agriculture Article Agroecological, Land-Elevation and Socioeconomic Determinants of Raising Livestock in Bangladesh SanzidurRahman ID SchoolofGeography,EarthandEnvironmentalSciences,UniversityofPlymouth,PlymouthPL48AA,UK; [email protected];Tel.:+44-1752-585911;Fax:+44-1752-584710 Received:26November2017;Accepted:8January2018;Published:11January2018 Abstract: Thispaperdeterminestheinfluenceofagroecological,land-elevationandsocioeconomic factorsintheraisingofdifferenttypesoflivestockinBangladeshusingnationwidesub-districtlevel datafromtwoAgricultureandLivestockCensusesof1996and2008,byapplyingasimultaneous equationsmodel. Resultsrevealthatsocioeconomic,land-elevationandagroecologicalfactorsexert significant but varied influence on the type of livestock raised by householders. The number of cattle,goat/sheepandpoultryraisedperhouseholdaresignificantlyhigherformediumandsmall farmsaswellasforwage-labourhouseholds. Cattleraisedperhouseholdissignificantlyhigherfor non-farmhouseholds,whereaspoultryraisedissignificantlylower. Gross-croppedarea,literacyrate andresearchanddevelopment(R&D)investmentsignificantlyinfluencethenumberofcattleraised perhousehold,whereaspopulationdensitynegativelyinfluencesthenumberofgoatandpoultry raisedperhousehold. Thenumberofcattleandgoat/sheepraisedperhouseholdissignificantly higherintheOldHimalayanFloodplain,whereaspoultry-raisingissignificantlyhigherintheEastern Hillsandsevenotheragroecologies. Raisingalltypesoflivestockissignificantlylowerinlow-lying areas. Thenumberofcattleraisedperhouseholdissignificantlyhigherathighlandelevation,but significantly lower in medium-low land and low-lying areas. On the other hand, the number of goat/sheepandpoultryraisedperhouseholdissignificantlyhigherinmedium-highlandareasand significantlylowerinlow-lyingareas. Thepolicyimplicationsoftheseresultswillberelevantto investmentsinR&D,education,tenurialreformandmeasurestopromotedifferenttypesoflivestock suitedtospecificagroecologyandland-elevationlevels. Keywords: livestock;agroecologicalcharacteristics;socioeconomicfactors;simultaneousequations model;three-stageleastsquaresregression;Bangladesh 1. Introduction Risingpopulations,incomeandurbanizationindevelopingcountriesareincreasingthedemand for food from animal origin at unprecedented levels [1]. The increasing demand for milk, meat and eggs are the major driving force for these changes [2]. Livestock products are important for global food security because they provide 17% of global calorie consumption and 33% of global proteinconsumption[3]. Livestockpossessestremendousopportunitiesforpovertyreduction,andthe sectorprovideslivelihoodsupportfor1billionoftheworld’spoorestpeopleandemploys1.1billion people[4].Therapidgrowthindemandforlivestockproducts,particularlyindevelopingeconomies,is termedthe‘livestockrevolution’[5,6]. Globalmilkproductionisprojectedtoincreasefrom664million tons in 2006 to 1077 million tons in 2050, and meat production to double from 258 million tons to 455milliontons[7]. Herreroetal.[8]notedthatalthoughthelargestnumberoflivestockpopulationsarefoundinthe tropicsandsub-tropicsagroecologicalzones,especiallyinaridandsemi-aridregionsoftheworld, productivityishighestintemperateregions. Althoughthelivestocksectoritselfisconsideredtobea Agriculture 2018,8,12;doi:10.3390/agriculture8010012 www.mdpi.com/journal/agriculture Agriculture 2018,8,12 2of15 contributortoclimatechange,mainlythroughgreenhousegas(GHG)emissions,thesectoritselfis alsounderthreatfromclimatechange. Forexample,thelivestocksectorcontributes14.5%ofglobal GHGemissions,butincreasedproductionofthesectorwillbelimitedbyclimatevariabilitybecause animalwaterconsumptionwillneedtoincreasethreefoldandthedemandforagriculturallandby 70%tomeettheseneeds[9]. Infact,mixedcrop/livestocksystemsprovidethemajorityoflivestockandfoodcropproducts in developing countries [10]. An estimated 1 billion head of livestock is raised by 600 million farmers in the rural regions of the developing world [11]. Some countries are already promoting intensification of livestock management as a policy response to meet increasing demand for milk, meatandeggs[12]. However,derivingbenefitsfromtheintensificationoflivestockremainsamajor challengeforsmallholders[10]. Livestockisanintegralcomponentofthecomplexfarmingsystemandsocioeconomiclifeofthe ruralpopulationinIndia,NepalandBangladesh[13–15]. Thelivestocksectorcontributessignificantly towardsemploymentinBangladesh,providingfulltimeemploymentfor20%ofthetotalpopulation andpart-timeemploymentforanother50%ofthetotalpopulation[16]. Itscontributiontonational income,however,ismodestandisintheregionof2.6%perannumduringthe1990s[17].However,the growthrateofthissectorismuchhigher,estimatedat5.0%perannumduringtheperiod1991–2006as comparedtotheagriculturalgrowthrateofonly2.6%perannumforthesameperiod[15]. Thesector isalsoanimportantsourceofmeatprotein. Poultrymeatalonecontributesasubstantial37%oftotal meatproductioninBangladesh[16]. Realizingtheimportanceofthelivestocksectorintheeconomy,thegovernmentofBangladesh launchedacomprehensiveNationalLivestockPolicyin2005withtwodistinctobjectives: (a)toensure thesupplyofadequatelivestockandlivestockproductsforhumanconsumption;and(b)toincrease thesupplyofanimalpowerandanimalwasteforcropproductionandproductprocessing[18]. Also, all of the successive six five-year plans of Bangladesh covering the period 1975–2015 emphasized development of the livestock sector, with a tripartite objective of increasing farm-power services, sourcesofanimalproteinforitspopulation,andgeneratingemploymentinruralareas[15]. However,despitethegovernment’sthrust,thegrowthoflivestocksectorinBangladeshisnotvery encouraging. Rahmanetal.[15]notedvariableratesofgrowthoflivestockovertimewitharelatively higherrateofincreaseforthepoultrypopulation. Forexample,thecattlepopulation,whichhasbeen themainsourceofdraftpowerservicesintheBangladeshifarmingsystemuntilrecently,increasedby only0.09%and1.47%peryearbetweentheAgricultureandLivestockCensusesof1984,1996and2008. Ontheotherhand,thecorrespondingincreaseinpoultrypopulationwas5.99%peryearbetween1984 and1996,butwhichthenfelltoonly0.70%peryearbetween1996and2008[15]. Nevertheless,per capitalivestockincreasedslightlywithwideregionalvariationwithrespecttogrowthanddistribution overtime[15]. Itisgenerallyrecognizedthatthetypeoflivestockraisedbyhouseholdproducersvariesacross agroecologicalconditionsandregionsoftheworld,andisinfluencedbytradition/culture,familylife cycle,resourcesandwealth[19,20]. Inaddition,advocatesoftheintensificationoflivestockproduction tomeettheincreasingdemandforlivestockanditsproducts, aswellastoimprovelivelihoodsof the poor, have noted that householders’ response to intensification depends on the availability of resources,familysituationandlivelihoodalternatives[12]. Therefore, given the slow growth of livestock and livestock products over time despite the government’seffortstopromotethissector,thepresentstudyisaimedatidentifyingthedriversof raisinglivestockbythehouseholdersinBangladesh. Wedothisbyusingsub-districtlevelinformation fromtwoAgricultureandLivestockCensusesof1996and2008. Themaincontributionofthisstudyto existingliteratureisthatwehaveempiricallyexaminedthemagnitudeanddirectionoftheinfluenceof arangeofsocioeconomic,landelevationandagroecologicalfactorsonraisinglivestockforanaverage householderatthesub-districtlevelinBangladeshinawaythatisnationallyrepresentativeandwith resultscapableofbeinggeneralizedforawidercontext. Agriculture 2018,8,12 3of15 The paper is structured as follows. Section 2 presents the methodology, data and variables. Section3presentstheresults. Section4concludesanddrawspolicyimplications. 2. Methodology 2.1. TheTheoreticalModel Webaseouranalyticalframeworkonageneralmodeloffarmproductiontoexaminethefactors influencinglivestock-raisingatthehouseholdlevel[21,22]. ThefarmhouseholdproducesavectorQ ofoutputsfromlivestockusingavectorofinputsX.Thedecisionofchoice,however,isconstrainedby agivenproductiontechnologythatallowsacombinationofinputs(X)amongjcategoriesoflivestock, giventhecharacteristicsofthefarm(Z).Thetotaloutputofeachhouseholdiisgivenbyastochastic quasi-concaveproductionfunction: (cid:12) Q = f(X ...X ,ε(cid:12)Z) (1) ij ijk ijk (cid:12) i whereεisrandomnoise. Itisassumedthatf >0andf <0. Thenumberofeachtypeoflivestock Xk XXk raisedimpliesthelevelofoutputs. Theprofitofeachfarmiisgivenby: J K ∑ ∑ π (Q,X,p,w|Z) = p Q − w X (2) i i j ij j ijk j=1 k=1 wherepisthevectorofoutputpricesandwisthevectorofinputprices. ThehouseholdisassumedtohaveavonNeuman–Morgensternutilityfunction,U(W)defined onwealthWwithU >0andU <0. Thewealthisrepresentedbythesumofinitialwealth(W ) W WW 0 andtheprofitgeneratedfromraisinglivestock(π). Therefore,theobjectiveofeachhouseholdisto maximizeexpectedutilityas[23]: EU(W +π(Q,X,p,w|Z) (3) 0 i where E is the expectation operator defined over ε; Q is the vector of output from livestock; X is the vector of inputs; p is the vector of output prices; w is the vector of input prices; and Z is the leveloffixedfactors. Thechoicevariablesin(1),thehousehold’sinputlevelsX ,aregivenbythe ijk first-orderconditions ∂EU = EU (p × f −w ) =0 (4) ∂X w j Mijk k ijk Thesecond-orderconditionsaresatisfiedunderriskaversionandaquasi-concaveproduction function(Isik2004). Theoptimalinputmixisgivenby: (cid:12) X∗ = X∗ (p ,w ,U(cid:12)Z) (5) ijk ijk j k (cid:12) i Theoptimaloutputmix,dependingon(X∗ )isdefinedas: ijk (cid:12) Q∗ = f(X∗ ,......X∗ )(cid:12)Z) (6) ij ij1 ijk (cid:12) i 2.2. DeterminantsoftheChoiceofRaisingLivestock Todeterminethefactorsaffectingahousehold’schoiceoflivestock, wederivetheequivalent wealthorincomefromtheexpectedutility[21,22]: E = E(W +π (Q,X,p,w|Z) (7) i 0 i i Agriculture 2018,8,12 4of15 Thisequivalentwealthorincomeinasingledecision-makingperiodiscomposedofnetearnings (profits)fromraisinglivestockandinitialwealththatis‘exogenous’tolivestockchoices(W ),suchas 0 capitalassetscarriedoverfromanearlierperiod. Undertheassumptionofaperfectmarket,livestockproductiondecisionsaremadeseparately from consumption decisions and the household maximizes net earnings (profits) subject to its technologyandexpenditureconstraints[24]. However,ahousehold’sproductionandconsumption decision cannot be separated if there are imperfections in the market for labour and other inputs, and in such case the prices becomes endogenous to the household and are influenced by market transactioncosts[24].Whenahousehold’sproductionandconsumptiondecisionscannotbeseparated, the household’s optimal choice can be expressed as a reduced form function of the household’s socioeconomiccharacteristicsandinitialwealthorincome[24]: h∗ = h∗(Z,W ) (8) i i i 0i Equation (8) forms the basis for econometric estimation to examine the factors influencing livestock-raising by the individual household, an outcome of choices made in a constrained optimizationproblem. After developing the model for an individual household, we extend the model to a typical householdatthesub-districtlevel[22]. Thekeyassumptionisthatthefactorsaffectingthechoiceof raisinglivestockattheindividualfarm/householdlevelinagivenperiodcanbeappliedtoidentifythe determinantsofraisinglivestockforanaveragehouseholderatthesub-districtlevel(which,essentially, representsanindividualhousehold’sresponseresidinginasub-district): L = L (Z ,W ) (9) rj rj r 0r 2.3. DataandVariables Principaldataonlivestockresourcesandselectedsocioeconomicindicatorsweretakenfromtwo censuses of agriculture and livestock in Bangladesh 1996 and 2008 [25,26]. The raw data includes upazila (sub-district) level information from all of the 62 districts of Bangladesh for both census periods (which was available at the Bangladesh Bureau of Statistics (BBS) website). A total of 501 sub-districts were identified in the census year 1996, and 528 sub-districts in the census year 2008,therebyprovidingatotalof1029observations. Theincreaseinthenumberofsub-districtsin2008 isduetotheformationofnewsub-districtsderivedfromtheolderandlargersub-districts. Additional socioeconomicinformationatthecorrespondingsub-districtlevelforallofthe62districtswastaken fromtheCommunityLevelReportsofthePopulationCensusesof2001and2011[27]. The dependent variables are the total number of three main types of livestock raised per household covered in the Agriculture and Livestock Censuses. The categories are: (a) cattle; (b)goat/sheep;and(c)poultry. Independentvariablesareoperationalmeasurementsofthevectors shownontheright-handsideofEquation(9). Awiderangeofvariableswasincorporatedrepresenting agroecologicalandsocioeconomicfactors. Theseare: householdcategories,grosscroppedarea(GCA), irrigatedarea,homesteadarea,subsistencepressure(measuredbyhouseholdsize),populationdensity, literacyrate,andresearchanddevelopment(R&D)investmentinlivestockandagroecologicalzones (AEZ).Thevariousvariablesaredefinedandconstructedasfollows(Table1): Agriculture 2018,8,12 5of15 Table1.Listanddefinitionofvariablesusedintheeconometricmodel. VariableName DefinitionandConstructionDetails Threedependentvariableswereidentified:(1)cattle,definedasthetotal numberofcattleandbuffaloesperhousehold;(2)goat/sheep,definedas thetotalnumberofgoatandsheepperhousehold(thecensusreportsboth Livestocktypes thenumberofgoatandsheepasonecategory.Also,goatisthedominant animalinBangladesh);and(3)poultry,definedasthetotalnumberoffowl perhouseholdineachsub-districtfortheyears1996and2008,respectively. Proportionofnon-farmhouseholdsineachsub-districtfortheyears1996 Non-farmhouseholds and2008,respectively. Proportionofsmallfarms(owninglandbetween0.02and1.00ha)ineach Smallfarms sub-districtfortheyears1996and2008,respectively. Proportionofmedium-sizedfarms(owninglandbetween1.01and3.03ha) Mediumfarms ineachsub-districtfortheyears1996and2008,respectively. Proportionoflargefarms(owningland>3.03ha)ineachsub-districtforthe Largefarms years1996and2008,respectively. Proportionofhouseholdssurvivingonsellinglabouronlyineach Labourhouseholds sub-districtfortheyears1996and2008,respectively. Amountofcultivatedland(ha)perhouseholdineachsub-districtforthe Grosscroppedarea(GCA)perhousehold years1996and2008,respectively. Amountofirrigatedarea(ha)perhouseholdineachsub-districtforthe Irrigatedareaperhousehold years1996and2008,respectively. Amountofhomesteadarea(ha)perhouseholdineachsub-districtforthe Homesteadareaperhousehold years1996and2008,respectively. Amountoftotallandowned(ha)perhouseholdineachsub-districtforthe Ownedlandperhousehold years1996and2008,respectively. Averageliteracyrateofpopulationaged7yearsandaboveineach sub-districtfortheyears2001and2011,respectively.Thesedataaretaken fromPopulationCensusesof2001and2011,respectively.Inabsenceofany matchingyearsbetweenthetwotypesofcensuses,wehavematchedthe Averageliteracyrate PopulationCensusdataof2001withAgricultureandLivestockCensus dataof1996andPopulationCensusdataof2011withAgricultureand LivestockCensusdataof2008forthesamesub-district.Weconsiderthat usingexactcensusinformationismoreaccuratethanapplyinginter-census linearinterpolationtechniquetomatchexactyearsforbothsetsofdata. Populationdensitypersq.kmintheruralareasineachsub-districtforthe Populationdensity years2001and2011whichweretakenfromthePopulationCensusesof 2001and2011,respectively, ResearchandDevelopment(R&D)expendituredataspecificallyfor livestock(fromthetimeitisavailable)isconvertedtoaseriesinvolvinga time-laginordertotakeaccountofthetimerequiredforthetechnology generatedbytheresearchsystemtoreachthefarmers.Inordertotakethe lagintoaccount,theweightedsumofresearchexpendituresoveraperiod Researchanddevelopment(R&D)expenditure of14yearsisused.Theresearchvariableisconstructedas∑Wt−iRt−i, whereWiisaweightandRt−iisresearchinvestmentinyeart−imeasured atconstant1996prices.Theweightforthecensus-yearresearchexpenditure iszero,foraone-yearlagtheweightis0.2,whileforatwo-yearlagitis0.4, andsoon[28].Thisisanational-levelfigureonly. TheBangladeshAgriculturalResearchCouncil(BARC)createdadatabase ofarea(ha)ofmajorland-elevationtypesineachsub-districtandfor 30AEZs[29].Theland-elevationdatainBangladeshisclassifiedaccording tofloodingdepthofthelandscape.Theseare:HighLand(i.e.,noflooding); Landelevation Medium-HighLand(floodingdepthof0.10–0.90m);Medium-LowLand (floodingdepthof0.91–1.83m);LowLand(floodingdepthof>1.83m). Wehaveusedthissub-districtlevelinformationandconstructedacomplete setoftheproportionofHighLand,Medium-HighLand,Medium-Low Land,andLowLandforeachsub-district[29]. Bangladeshconsistsof30agroecologicalzones(AEZ)constructedjointlyby UNDPandFAOin1988whichoverlapsamongstadministrative boundaries,thereby,makingregionalclassificationverydifficult[30]. However,Quddus[31]conductedanexercisebycombiningtwoorthree AEZstogethersothatthenewclassificationcommensuratewithdistrict Agroecology administrativeboundaries.Theresultwas12AEZsderivedfromoriginal 30AEZsthatcanbedistributedinto64newdistrictsandaremutually exclusive[31].Wehavecreatedasetof12dummyvariablesrepresenting thesenew12compositeAEZsandallocatedthemtoindividualsub-districts locatedwithin62districtsasappropriate. Agriculture 2018,8,12 6of15 Thechoiceofthesevariablesislargelybasedontheliteratureexaminingdeterminantsofraising livestockatthefarmlevel[14,32]. Inaddition,thechoiceislimitedbydataavailabilityatthelevelof disaggregationrequiredforthisstudy,i.e.,thesub-districtlevel,sothattheresultsarerepresentative and generalizable to a wider context. In a mixed crop/livestock system, which dominates in Bangladesh, the area under crop production is expected to have an influence on the amount of livestockraised,asitisoneofthetypicalfarmcharacteristicsthatinfluencesdecision-making[19,20]. Inaddition,cattlearethemainsourceoffarmpowerservicesinBangladesh[15]. Therefore,gross croppedareaperhouseholdwasincorporatedtoidentifyitsinfluenceonraisinglivestock. Irrigation isincludedbecauseitisstronglyrelatedtotheexpansionofhigh-yieldingvariety(HYV)ricearea in Bangladesh [21], which may in turn influence raising livestock to support farm power services. InBangladesh,landownershipservesasasurrogateforalargenumberoffactorsasitisamajorsource ofwealthandinfluencesfarmproductiondecisions[21]. Therefore,theamountofownedlandper householdisincludedinordertoidentifyitsindividualinfluenceonraisinglivestock. Thehomestead areaisincludedbecausepoultryaretraditionallyraisedatthefarmyardorhomestead[12]. Familysize isincludedfortworeasons. First,accordingtotheChayanoviantheory,highersubsistencepressure (measuredbyfamilysize)generallyleadstotheadoptionofmoderntechnologiesinfarming. Second, alargefamilysizemayimplysupplyofmorefamilylabour,whichmayinfluenceraisinglivestock[22] The education variable was used because it serves as a proxy to access to information as well as capacitytounderstandthetechnicalaspectsandprofitabilityrelatedtolivestockproduction,which mayinfluencelivestock-raisingdecisions[21]. R&Disanimportantelementindisseminatingmodern technology and production knowhow to farmers, and the potential of agricultural sector growth hingeslargelyonitseffectiveness[22]. Therefore,R&Dexpenditurespecifictothelivestocksectorwas incorporatedtoaccountforitsinfluenceonraisinglivestock. Similarly,agroecologicalcharacteristics areanotherimportantfeaturethateitherlimitoropenupopportunitiesforfarmerstochoosetheir livestock portfolio [19,20]. As such, 11 dummy variables representing agroecological zones were incorporatedinthemodelstoidentifytheirindependentinfluenceonraisinglivestock,leavingthe remaining12thAEZsubsumedintheintercept/constantterm. Finally,landelevation(measuredwith respecttofloodingdepth)isalsoanimportantfeaturethatisexpectedtoinfluencefarmers’decisions toraisedifferenttypesoflivestock. Therefore,wehaveincludedvariablesrepresentingproportionsof highland,medium-highland,medium-lowland,andlow,includingverylowlandareasavailable at the sub-district level to identify their influence on raising livestock. However, because of the coexistenceofallfourcategoriesoflandelevationineachsub-districtinvariableproportions, the proportionofareaunderhigh-landelevationissignificantlynegativelycorrelatedwiththeremaining threecategories(r≥−0.99,p<0.01). Therefore,inordertobreakmulticollinearity,wehaveexecuted four separate models by replacing one land-elevation category at a time, while retaining all other variables[33]. 2.4. TheEmpiricalModel Inordertoidentifythesocioeconomicandagroecologicaldeterminantsofthreetypesoflivestock, we use a simultaneous equations system consisting of three equations. In order to incorporate non-linearityinthemodelstructure,wespecifiedadouble-logspecificationwheretheparameters arelog-linearexceptforthedummyvariables,whicharenotlogged. Thethreeempiricalequations, droppingtherthsub-district,are: 8 2 11 ∑ ∑ ∑ lnL = α + α lnZ + β lnW + δ A +ε (10) C C Ci Ci Cj Cj Ck Ck C i=1 j=1 k=1 8 2 11 ∑ ∑ ∑ lnL = α + α lnZ + β lnW + δ A +ε (11) G G Gi Gi Gj Gj Gk Gk G i=1 j=1 k=1 Agriculture 2018,8,12 7of15 8 2 11 ∑ ∑ ∑ lnL = α + α lnZ + β lnW + δ A +ε (12) P P Pi Pi Pj Pj Pk Pk P i=1 j=1 k=1 whereL representsthedependentvariablesandthesubscriptsC,G,andPstandforcattle,goat/sheep, s andpoultry,respectively;Z representsthesocio-economicfeaturesofthesub-districts;W represents s s thewealthoftheaveragehouseholdersofthesub-districts;Asarethedummyvariablesrepresenting agroecologicalzones;α,βandδaretheparameterstobeestimated;ε aretheerrorterms;andlnisthe s naturallogarithm. In order to enable estimation of a linear system of equations, the necessary condition for identificationofanindividualstructuralequationinthesystemisasfollows: ifm >(K −k),then i i the equation is under-identified and cannot be estimated. Here, m is the number of endogenous i variablesinanindividualstructuralequation;k isthenumberofexogenousvariablesinthesame i structuralequation;andKisthetotalnumberofexogenousvariablesinthesystem[34]. Inoursystem ofstructuralequations,thevalueofm ineachequationiszero,aswedidnotspecifyanyendogenous i variableasregressorinthesystem. Ontheotherhand, thevalueof(K − k)inthecattlemodelis i twoandinthegoat/sheepandpoultrymodelsthreeeach. Therefore,theidentificationconditionis satisfiedandthesystemasawholeisover-identifiedandcanbeestimated. 3. Results 3.1. DistributionofLivestockNumbersandSocioeconomicFeaturesbyAgroecologicalZones Since one of the focuses of this study is to highlight the influence of agroecology on raising livestock, we first provide evidence of differences with respect to selected indicators including the number of livestock raised per household among 12 composite AEZs. The United Nations DevelopmentProgram(UNDP)andFoodandAgricultureOrganization(FAO)jointlyconducteda majoranalysistoidentifytheAEZsofBangladesh,whicharebasedmainlyonlandtypes,soiltypes, fertility,conditions,temperatureandrainfallregimes,andidentified30AEZs[30]. Table2presents selectedindicatorsbyAEZsforthecensusyear2008only,butalsoprovidescomparativeinformation forthesameindicatorsbetweenthecensusyears. ItisclearfromTable2thatthenumberofcattleper householdhasincreasedonlyintwoAEZsbutdeclinedinallotherAEZsbetweenthecensusyears. Thenumberofgoat/sheepperhouseholdhasincreasedinfiveAEZsbutdeclinedintheremaining sevenAEZs,whilethenumberofpoultrydeclinedinallAEZsin2008. Thedynamicsoffarm-sizechangesinBangladeshisalsoclear. ThenoticeablefeatureinTable2 istheincreaseofnon-farmhouseholdsinallAEZsin2008attheexpenseofadeclineinmedium- and large-sized farms throughout. In addition, the proportion of small farms has increased only inthreeAEZsanddeclinedintheremainingAEZsbetweenthecensusyears. Inotherwords, the proportionoffarmersofallsizecategoriesisactuallydeclininginBangladeshovertimeandgivingrise toruralresidentswhoarenotfarmers. Overall,39.6%ofallruralresidentsareclassifiedasnon-farm households and 49.3% are small farmers in the country in 2008. This is quite an unexpected find, asBangladeshisconventionallyunderstoodintheliteratureasanagrarianeconomy. Rahmanand Rahman[35]alsonotedthatthenumberofsmallfarmshasincreasedattheexpenseofmedium-and large-sizedfarmsinBangladeshovertime. Also,theamountofgrosscroppedareaperhousehold declinedthroughoutthecountryin2008ascomparedto1996,indicatingincreasedpressuretoproduce morefoodcropsfromalowercultivablelandbase(Table2). RahmanandRahman[35]alsonotedthat notonlyistheavailabilityoflandshrinking,butalsoanotherkeyfarmresourceendowment,thedraft animal,isdecliningrapidlyinBangladesh. Asexpected,bothruralpopulationdensityandliteracy ratehasincreasedthroughoutbetweenthecensusyears. Agriculture 2018,8,12 8of15 Table2.SelectedindicatorsoflivestockandsocioeconomicfactorsbyagroecologicalzonesofBangladesh. CattlePer Goat/SheepPer PoultryPer Small Medium Large Non-Farm GrossCropped Population Literacy AgroecologicalZones Year Household Household Household Farms Farms Farms Households Area Density Rate OldHimalayanPiedmontPlain 2008 1.510 0.982 5.133 0.480 0.107 0.014 0.398 1.693 981.894 46.477 andTistaFloodplain 1996 1.349 0.972 6.389 0.477 0.138 0.023 0.363 1.962 859.318 39.677 2008 1.310 0.970 6.657 0.495 0.107 0.014 0.384 1.701 962.019 48.728 KaratoaFloodplainandAtraiBasin 1996 1.147 0.786 6.930 0.494 0.137 0.023 0.345 1.879 855.154 42.785 2008 0.969 0.428 4.328 0.502 0.086 0.010 0.402 1.303 1076.123 40.971 Brahmaputra–JamunaFloodplain 1996 1.055 0.502 5.478 0.515 0.113 0.018 0.355 1.642 977.797 36.027 2008 1.103 1.107 5.124 0.532 0.097 0.008 0.363 1.411 1039.623 48.375 HighGangesRiverFloodplain 1996 1.175 0.843 6.275 0.508 0.142 0.019 0.331 1.845 937.233 43.347 2008 0.915 0.675 4.851 0.507 0.099 0.007 0.387 1.172 914.320 51.128 LowGangesRiverFloodplain 1996 1.030 0.582 5.101 0.525 0.149 0.016 0.310 1.936 851.680 42.984 2008 1.012 0.558 8.106 0.558 0.094 0.011 0.336 1.069 727.959 56.463 GangesTidalFloodplain 1996 1.168 0.475 8.512 0.575 0.140 0.024 0.262 1.573 676.333 53.145 SylhetBasinandSurma–Kushiyara 2008 1.216 0.303 4.735 0.434 0.115 0.020 0.431 1.139 885.625 43.348 Floodplain 1996 1.299 0.345 6.108 0.444 0.148 0.034 0.374 1.554 709.703 38.411 2008 0.695 0.289 5.796 0.557 0.038 0.002 0.403 0.774 1650.029 51.591 MiddleMeghnaRiverFloodplain 1996 0.975 0.440 7.973 0.614 0.067 0.004 0.303 1.262 1310.724 42.845 LowerMeghnaRiverandEstuarine 2008 0.665 0.303 7.936 0.560 0.060 0.006 0.374 0.969 1396.059 54.265 Floodplain 1996 0.912 0.349 9.996 0.631 0.080 0.010 0.279 1.382 1189.214 48.279 ChittagongCoastalPlainand 2008 0.664 0.286 4.235 0.382 0.037 0.003 0.578 0.575 1142.500 47.954 St.Martin’sCoralIsland 1996 1.145 0.416 9.143 0.488 0.097 0.014 0.401 1.277 914.095 42.738 2008 1.329 1.001 9.025 0.411 0.314 0.059 0.217 2.155 153.893 42.507 EasternHills 1996 1.573 0.951 9.558 0.373 0.335 0.058 0.234 2.134 131.714 36.729 2008 0.620 0.353 3.152 0.406 0.045 0.003 0.546 0.631 2382.100 54.815 GreaterDhaka 1996 0.855 0.471 4.777 0.485 0.079 0.007 0.429 1.068 1515.556 47.672 2008 1.059 0.656 5.704 0.493 0.099 0.012 0.396 1.268 1079.844 48.691 Bangladesh 1996 1.160 0.634 6.893 0.508 0.136 0.022 0.334 1.674 890.854 42.861 Testfordifferencesacrossagroecologicalzones(GeneralizedlinearmodelwithonewayANOVA) 2008 2.78* 6.10* 25.61* 17.02* 84.42* 62.14* 26.19* 28.68* 19.59* 22.32* F(11,515) 1996 1.29 3.27* 38.12* 23.84* 65.32* 23.52* 20.41* 15.18* 26.75* 18.78* Note:*significantat1%level(p<0.01). Agriculture 2018,8,12 9of15 Table2alsoshowsthatthenumberoflivestockraisedperhouseholdvariessignificantlyacross AEZs, which confirms the notion that agroecological conditions have an influence on livestock production [19,20]. The highest number of cattle per household was raised in the Old Himalayan and Tista Floodplains followed by the Eastern Hills and the Karatoa Floodplain and Atrai Basin. Theaveragenumberofcattleperhouseholdinthecountrywasonly1.05in2008,adeclinefrom1.16in 1996,whichisseriouslyinadequateforsupportingfarm-powerservices,explainingtheriseofpower tillersforconductingfarmoperationsinrecentyears[15]. Thenumberofgoat/sheepperhouseholdis evenmoreinadequate,withthehighestnumberraisedintheHighGangesRiverFloodplainfollowed bytheEasternHills. ThehighestnumberofpoultryperhouseholdwasraisedintheEasternHills followedbytheGangesTidalFloodplainandLowerMeghnaRiverFloodplainandEstuaries.Raisinga highnumberoflivestockofalltypesintheEasternHillsisexpected,becausethisareaischaracterized byahighlyundulatedlandscapewithaconcentrationoftribalpopulationswhomainlyoperatejhum cultivation(i.e.,slash-and-burnagriculture),fruitorchards,growfewerfoodgraincrops,andhavethe lowestlevelofpopulationdensityinthecountry(Table2). Significantvariationexistswithrespectto allotherindicatorsacrossAEZs,withthehighestGCAperhouseholdintheEasternHillsfollowedby theKaratoaFloodplainandAtraiBasinandtheOldHimalayanandTistaFloodplains. Theoverall GCAperhouseholdinBangladeshwasonly1.27hain2008,whichisslightlyhigherthanthe1.00ha ofcultivatedarearequiredtosustainatypicalruralfamily[36]. 3.2. DeterminantsofRaisingLivestock Table3presentstheresultsoftherangeofhypothesistestsconductedtoselecttheappropriate estimationprocedureandjointinfluenceofvarioustypesoffactoronraisinglivestockatthehousehold level and Table 4 presents the results of the parameter estimates of the system of three structural equationsofthelivestockraisedperhouseholdusingEquations(10)–(12). Thefirstconsiderationisthechoiceofestimationprocedure. Thetwomostcommonestimation procedure of a simultaneous equations system are the limited information method (known as the two-stageleastsquaresor2SLS)andfullinformationmethod(knownasthethree-stageleastsquares or3SLS).Thechoiceoftheestimationtechniquedependsonwhethertheassumptionsunderlyingthe twodifferentmethodsaresupportedbythedata. Ifallequationsinthestructuralmodelarecorrectly specified,thesystemsestimator(i.e.,3SLS)ismoreefficientthanthesingle-equationestimator(i.e., 2SLS).However,ifoneoftheequationsinthesystemismis-specified,thentheparameterestimates using3SLSareinconsistentbut2SLSareconsistent. TheHausmanspecificationtestwasperformed to choose the estimation procedure, which indicated that the null hypothesis cannot be rejected, implyingthatthe3SLSestimatorisefficientand,therefore,usedtoestimatethesystemofequations (i.e.,Equations(10)–(12))(Table3). Theparameterestimatesusing2SLS,whichisconsistentunderthe nullhypothesis(H )aswellasthealternativehypothesis(H ),istestedagainstparametersobtained 0 a from3SLS,whichisefficientundertheH butinconsistentundertheH . Theestimatedvalueofχ2 0 a with21degreesoffreedomis27.45(seeTable3). TheProb. χ2>χ2statisticis0.195[34]. Thenexttestwasperformedtocheckwhetherraisinglivestockvariesbyhouseholdcategories. The results revealed that the null hypotheses of no influence of household category on raising livestockwasstronglyrejectedatthe1%levelofsignificanceforallthreemodels,therebyconfirming the implication that the type of livestock raised by householders is influenced by resources and wealth [19,20]. This is because the owned cultivated land, which is the basis used to classify the householdcategories,isanimportantindicatorofwealthinruralBangladesh. Thenexttestwasperformedtocheckwhetherothersocioeconomicfeaturesjointlyinfluencethe numberoflivestockraisedperhousehold. Theresultsrevealedthatthenullhypothesesofnoinfluence ofpopulationdensity,literacyrate,subsistencepressureandR&Dinvestmentwasstronglyrejectedat the1%levelofsignificanceforallthreemodels,implyingthatthesefactorsjointlyinfluencethenumber oflivestockraisedperhousehold. Thefinalhypothesistestwastoconfirmwhetheragroecological characteristicshaveaninfluenceonraisinglivestock. Theresultsrevealedthatthenullhypotheses Agriculture 2018,8,12 10of15 ofnoinfluenceofagroecologyonraisinglivestockisstronglyrejectedatthe1%levelofsignificance forallthreemodels,therebyconfirmingthatthetypeoflivestockraisedbyhouseholdersvariesby agroecologicalconditions[19,20]. Table3.Hypothesistests. JointDeterminationofFactorsInfluencingRaising Hypothesis LivestockUsing3SLSRegressionModel CattleModel Goat/SheepModel PoultryModel Choiceofestimationtechnique Hausmantestforthechoiceofestimation 27.45 technique(3SLSvs.2SLS)χ2(21df) p-value 0.20 Decision Accept3SLS Influenceofhouseholdtypeonraisinglivestock Impactoftheproportionoffourtypesofhouseholdsare 72.40* 53.86* 94.94* jointlyzeroineachstructuralequation(F4,2990) Influenceofsocioeconomicfactorsonraisinglivestock Impactofthepopulationdensity,literacyrate,subsistence pressureandR&Dinvestmentarejointlyzeroineach 14.84* 9.27* 10.74* structuralequation(F4,2990) Influenceofagroecologyonraisinglivestock Impactofagroecologyonraisinglivestockisjointlyzero 24.58* 36.05* 29.22* ineachstructuralequation(F11,2990) Note:*significantat1%level(p<0.01). Sixty-seven percent of the coefficients on the variables are significantly different from zero at the10%levelofsignificanceatleast, whichimpliesagoodfit(Table4). ThevalueofAdjustedR2 alsorevealsthattheseindicatorsjointlyexplain76%ofthetotalvariationinthecattlemodel,65%in the goat/sheep model, and 63% in the poultry model, hence reinforcing confidence in our results. Thenumberofalltypesoflivestockraisedissignificantlyhigherforthesmallandmediumfarms and wage-labour households, although the magnitude of influence is highest for the small farms (Table3). Sincedouble-logspecificationwasused,thevalueofthecoefficientcanbereaddirectlyas elasticities. Theelasticityvaluesofsmallfarmsonlivestockraisedperhouseholdareestimatedat 0.39,0.51and0.38forcattle,goat/sheepandpoultrymodels,respectively. Theimplicationisthata 1%increaseintheproportionofsmallfarmswillincreasethenumberofcattleraisedperhousehold by0.39%, goat/sheepby0.51%andpoultryby0.38%, respectively. Itisinterestingtoseethatthe numberofcattleraisedissignificantlyhigherforthenon-farmhouseholdsbutsignificantlylowerfor raisingpoultry. Theimplicationisthatthenon-farmhouseholdsresidingintheruralareas,whoare notinvolvedinfarmingassuch,arealsoraisingcattlesothattheycanderiveincomefromlivestock andlivestockproducts(i.e.,milkandcalves)aswellasprovidingdraftpowerservicesforfarming operationsthroughtherentalmarketasconventionallydonebyfarminghouseholdsinruralareas. TheamountofGCAperhouseholdsignificantlyinfluencesthenumberofcattleperhousehold, withanelasticityvalueof0.30. Theimplicationisthata1%increaseinGCAwillincreasethenumber ofcattleperhouseholdby0.30%,whichisexpected,sincedraftpowerisstilloneofthemajorsources offarmpowerinBangladesh. Thereisnoinfluenceofirrigationarea,ownedlandsizeorhomestead areaonraisinglivestock. Wedidnotuseallfourmeasuresoflandsize,i.e.,GCA,irrigatedarea,owned landandhomesteadarea,togetherineachequationbecauseoftwoconsiderations. First,thechoiceof variablesisbasedonitsrelevance. Forexample,cattleareusedfordraftpower,soGCAandirrigated areaappearedinthecattlemodel. RaisinggoatdoesnothaveanyexplicitlinkwithGCAorirrigation andhenceonlyownedlandisusedinthismodel. Itiswellknownthatpoultryarelargelyraisedinthe homesteadandthehomesteadlandarea,hencethisappearedonlyinthepoultrymodel. Thesecond considerationistobreakpotentialmulticollinearitybetweenthesefourmeasuresoflandbyincluding
Description: