfinallyleadtoahigherefficiencyofthephotodegradation process. Moreover,thisimportantevidenceallowsforustoconcludethattheorganicbinderwasnot affectedduringthephotocatalyticprocessthatwasdevelopedundervisiblelight. Conversely,the contactangleofthecoatingsdecreasedramaticallyandsurfacesbecomehydrophilicandmaintain theirhydrophiliccharacterattheendoftheexposuretoXenonlightgeneratedinaXenotestapparatus, ascanbeobservedfromFigure3. This is another important finding, which can signify a higher self-cleaning property of the coatingsandtheimpossibilityofpollutantmoleculestoadheretothehydrophilicsubstrate. Inthis way,pollutantscanberemovedbywashingfromthecoating’ssurface. Figure 3. Water contact angle of photocatalytic coatings before and after exposure to LED and Xenonlight. However,thehydrophiliccharactercanbeevidenceofthebinderphotodegradation,andthis wasthereasontoinvestigatethechangesthatwassufferedbythecoatingsduringtheexposureto Xenonlight,usingAFMmeasurements. AsitisobservedfromFigure4inthecaseofLEDlighttreated coatings,thereisanincreaseinaverageroughnessparameter(R )androotmeansquareroughness(R ) a q fromtheinitialvaluesof49.021and62.286nmto65.436and82.928nm,respectively. Onthecontrary, inthecaseofXenonlighttreatedsamples,thesameparametersdecreaseto35.481and46.570nm. Surprisingly,thereisaslightroughingofthecoatingsurfaceduringLEDlightirradiation,whichis probably due to aggregation of the photocatalyst nanoparticles in the organic binder based on their incompatibility with the polymeric matrix that is further crosslinked. This phenomenon probably Coatings2017,7,229 9of17 takesplacebythedisplacementofthephotocatalystfromthematrixaroundthelargerfillerparticles. Thisdisplacementissustainedbythelargerdifferencesof140nmbetweenthemaximumvalleydepth (Min.)oftheLEDlightexposedcoating(Figure4b)andoftheunexposedcoating(Figure4a),comparatively withthedifferenceofonly50nmbetweenthemaximumpeakheight(Max.)ofthesamecoatings. Figure4. Atomicforcemicroscopy(AFM)imagesofthephotocatalyticcoatingcontaining10wt% P25-Fe(III)PcTC(a)beforeand(b)afterexposuretoLEDlightfor156h;and(c)toXenonlightfor72h. Apparently,afterUVirradiationthereisasmoothingoftheinitialsurface,whichisprobablydue tothecoatingleveling. Thisissustainedbythevaluesoftherootmeansquareroughnessofthesample exposedtoXenonlightcomparativelywiththatunexposed. Particularly,itshouldbenotedthatin thiscasethedifferencebetweenthemaximumvalleydepth(Min.) oftheXenonlightexposedsurface (Figure4c)andoftheinitialsurface(Figure4a),hasthesamemagnitudeasthedifferencebetween themaximumpeakhighofthesamesamples. Thisfindingsustainsthelevelingphenomenonand excludesthepossibledegradationofthebinderunderUVradiation. Gloss measurement is frequently used to identify coatings photodegradation [39], which is usuallyaccompaniedbyareductionoftheglossvalues. Therefore,afterthestudyofsurfaceroughness coatingswereanalyzedbymeasuringglossbeforeandafterexposuretoLEDlightandtoaXenonlamp. Theresultsconfirmthatthesamplescanbeclassifiedaslow-glosscoatingsduetoahighercontent ininorganiccomponents,whichdetermineadiffusereflectionoflight,diminishingscatteredlight, andconsequently,thesamplesgloss. Thus,measurementsat85◦ indicatesmalldifferencesbetween samplesbeforeandafterLEDilluminationorafterexposuretoXenonlamp,ascanbeobservedfrom Coatings2017,7,229 10of17 Table4. Theresultssustainustoconcludethatthereisnoevidenceregardingimportantdegradation ofthebinderduringexposuretodifferenttypeoflightandcoatingspresentgoodretentionofthe initialgloss. Table4.Glossofthephotocatalyticcoatings. Gloss(GlossUnits) Photocatalyst Initial LEDLight XenonLight – 21.2 19.4 9.8 P25 16.8 14.5 11.9 P25-NiPcTC 22.6 16.9 14.7 P25-AlPcTC 23.7 17.8 13.8 P25-CoPcTC 22.6 17.8 19.1 P25-ZnPcTC 19.6 16.6 18.7 P25-Fe(III)PcTC 17.3 10.8 14.3 P25-CuPcTC 20.2 18.7 18.5 P25-MnPcTC 18.1 16.8 11.6 As it was already shown [40], the binder photodegradation is more pronounced as the photocatalystloadingsinthecoatingmaterialsbecomeshigher. Therefore,inordertoanalyzethe possiblesurfacedegradationcolormeasurementswereperformedoncoatingscontaining10%w/w photocatalyst. AccordingtotheresultsobtainedinthecaseofLEDlightillumination,wecanobserve onlysmallvariationsofthecolorparametersforallphotocatalyticcoatings,ascanbeobservedfrom Figure5. Thisisprobablyduetodehydrationandcrosslinkingprocesswhichcanleadtoadifferent environment around the photocatalyst, indicating that the binder was not visibly affected during exposuretoLEDlight. Figure5.TheevolutionofCIEa*andb*colorparametersofthephotocatalyticcoatingsduringexposure toLEDlight. However,whenthesampleswereexposedupto72htoXenonlight,thetotalcolordifferences againsttheinitialsamplesarenotableandareduealmostexclusivelytochangesofchroma(C),as can be seen in Table 5. Therefore, it is essential to note that this type of coatings is more suitable for indoor applications, in the absence of a suitable UV absorber or HALS in the coating material. IndepthdataanalysisrevealsahigherstabilityofthebinderatUVradiationcomparativelywiththe dyesusedastitaniasensitizers. Inallofthecasesstudiedbyus,afterexposuretoXenonlight,the photocatalyticcoatingsbecomelighter(∆L>0)andduller(∆C<0). Thisbehaviorismainlydueto thedyesphotodegradation,whileinthecaseofthecoatingcontainingonlyP25,duringexposureto Xenonlight,theshadebecomesyellowish(∆b>0)andtotalcolordifferenceisperceptiblethrough
Description: