ebook img

Article Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks Asim Anwar 1 PDF

16 Pages·2017·2.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Article Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks Asim Anwar 1

sensors Article Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks AsimAnwar1,Boon-ChongSeet1,* ID andZhiguoDing2 1 DepartmentofElectricalandElectronicEngineering,AucklandUniversityofTechnology,Auckland1010, NewZealand;[email protected] 2 SchoolofComputingandCommunications,LancasterUniversity,LancasterLA14YW,UK; [email protected] * Correspondence:[email protected];Tel.:+64-0-9921-9999 Received:31December2017;Accepted:7February2018;Published:8February2018 Abstract: Ubiquitous wireless sensor networks (UWSNs) have become a critical technology for enabling smart cities and other ubiquitous monitoring applications. Their deployment, however,canbeseriouslyhamperedbythespectrumavailabletothesheernumberofsensorsfor communication. TosupportthecommunicationneedsofUWSNswithoutrequiringmorespectrum resources,thepower-domainnon-orthogonalmultipleaccess(NOMA)techniqueoriginallyproposed for5thGeneration(5G)cellularnetworksisinvestigatedforUWSNsforthefirsttimeinthispaper. However, unlike 5G networks that operate in the licensed spectrum, UWSNs mostly operate in unlicensedspectrumwheresensorsalsoexperiencecross-technologyinterferencesfromotherdevices sharingthesamespectrum. Inthispaper,wemodeltheinterferencesfromvarioussourcesatthe sensorsusingstochasticgeometryframework. Toevaluatetheperformance,wederiveatheorem and present new closed form expression for the outage probability of the sensors in a downlink scenario under interference limited environment. In addition, diversity analysis for the ordered NOMAusersisperformed. Basedonthederivedoutageprobability,weevaluatetheaveragelink throughputandenergyconsumptionefficiencyofNOMAagainstconventionalorthogonalmultiple access(OMA)techniqueinUWSNs. Further,therequiredcomputationalcomplexityfortheNOMA usersispresented. Keywords: cross-technology interference; non-orthogonal multiple access; stochastic geometry; unlicensedspectrum;ubiquitouswirelesssensornetworks 1. Introduction Non-orthogonalmultipleaccess(NOMA)isemergingasastrongcandidateforadoptionasthe multipleaccesstechnologytoenhancesystemcapacityfor5thGeneration(5G)cellularsystems[1,2]. In NOMA, the transmitted signals of multiple users are multiplexed in the power domain using sametime,frequencyorcoderesource,anddemultiplexedbyapplyinganinterferencecancellation techniqueatthereceiver[3]. Althoughoriginallyproposedforcellularsystems,NOMAexhibitsstrengthsthatweconsider ashighlyrelevanttoaddressingthedeploymentchallengesofubiquitouswirelesssensornetworks (UWSNs),i.e.,large-scalenetworksofwirelesssensorsdenselydeployedforubiquitousmonitoring of physical environments. Specifically, for a given spectrum bandwidth, NOMA can enable more simultaneousconnectionsthanexistingapproacheswithouttheoverheadsofcodingandspreadingto facilitatetheseparationofusers’signalsatthereceiver[4]. Thisisparticularlyattractiveforsupporting massiveconnectivitywithoutrequiringmorespectrumresourcesinUWSNs. NOMA can be applicable to both uplink (sensors-to-sink) and downlink (sink-to-sensors) communicationwherepowerfulsinknodescanperformtheequivalentroleofbasestations(BSs)for Sensors2018,18,516;doi:10.3390/s18020516 www.mdpi.com/journal/sensors Sensors2018,18,516 2of16 thetasksofusergroupingandtransmissionpowerallocation. InUWSN,however,thereisagreater motivationandchallengetoapplyNOMAinthedownlink(DL). Firstly,UWSNswithlargegeographiccoveragetypicallyuseshort-rangemulti-hopcommunication to conserve energy [5]. The size of the routing table at each node increases with the number of destinations. Unlike in uplink communication where the sink node is the main destination of all sensors’ outgoing traffic, the routing table size for DL communication can grow prohibitively with a massive number of sensors as destinations [6]. In this case, NOMA can offer a practical solutionbyenablingdirectDLtransmissionsfromsinknodetomultiplesensorssimultaneously. DL transmissions are initiated when sink node queries a specific sensor or group of sensors for some information [7,8], or communicates information essential for their operations such as sleep-wake schedules[9]. Further,unlike5G,mostUWSNsoperateinunlicensedspectrumwheresensorsalso experiencecross-technology(CT)interferences[10]fromotherdevicessharingthesamespectrum. The main novelty and contributions of this paper are as follows. For the first time, NOMA is proposed as a spectrum efficient means of supporting massive connectivity in UWSNs, and its performance in a DL scenario where sink transmits to a group of sensors using NOMA under CT and other interferences is investigated using stochastic geometry [11]. The sensors, sinks and CT nodes can reside randomly and independently of each other in a two-dimensional (2D) plane. Hence, their spatial topologies can be modeled with three different homogeneous Poisson Point Processes(PPPs). Wefurtherderivetheclosed-formexpressionfortheoutageprobabilityatprobe receiver’s location and analyze its diversity order. We also present the average link throughput and energy consumption efficiency analysis to gain better understanding of applying NOMA to UWSN and benchmark the performance against conventional orthogonal multiple access (OMA). Numericalresultsareshowntovalidatetheaccuracyoftheperformedanalysisaswellascomparethe outage,throughputandenergyefficiencyperformancesbetweentheNOMAandOMAbasedUWSNs. Moreover,acomputationalcomplexityanalysisisperformedtoevaluatethecomplexityrequiredby SICunitsofsensorreceiverstodecodeNOMAmessagesignals. The rest of the paper is organized as follows. Section 2 reviews the related works. Section 3 describes the network model underlying our study. Section 4 derives the outage probability and diversityorderatthesensorreceiverunderinterferenceconstraints. Thenetworkperformancesin terms of the average link throughput and energy consumption efficiency are then defined based onthederivedoutageprobabilityinSection5. Next,wepresentthenumericalresultsinSection6, andconcludethepaperinSection7. 2. RelatedWorks Early studies have focused on the performance comparison between NOMA and orthogonal frequencydivisionmultipleaccess(OFDMA).Throughsystemlevelsimulations,theauthorsin[12] reported30–40%gaininoverallcellthroughputforNOMAoverOFDMAunderfrequency-selective widebandschedulingandpowerallocation. In[13],theauthorsanalyzedtheperformanceofDLNOMAwithrandomlydeployedusers. They evaluated performance under two scenarios: i.e., when user’s quality of service (QoS) and user’s channelconditiondetermineitsrate. Theresultsshowthatappropriaterateandpowerallocation wouldresultinbetteroutageandergodicsumrateinNOMAthanOMA. ThefairnessachievedbyDLNOMAisdiscussedin[14]. Theauthorsproposedoptimalpower allocationcoefficientsbasedontheavailabilityofperfectaveragechannelstateinformation. Results showedthatNOMAwithproposedpowerallocationmaintainshighfairnessandachievessuperior outageperformance(userrate)comparedtotimedivisionmultipleaccess(TDMA)andNOMAwith fixedpowerallocation. Theauthorsin[15]consideredaNOMAemployedinanunderlaycognitiveradio(CR)network. ThesecondaryBScommunicateswithsecondaryusers(SUs)usingNOMA.Theprimarytransmitters (PTs)spatialtopologyismodeledbyahomogenousPPPintheprimarynetwork. TheSUreceptions Sensors2018,18,516 3of16 areinterferedbyPTstransmissions. Stochasticgeometrytoolsarethenutilizedtoanalyzeinterference andoutageattheSUreceiver. TheresultsdemonstratethatNOMAachievesloweroutageprobability comparedtoconventionalOMA. In[16],amulti-inputmulti-output(MIMO)NOMAframeworkbasedontheprincipleofsignal alignmentisproposed. TheperformanceofMIMONOMAsystemisevaluatedunderfixedandCR inspiredpowerallocationstrategies. UnlikeconventionalMIMOsystemsbasedonOFDMwherea singlesub-channelisallocatedtooneuser, multipleusersinMIMONOMAsystemcanshareone sub-channel. The results show that the proposed framework can improve reception reliability of existingMIMONOMAsystems. Thesameauthorsfurtherproposedaprecodingdesignin[17]for MIMONOMAinaDLscenariotosuppressinter-clusterinterferencewhereasintra-clusterinterference isminimizedusingsuccessiveinterferencecancellation(SIC)technique. Theauthorsin[18]analyzed theperformanceofMIMONOMAandMIMOOMAsystemswhenmultipleusersaregroupedinto clusters. Further,theyproposedanadmissioncontrolschemetoadaptivelytrade-offbetweensum rateandthenumberofusersthatcanbeadmittedintoacluster. TheresultsshowthatMIMONOMA canoutperformMIMOOMAintermsofbothsumrateanduserfairness. NOMAwithtopologicalinterferencemanagement(TIM)forsingleinputsingleoutput(SISO) broadcastchannel(BC)isproposedin[19]. ThetotalKusersaredividedintoTgroups. TheBSapplies DLNOMA,whichresultsininter-andintra-groupinterferences. Theauthorsappliedtheproposed TIMandSICtominimizeinter-group,andintra-groupinterference,respectively. Resultsshowedthat theproposedschemeachievessuperiorsumratecomparedtotraditionalTDMA. In [20], the authors analyzed a multi-cell uplink NOMA cellular network using stochastic geometry. ThelocationsofBSsandcellularusersaremodeledbyPoissonclusterprocess. Closed-form expressionsfortheLaplacetransformoftheinterferenceatBSarederivedbyconsideringbothintra- andinter-clusterinterferencesundervariousSICscenarios. NOMAisshowntooutperformOMAin termsofaverageratecoverage.Theauthorsin[21]proposedauserschedulingschemebasedonwhich aclosed-formexpressionforpowerallocationisderivedtomaximizeenergyefficiencyofdownlink NOMAsystemsunderimperfectchannelstateinformation. Resultsshowthattheproposedscheme canachievehigherenergyefficiencythanexistingschemesandOMA.Similarly,in[22],theauthors presentedenergyefficientuserschedulingandpowerallocationschemesforNOMAwithnotonly imperfectchannelstateinformationbutalsomutualcross-tierinterferenceinheterogeneousnetworks. Theystudiedthetrade-offsbetweendatarateandenergyperformances,andreportedahighenergy efficiency of NOMA in such networks. In [23], a joint subcarrier and power allocation method is proposed for NOMA based amplify-and-forward relaying that can secure communications in the presenceofeavesdroppersthroughcooperativejamming. Theproposedmethodshowsenhanced NOMAenergyefficiencyandsecurityoverrandomresourceallocation. Morerecently,theauthors in[24]consideredthreecognitiveNOMAarchitectures: underlay,overlayandCR-inspiredNOMA architectures,andpresentedcooperativerelayingstrategiesformitigatinginter-andintra-network interferencesinordertoimprovetheirreceptionreliability. Todate,NOMAhasbeeninvestigatedonlyinthecontextofcellularnetworks. TheuseofNOMA forUWSNhasnotbeenproposedinliterature,andthereportedperformancegainsofNOMAover itscounterpartscannotbestraightforwardlyclaimedforUWSN.Thisisbecause,unlikeincellular network,thesinknodeinaUWSNhasnocontroloveralltransmitterswithinitscoverage,including sensorsandsinksofotherUWSNsunderdifferentadministrativedomainsorCTnodesthatshare the same spectrum such as WiFi and Bluetooth devices. Hence, it is important to investigate the performanceofaUWSNemployingNOMAunderinterference-limitedscenario. 3. NetworkModel WeconsideraUWSNcomprisingofsensorandsinknodes,whicharerandomlydistributedin an infinite 2D plane. Further, it is assumed that the CT nodes are also co-located with sensor and sinknodes. TheseCTnodesarenotapartofUWSNbutareoperatinginthesamefrequencyband, Sensors2018,18,516 4of16 Sensors 2018, 18, x FOR PEER REVIEW 4 of 16 andhencecauseinterferencetothereceptionofprobereceiver. Thespatialtopologyofthesensor,sink sainndk CaTndtr CanTs mtraitntesrmnitotdere sniosdmeso dise mledodbeyletdhr beey hthormeeo gheonmouosgePnPoPuss, dPePnPost,e ddebnyotΞeSdE b,Ξy SKSaEnd, ΞCSKT wanitdh inten switiieths iλnte,nλsitieas ndλ, ,res panecdt ively., respectively. CT SE SK SECT SK CT WWee ffooccuuss oonn aa DDLL ttrraannssmmiissssiioonn sscceennaarriioo wwhheerree aa ssiinnkk nnooddee ccoommmmuunniiccaatteess wwiitthh sseennssoorr nnooddeess uussiinngg NNOOMMAA.. TTooa vavoiodida mambibgiugiutyit,yw, ewree freerfteor tthoe tsheen ssoernsroecre riveceersivaesrsu saesr su.sWeres.a Wlsoe raelfseor troeftehre tpor othbee psirnokbne osdineka nsoadtee satst raa tnessmt tirttaenr,smwhititcehr,i wschoinchsi dise creodnstiodbeereldo ctaot ebde alotctahteecde antt etrheo fcaendtiesrc oAf aw ditihscr a(cid:1827)d iwusitRh. TrahdeiuMs N(cid:1844).O TMheA (cid:1839)us eNrsOaMreAc ounsesirds earreed ctoonbseiduenreifdo rtom blye duinstifroibrumtleyd dinisstirdibeudtiesdc iAn,siadses hdoiswc n(cid:1827)i,n aFs isghuorwen1. iFnu Frtihgeurr,eb 1y. pFruorbtheerre,c beyiv perr,owbee raelcweaivyesrm, weaen altwheayms- tmheNanO tMheA mu-stehr .NOMA user. (a) (b) FFiigguurree 11.. (a()a )AA reraelaizliaztaiotino nofo fΞSE , ,ΞSK aanndd ΞCTt rtarnasnmsmitittetrerp prorocecsesseses;s;a anndd ((bb)) aann iilllluussttrraattiioonn ooff SE SK CT ssiinnkk--ttoo--sseennssoorrss ccoommmmuunniiccaattiioonn uussiinngg NNOOMMAA uunnddeerr iinntteerrffeerreennccee ooff ootthheerr ssiinnkk,, sseennssoorr aanndd CCTT nnooddeess.. All communication links in the network follow a composite Rayleigh fading and distance All communication links in the network follow a composite Rayleigh fading and distance dependent path-loss channel model. The channel between the m-th user and test transmitter is given dependentpath-losschannelmodel. Thechannelbetweenthem-thuserandtesttransmitterisgiven bbyy hhmm=hhˆˆmm((11+dmd)αm)1/−21, /w2,hwerhee rheˆmhˆ manadn dddmm rreepprreesseenntt tthhee RRaayylleeiigghh ffaaddiinngg cchhaannnneell ggaaiinn,, aanndd ddiissttaannccee bbeettwweeeenn tthhee tteesstt trtraannssmmititteter raanndd mm-t-ht husuesre, rr,ersepsepceticvtievlyel, ya,nadn dα iiss tthhee ppaatthh lloossss eexxppoonneennt.t .WWe eusues ae baobuonudnedde dpaptaht hlolsoss smmodoedle tlot oavavooidid isissusue eoof fssiningguulalarritiyty aatt ssmmaallll ddiissttaanncceess [[1111,,1133]].. WWiitthhoouutt lloossss ooff ggeenneerraalliittyy,, wwee aassssuummeeN NOOMMAAu usesresr’sc’ hcahnannenlegl agianisnasr aeroer doredreedreads a|hs1 |2h1≤2 ......≤ |hhMM2|2. .CCoonnsseeqquueennttllyy,, the power allocation coefficients under NOMA are sorted as  ... with M  1. The 1 M im1 i Sensors2018,18,516 5of16 the power allocation coefficients under NOMA are sorted as β ≥ ... ≥ β with ∑M β = 1. 1 M i=m+1 i ThetesttransmittersendsasuperimposedsignaltoallNOMAusersandthereceivedsignalatthe m-thuserisgivenas: M ∑(cid:112) r = h β Ps +n , (1) m m i i m i=1 where P is the transmission power of test transmitter, s is the message signal of i-th sensor node, i andn istheadditivewhiteGaussiannoise(AWGN)withzeromeanandvarianceσ2. m ForeachNOMAuser,therearetwotypesofinterferencethatinterferethereceptionofdesired signal. Firstistheintra-userinterferencethatispresentduetothesuperpositionofmultipleusersin NOMA,andthesecondisduetothetransmissionofundesiredtransmittersinthenetwork. SICis employedateachuserreceivertomitigatetheintra-userinterference. Theoptimaldecodingorderof SICisinthesequenceofincreasingchannelgains. Therefore,m-thuserdecodesthemessagesignalsof alljusers,j < m,beforedecodingitsownmessage,andtreatsthemessagesignalsoftheusersj > m asnoise. Forthesecondtype,weconsiderthattheinterferencelinksamongunwantedtransmittersand probeNOMAreceiveraredominatedbypathloss. Assumetheprobereceiverislocatedatoriginof thecoordinatesystemi.e.,d = (x ,0)withx (cid:54)=0,thenthetotalinterferenceatprobeuser’slocation m 0 0 canbewrittenas, I = ∑w∈ΞSE(1+dαw)−1+∑x∈ΞSK\x0(1+dαx)−1+∑y∈ΞCT(1+dαy)−1,wheredw, dx andd representthedistancesbetweenundesiredtransmittingsensors,sinks,CTnodesandtheprobe y receiver,respectively. Further,sensorsandsinksoperateonverylowpowerlevels,thustheNOMA users may experience excessive interference from a nearby transmitter(s) leading to a situation of completeoutage. Toavoidthis,weconsideraguardzoneofradiusd aroundeachNOMAuser,within 0 whichnounwantedtransmitterisallowedtotransmit[25]. AlistofcommonlyusedvariablesissummarizedinTable1. Table1.Commonlyusedvariables. Notation Description α Pathlossexponent βj Powerallocationcoefficientofj-thuser (cid:118)j TargetSINRthresholdforj-thuser Pm Outageprobabilityofthem-thuser out Φ(·,·;·) Confluenthyper-geometricfunction Λm→j SINRatm-thusertodecodej-thusermessage Λm SINRatm-thusertodecodeitsownmessage κ Averageinterferencelevel χ AveragesystemSNR dm Distancebetweentesttransmitterandm-thuser d Guardzoneradiusaroundeachsensorreceiver 0 hm Channelbetweenm-thNOMAuserandtesttransmitter M TotalnumberofNOMAusers L (·) LaguerrepolynomialofdegreeS S N,T Gaussian–Chebyshevparameters P Transmitpoweroftesttransmitter Pc Constantpowerconsumptionofcircuits R RadiusofdiscA TPm Averagelinkthroughputofuserm ς Overallenergyconsumptionefficiency Sensors2018,18,516 6of16 LetΛm→j representsthesignal-to-interference-and-noiseratio(SINR)atthem-thNOMAuserto decodethemessagesignalofj-thuser,j < m,thenΛm→j canbecomputedasfollows: |h |2β χ Λm→j = |h |2χ∑Mm βj +κI+1, (2) m i=j+1 i whereχ(cid:44) P/σ2istheaveragesystemsignal-to-noiseratio(SNR),κ (cid:44) P /σ2istheaverageinterference I level,andP isthecommonmaximumtransmissionpoweravailabletosink,sensorandCTnodes. I Ifallthej < musersaredecodedandremovedsuccessfullybythem-thuserfromitsobservation signalr ,thenSINRrequiredtodecodeitsownmessageisgivenby: m |h |2β χ Λm→m = |h |2χ∑Mm mβ +κI+1. (3) m i=m+1 i 4. OutageandDiversityAnalysis 4.1. OutageProbabilityAnalysis Inthissection, wepresentanexactanalysisoftheoutageprobabilityform-thuserunderthe considerednetworksetting.Let(cid:118) andR representthetargetSINR,andtherateforuserj,respectively, j j where 1 ≤ j ≤ M and (cid:118)j = 2Rj −1. To simplify notation, we define ∆m,j (cid:44) (cid:8)Λm→j < (cid:118)j(cid:9) as the outageeventatm-thuserwhenitfailstodecodethemessageofj-thuser,1≤ j ≤ m. Consequently, theoutageprobabilityform-thuser,denotedbyPm ,canbewrittenasfollows: out Pm =1−P (∆c ∩...∩∆c ), (4) out r m,1 m,m where∆c isthecomplementeventof∆ . Toproceedfurther,rewrite∆c as: m,j m,j m,j (cid:26) (cid:27) ∆cm,j = (cid:8)Λ(cid:110)m→j > (cid:118)j(cid:9) = |hm|2χ∑|hiMm=|j+2β1jβχi+κI+1 > (cid:118)(cid:111)j = |h |2χ(β −(cid:118) ∑M β ) > (cid:118) (κI+1) (5) m j j i=j+1 i j (=a)(cid:110)|h |2 > τ(κI+1)(cid:111), m j where τ = (cid:118) [χ(β −(cid:118) ∑M β )]−1. Step (a) providesthefollowingessentialconditiontokeep j j j j i=j+1 i NOMAoperational: M ∑ C1: β −(cid:118) β >0. (6) j j i i=j+1 whenconditionC1isviolated,them-thuserwillalwayssufferoutage,irrespectiveofthechannelSNR. Further,bydefiningτ∗ =max{τ ,...,τ },Pm canbewrittenas: m 1 m out (cid:16) (cid:17) Pm =1−Pr |h |2 > τ∗(κI+1) . (7) out m m To proceed forward, we notice that |h |2 are the ordered channel gains. Let F (·) and f (·) m X X denotethecumulativedistributionfunction(CDF),andtheprobabilitydensityfunction(PDF),ofX (cid:12) (cid:12)2 respectively. Then,theorderedandunorderedchannel(cid:12)(cid:101)h(cid:12) havefollowingrelationships[26]: (cid:12) (cid:12) (cid:32) (cid:33) M∑−m M−m (−1)q(cid:104) (cid:105)m+q F (t) = µ F (t) . (8a) |hm|2 m q m+q |(cid:101)h|2 q=0 Sensors2018,18,516 7of16 (cid:32) (cid:33) f (t) = µ M∑−m M−m (−1)q(cid:104)F (t)(cid:105)m+q−1f (t), (8b) |hm|2 m q |(cid:101)h|2 |(cid:101)h|2 q=0 whereµ = M![(M−m)!(m−1)!]−1.Tothisend,thefollowingtheorempresentstheexactexpression m forPm . out Theorem1. Theoutageprobabilityofthem-thNOMAusercanbederivedas: Pomut = Θ1 ∑S Ψseυgs(cid:26)2∑K Re(cid:20)e−λπ[(e−ckd0−α−1)d20+ck∑tT=1ηte−utckd0−α]+iπΘgs(cid:21) (cid:34) s=1 (cid:32) k=0 (cid:33) M−m M−m × µm q∑=0 q (−1)q∑nN=1ψn(Φ(δ,1+δ;−an(κgs+1))+εΦ(1+δ,2+δ;−an(κgs+1))) (9) ×(cid:16)1−e−τm∗(κgs+1)tnΦ(δ,1+δ;−an(κgs+1))(cid:17)m+q−1(cid:21)(cid:27), where Ψs = wsegs, ws = S!(S+Γ1()S2+[L1S)+g1s(gs)]2, LS(·) is the Laguerre polynomial of degree S, gs are the roots of L (·), c = υ + iπk, υ = ρ−log(ξ)/Θ, ρ is a real number, ξ is the desired relative accuracy, S k 0 Θ 0√ Θ is a scaling parameter, i = −1, K is the number of terms used to invert the Laplace transform, (cid:113) λ = λ +λ +λ ,η = 1d2−αω 1−φ2u−δ,ω = π/T,u = (1+φ )/2,φ =cos((2t−1)π/2T), SE SK CT t 2 0 t t t t t t t ψn = ωn(cid:112)1−θn2τm∗(κz+1)e−τm∗(κz+1)tn, θn = cos((2n−1)π/2N), ωt = π/N, tn = (1+θn)/2, a = τ∗t Rα,δ =2/α,ε = δ(1+δ)−1Rα,TandNarecomplexity-accuracytradeoffparameters,andΦ(·,·;·) n m n isaconfluenthyper-geometricfunction. Proof1. SeeAppendixA. 4.2. DiversityAnalysis Inthissubsection,wepresentthediversityanalysisfortheorderedNOMAusersinhighSNR regime. Thediversityorderofthem-thuseroutageprobabilityisdefinedas: logPm D = −lim out. (10) χ→∞ logχ ToobtainD,wefirstnoticefromEquation(7)thattheasymptoticoutageprobabilityinhighSNR P∞ regime,denotedas canbeexpressedas: m (cid:16) (cid:17) P∞ =Pr |h |2 < t∗ , (11) m m where t∗ = τ(cid:101)mκIχ−1, τ(cid:101)m = max{τ1,...,τm} and τm = (cid:118)m[(βm−(cid:118)m∑iM=m+1βi)]−1. Next, when χ → ∞ and t∗ →0,similartoEquation(8a),theCDFoftheorderedchannelisexpressedas: (cid:32) (cid:33) F∞ (t∗) = µ M∑−m M−m (−1)q(cid:104)F∞ (t∗)(cid:105)m+q (12) |hm|2 m q=0 q m+q |(cid:101)h|2 WenoticeintheCDFoftheunorderedchannelinAppendixAthat Φ(δ,1+δ;−t∗Rα) →1 and e−t∗ ≈1−t∗. Hence,F∞ (t∗)inEquation(12)canbeapproximatedas: |(cid:101)h|2 F∞ (t∗) ≈ t∗ (13) |(cid:101)h|2 SubstitutingEquation(13)intoEquation(12),F∞ (t∗)canbeexpressedas: |hm|2 F|∞hm|2(t∗) ≈ ϑ(cid:16)τ(cid:101)mκIχ−1(cid:17)m+o(cid:104)(cid:16)τ(cid:101)mκIχ−1(cid:17)m(cid:105), (14) Sensors2018,18,516 8of16 whereϑ = µ /m. BasedonEquation(14),P∞ in(11)isgivenas: m m P∞m ≈ χ1m(cid:90)0∞ϑ(τ(cid:101)mκz)mfI(z)dz (15) (cid:124) (cid:123)(cid:122) (cid:125) Ψ ItcanbeobservedthatΨisaconstant. Hence,Equation(15)canbeexpressedasfollows: P∞ ≈ Aχ−m+o(χ−m). (16) m Finally, substituting Equation (16) into Equation (10), the diversity order experienced by the m-th user is found to be m. It can be observed from Equation (15) that interference in integral Ψ is independent of χ and hence the factor χ−m dominates Ψ in Equation (15) under high SNR. This indicates that the interference-limited NOMA based UWSN becomes equivalent to an interference-freenetwork. Thisresultondiversityordercanbeinterpretedasfollows. First,them-th useravailsexactlymchancestodecodeitsownmessage. Second,them-thuserhas(m-1)interferences fromthehigherorderusersthatneedtobecancelledoutbyapplyingSIC.Hence,itobtainsadiversity ofm. 5. ThroughputandEnergyConsumptionEfficiency 5.1. LinkThroughputEfficiency Thelinkthroughputefficiencybetweenthem-thuserandthetesttransmitter,denotedbyTP m andmeasuredin[bits/s/Hz]isdefinedas[27]: TP = (1−Pm )log (1+(cid:118) ). (17) m out 2 m Correspondingly,theaveragelinkthroughputefficiencyofthenetworkcanbefoundas: M ∑ TP = ( TP )/M (18) avg m m=1 5.2. EnergyConsumptionEfficiency NOMA is used by the sink node to communicate with the sensors. Since NOMA is typically appliedontopofanunderlyingaccesstechnologytobetterreusethetransmissionresources, e.g., timeslots,frequencychannels,orspreadingcodes,anadditionalSICunitisrequiredatthesensorsto decodethedesiredmessage. Itisthusimportanttoanalyzetheoverallenergyconsumptionefficiency ςoftheNOMAbasedUWSN.Thetotalenergyconsumptionalongthesignalpath(communication andcircuits)canbedecomposedintothreemaincomponents[28]: thepowerconsumedbypower amplifiersP ,thepowerconsumedbySICunittoprocessinformationP,andthepowerconsumedby a s allothercircuitunits(filters,mixers,frequencysynthesizer,etc.) P. Hence,theoverallςinJoules/bit c canbeexpressedas: ς = (P +MP +P)/R (19) a c s b whereR = B·TP isthebitrate,BisthechannelbandwidthinHz,P = νP,ν = ν /ν ,ν isthe b avg a 2 1 1 drainefficiencyofthepoweramplifier,andν isthepeak-to-averageratio. 2 TheP isconsideredasaconstant,andP canberegardedastheaveragepowerconsumedby c s SICunitsofallscheduledsensorreceivers. TofindP,weneedtocomputethepowerconsumedby s m-thsensor,P ,toprocessN = |B·TP |bits. OurapproachistoexpressP intermsoftherequired m b m m computationalcomplexityC . m Sensors2018,18,516 9of16 To proceed forward, we first require a power consumption model for the sensor device. ConsideringthesensorasCMOSdevice,thepowerconsumedduringcomputationinastaticCMOS deviceisgivenas[29]: P =C V2(cid:125) , (20) m eff m m (cid:125) whereC ,V and aretheeffectiveswitchingcapacitance,supplyvoltage,andclockfrequencyof eff m m (cid:125) m-thsensor,respectively. Further,V and aredirectlyrelatedas: m m (cid:125) = ∂V , (21) m m where∂ >0isadesignparameterthattakesavalueofO(B)[30]. Dynamicvoltagescaling(DVS)is astandardtechniqueforconservingpowerinCMOSdevicesthroughdynamicallyadjuststheclock frequencybyscalingthevoltageaccordingtoprocessingload[31]. ForagivenN ,V canbescaledto b m (cid:125) match withC /s. BasedonEquations(20)and(21),P canbeexpressedas: m m m (cid:20)C (cid:21)3 P =C m (22) m eff ∂ andC isgivenintermsofnumberoffloatingpointoperations(FLOPs)perbitdecision[32]as: m C = N [2N M+5M+8∑M−1m+(M−1)(5+2N )] m b s m=1 s (23) +2MN (M−1)+2MN +M+Mlog (M) s b 2 where N isthenumberofsamplestorepresentonebit. Finally, basedonEquations(22)and(23), s substitutingP = M−1∑M P intoEquation(19)obtainstheoverallς. s m=1 m 6. NumericalResults This section presents results to verify the accuracy of outage probability, link throughput and energy consumption analysis for a UWSN which uses NOMA for downlink (sink-to-source) transmission. Wecalculatethecoefficients β accordingtothepowerallocationschemeproposed m forNOMAin[13],withβ = (M−m+1)/µ,whereµisselectedsuchthat∑M β =1. Inallthe m m=1 m simulations,weuseparametervaluesinTable2unlessotherwisestated. Table2.Simulationparameters. Parameter Description Value(s) α Pathlossexponent 4 βm Powerallocationcoefficientofm-thuser {0.6,0.3,0.1}1,2,3 (cid:118)m SINRthresholdform-thuser {0.9,1.5,2}1,2,3 λSE IntensityofΞSE 10−3 λSK IntensityofΞSK 10−4 λCT IntensityofΞCT 10−3 κ Averageinterferencelevel 1dB σ2 Noisepower −90dBm χ AveragesystemSNR 10to50dB K Fourierseriesterms 10 M TotalNOMAusers 3 N Gaussian–Chebyshevparameter 3 P Testtransmittertransmissionpower −10to30dBm R Transmissionradiusoftesttransmitter 10m S DegreeofLaguerrepolynomial 2 T Gaussian–Chebyshevparameter 5 Figure2showstheoutageprobabilityofeachm-thuserundertheimpactofdifferenttransmission radius R ofthesinknode. Thesolidanddashedcurvesareanalyticalresultsobtainedbyplotting Sensors 2018, 18, x FOR PEER REVIEW 10 of 16 K Fourier series terms 10 M Total NOMA users 3 N Gaussian–Chebyshev parameter 3 P Test transmitter transmission power −10 to 30 dBm R Transmission radius of test transmitter 10 m S Degree of Laguerre polynomial 2 T Gaussian–Chebyshev parameter 5 Sensors2018,18,516 10of16 SenFsiogrsu 2r0e1 82, 1s8h,o xw FOs Rth PeE oERu tRaEgVeI EpWro b ability of each m-th user under the impact of different transmiss1i0o nof 16 radius R of the sink node. The solid and dashed curves are analytical results obtained by p(9lo),twtinhgil e(9s)i,m wKuh lialtei osnimreusluatlitFosonau rrereisseuhr lostwes raniereisn tse“hrom”wsan n idn ““+●””t aonvda l“i+d”a tteo ovuarliddearti1ev 0oa tuior ndse.rIitvcaatinonbse. oItb csearnv bede othbasterinvcerde athsianMt gin Rcrreeassuinltgs iRnT horiegtsahule lNtrsOo iunM thaAigg euhpseerr orosbu atbagileit yprdoubeabtioliitny cdreuaes teod inpcarte3ha sloesds .pFatuhr tlhosesr., Fthuertohredre, rthede oNrdOeMreAd NusOerMsNAh a uvseedrsif hfearveenG tdaoiufufsetsarigeanent–p oCeurhfteoabgrmye saphneecrvfe o,praamsraaemnaccehet,e hara ss eaacdhif hfearse na tdci3hff aenrennetl ccohnandniteiol nco.ndition. P Test transmitter transmission power −10 to 30 dBm R Transmission radius of test transmitter 10 m S Degree of Laguerre polynomial 2 T Gaussian–Chebyshev parameter 5 Figure 2 shows the outage probability of each m-th user under the impact of different transmission radius R of the sink node. The solid and dashed curves are analytical results obtained by plotting (9), while simulation results are shown in “●” and “+” to validate our derivations. It can be observed that increasing R results in higher outage probability due to increased path loss. Further, the ordered NOMA users have different outage performance, as each has a different channel condition. Figure 2. Impact of (cid:1844) on outage probability of each m-th user. Figure2.ImpactofRonoutageprobabilityofeachm-thuser. Figure 3 demonstrates the average outage probability under different interference levels , Figure3demonstratestheaverageoutageprobabilityunderdifferentinterferencelevelsκ,defined defined immediately after Equation (2). Reducing  expectedly lowers the outage probability. immediatelyafterEquation(2). Reducingκexpectedlylowerstheoutageprobability. Figure4further Figure 4 further shows the outage probability of each m-th user under the impact of different path showstheoutageprobabilityofeachm-thuserundertheimpactofdifferentpathlossα. Theresults loss α. The results show that NOMA achieves lower outage probability than OMA for different showthatNOMAachievesloweroutageprobabilitythanOMAfordifferentvaluesofα. Thelink values of α. The link throughput efficiency of each m-th user with increasing transmit power of test throughputefficiencyofeachm-thuserwithincreasingtransmitpoweroftesttransmitter(sinknode) transmitter (sink node) are shown in Figure 5. NOMA achieves better throughput efficiency than areshowninFigure5. NOMAachievesbetterthroughputefficiencythanOMA,asalltheordered OMA, as all the ordered NOMA users have lower outage probability than their OMA counterparts. NOMAusershaveloweroutageprobabilitythantheirOMAcounterparts. Figure6showstheenergyconsumptionefficiencyςcomparisonbetweenNOMAandOMAasa Figure 2. Impact of (cid:1844) on outage probability of each m-th user. functionoftransmitpowerP.Theresultsareobtainedbyconsideringtwoandthreeusers. Thepower allocatioFnigcuoreef fi3c ideenmtsoannsdtraStIeNsR thther easvheoraldgse foourtMag=e 3praorebagbivileitny inunTdaebrle d2i.ffFeorernMt i=nt2e,rtfheereynacree lcehvoeslesn , asdβemfi=ne{d0 .i8m,0m.2e}dmia=t1e,2ly,a nafdte(cid:118)r mE=qu{a0ti.o9n,1 .(52})m. =R1e,2druecsipnegc tive leyx.pFeucrttehdelry, Cloefwf e=rs2 t×he1 0o−u1t5aFgaer apdrsobfoarb7il0ity. nmFiCgMurOe S4 tfeucrhtnhoerlo sghyo[w33s ]t,hceh aonuntaelgbe apnrdowbaidbtilhitBy o=f 2eaMchH mz,-tNhs u=se4r suanmdpelre tshteo irmeppraecste notf odnifefebriet,nat npdath cirlcousist pαo. wTehrec orenssuulmts psthioonwP cth=at2 0NdOBMmA. O avcehriaelvl,eNs OloMwAer aocuhtiaevgees pbreotbtearbςilitthya nthOanM OAMduAe ftoora dloifwfeerrent ouvtaaglueepsr oobf aαb.i lTithyew lihnikc hthrreosuulgtshpinulta erfgfeicriRenbciyn oEfq euaacthio nm(-1th9 )uasnedr wcointhse iqnucerenatlsyinhgi gthraenrsςm. Hit opwoewveerr ,otfh etest ςotfrabnotshmsicttheerm (seisnakr encoodme)p aarrae bslheobweyno nind Faitgruarnes m5.i tNpOowMeAr oafc1h5iedvBems ,bwethteicrh thinrdoiucgahtepsutht eefifmicpieonrtcayn cthean ofOopMtiAm,i zaisn agllt htheep oorwdeerreadn NdOraMteAal ulosceartsi ohnavine NloOwMerA oubtaasgeed pUroWbSaNbisli.ty than their OMA counterparts. Figure 3. Impact of (cid:2018) on average outage probability. The arrow means that the bottom first line (blue) is for k=1 dB, second line (red) is for k= 5 dB, third line (green) is for k= 10 dB, forth line (purple) is for k= 20 dB, ordered by the direction of the arrow. Figure 3. Impact of (cid:2018) on average outage probability. The arrow means that the bottom first line Figure3.Impactofκonaverageoutageprobability.Thebottomfirstline(blue)isfork=1dB,second (blue) is for k=1 dB, second line (red) is for k= 5 dB, third line (green) is for k= 10 dB, forth line line(red)isfork=5dB,thirdline(green)isfork=10dB,andfourthline(purple)isfork=20dB, ord(epruerdpbley) tish efodri kre=c 2ti0o ndBo,f othrdeearrerdo wby. the direction of the arrow.

Description:
Keywords: cross-technology interference; non-orthogonal multiple access; stochastic geometry; unlicensed spectrum; ubiquitous wireless sensor networks. 1. Introduction. Non-orthogonal multiple access (NOMA) is emerging as a strong candidate for adoption as the multiple access technology to
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.