ARSENIC REMOVAL FROM GROUNDWATER BY FE-MN OXIDATION AND MICROFILTRATION by Sevil Caniyilmaz B.S., Middle East Technical University, 2003 Submitted to the Graduate Faculty of School of Engineering in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2005 UNIVERSITY OF PITTSBURGH SCHOOL OF ENGINEERING This thesis was presented by Sevil Caniyilmaz It was defended on November 30, 2005 and approved by Radisav D. Vidic, Professor, Civil and Environmental Engineering Department Ronald D. Neufeld, Professor, Civil and Environmental Engineering Department Leonard W. Casson, Associate Professor, Civil and Environmental Engineering Department Thesis Advisor: Radisav D. Vidic, Professor, Civil and Environmental Engineering Department ii ARSENIC REMOVAL FROM GROUNDWATER BY FE-MN OXIDATION AND MICROFILTRATION Sevil Caniyilmaz, MS University of Pittsburgh, 2005 Although arsenic has been classified as human carcinogen and its acute toxicity has long been known, the long term health effects of trace arsenic levels have only recently been realized. The maximum contaminant level (MCL) for arsenic in drinking water was consequently lowered from 50 µg/L to 10 µg/L in 2002, resulting in many water utilities needing upgraded to achieve compliance. In groundwater treatment, Fe-Mn oxidation and microfiltration has been recognized as a cost-effective technology since arsenic removal is facilitated during the removal of iron and manganese. This study investigated the efficiency of arsenic removal using Fe-Mn oxidation/microfiltration under various process conditions including iron to arsenic ratio, pH, potassium permanganate dose, contact time, oxidation state of iron, and stirring in dead-end filtration cell. Arsenite removal was relatively insensitive to variations in pH in the range of 6.5-8.0 when only aeration was applied, but the impact of pH was important in the potassium permanganate oxidation. At neutral pH, iron to arsenic ratio of 60 was sufficient to reduce the arsenic concentrations ranging from 25-250 ppb to below 10 ppb (primary MCL for arsenic) with aeration and microfiltration. The oxidation state of iron did not considerably affect the arsenic removal. Oxidation with potassium permanganate facilitated additional arsenite removal iii compared to aeration alone. Although higher arsenic removals were observed at pH 7.0 than at pH 8.0, identical residual arsenic concentrations were obtained with 0.5 mg/L permanganate dose at both pH values. In experiments with various iron levels, concentrations of iron in the permeate remained around 0.01 mg/L, which is far below the secondary MCL for iron (0.3 mg/L), while the manganese standard (0.05 mg/L) was only met when initial concentration of manganese was 0.2 mg/L. Iron and manganese particles were the primary reason for membrane fouling. The results of this study are important for water treatment systems using groundwater with elevated arsenic and iron concentrations as a raw water source. The proposed technology is much simpler to operate than a conventional coagulation process and chemical requirements are minimized by utilizing existing iron concentration in the raw water. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS.........................................................................................................xiii INTRODUCTION..........................................................................................................................1 1.0 LITERATURE REVIEW...................................................................................................3 1.1 ARSENIC IN NATURAL WATERS.............................................................................3 1.1.1 Arsenic Contamination...........................................................................................3 1.1.2 Arsenic in the Environment....................................................................................4 1.1.2.1 Sources of Arsenic..............................................................................................4 1.1.2.2 Mobility of Arsenic.............................................................................................5 1.1.2.3 Arsenic Chemistry..............................................................................................6 1.1.3 Health Impacts of Arsenic....................................................................................10 1.1.3.1 Regulations.......................................................................................................10 1.1.3.2 Toxicity.............................................................................................................11 1.2 ARSENIC REMOVAL BY CONVENTIONAL TREATMENT PROCESSES.........13 1.2.1 Coagulation Processes..........................................................................................16 1.2.2 Fe-Mn Oxidation Technology...............................................................................18 1.2.2.1 Oxidation of Iron and Manganese.....................................................................20 1.2.2.2 Oxidation of Arsenite........................................................................................21 1.2.3 Effects of Water Quality Parameters on Arsenic Removal..................................24 1.2.3.1 pH......................................................................................................................24 v 1.2.3.2 Fe/As Ratio.......................................................................................................26 1.2.3.3 Initial As(III)/As(V) Concentration..................................................................27 1.3 ARSENIC REMOVAL BY MEMBRANE PROCESSES...........................................29 1.3.1 Application of Microfiltration in Water Treatment..............................................30 1.3.1.1 Membrane Fouling............................................................................................31 1.3.2 Arsenic Removal with Microfiltration..................................................................33 1.3.3 Arsenic Removal with Chemical Pretreatment Followed by Microfiltration.......34 2.0 MATERIALS AND METHODS......................................................................................38 2.1 REAGENTS AND STOCK SOLUTIONS...................................................................38 2.2 PREPARATION OF FEED WATER...........................................................................40 2.3 OXIDATION................................................................................................................40 2.3.1 Aeration.................................................................................................................41 2.3.2 Oxidation with Potassium Permanganate.............................................................41 2.4 MICROFILTRATION..................................................................................................42 2.4.1 Microfiltration Set-up...........................................................................................42 2.4.2 Membrane.............................................................................................................43 2.4.3 Filtration Procedure..............................................................................................44 2.5 WATER QUALITY ANALYSIS.................................................................................45 2.5.1 Iron and Manganese Analysis...............................................................................45 2.5.2 Arsenic Analysis...................................................................................................47 3.0 RESULTS AND DISCUSSION.......................................................................................51 3.1 THE EFFECT OF pH...................................................................................................52 3.1.1 Water Quality........................................................................................................52 vi 3.1.2 Permeate Flux.......................................................................................................54 3.2 THE EFFECT OF IRON TO ARSENIC RATIO.........................................................57 3.2.1 Water Quality........................................................................................................57 3.2.2 Permeate Flux.......................................................................................................63 3.3 STIRRED VERSUS UNSTIRRED DEAD-END FILTRATION CELL.....................65 3.3.1 Water Quality........................................................................................................65 3.3.2 Permeate Flux.......................................................................................................67 3.4 THE EFFECT OF CONTACT TIME FOR POTASSIUM PERMANGANATE OXIDATION............................................................................................................................69 3.4.1 Water Quality........................................................................................................69 3.4.2 Permeate Flux.......................................................................................................72 3.5 THE EFFECT OF POTASSIUM PERMANGANATE DOSE AND pH....................73 3.5.1 Water Quality........................................................................................................73 3.5.2 Permeate Flux.......................................................................................................81 3.6 THE EFFECT OF OXIDATION STATE OF IRON...................................................84 3.6.1 Water Quality........................................................................................................84 3.6.2 Permeate Flux.......................................................................................................86 4.0 SUMMARY AND CONCLUSIONS...............................................................................89 5.0 RECOMMENDATIONS FOR FUTURE STUDIES.......................................................93 BIBLIOGRAPHY.........................................................................................................................95 vii LIST OF TABLES Table 1 Best Available Technologies (BATs) and their arsenic removal efficiency. Percent removal figures are for arsenate removal [Wickramansinghe et al., 2004]................14 Table 2 Technical specification of Supor®200 membrane disc filter [Pall Co. website]........44 Table 3 Furnace heating program............................................................................................49 Table 4 The effect of pH on the permeate quality for artificial groundwater with initial Fe(II), Mn(II) and As(III) concentrations of 5 mg/L, 1 mg/L and 50 ppb, respectively. Only aeration was applied for the oxidation of the contaminants.......................................52 Table 5 Permeate quality data of artificial groundwater prepared with different iron to arsenic ratios and 1 mg/L manganese at neutral pH. Only aeration was applied....................59 Table 6 The effect of unstirred and stirred dead-end cell filtration systems on the permeate quality for artificial groundwater with initial arsenite of 150 ppb, manganous ion of 1 mg/L and ferrous ion of 1, 5, and 10 mg/L at neutral pH. Only aeration was applied. .....................................................................................................................................66 Table 7 The effect of contact time provided after potassium permanganate addition on the permeate quality for artificial groundwater with initial ferrous and manganous ions of 1 mg/L and arsenite of 50, 100, and 150 ppb at neutral pH........................................70 Table 8 The effect of potassium permanganate dose on the permeate quality for artificial groundwater with initial ferrous ion of 1 mg/L, manganous ion of 1 mg/L and arsenite of 50, 100, and 150 ppb at pH 7.0...............................................................................74 Table 9 The effect of pH and potassium permanganate dose on the permeate quality for artificial groundwater with initial ferrous ion of 1 mg/L, manganous ion of 1 mg/L and arsenite of 50 ppb.................................................................................................77 Table 10 The permate quality data for artificial groundwater with initial ferrous ion of 1 mg/L, manganous ion of 0.2 mg/L and arsenite of 50 ppb obtained after aeration alone and aeration followed by potassium permanganate oxidation at pH 8.0...........................80 viii Table 11 The effect of oxidation state of iron on the permeate quality for artificial groundwater with initial concentrations of manganous ion of 1 mg/L, arsenite of 100 ppb and various concentrations of iron at pH 7.0. Only aeration was applied for the oxidation of the contaminants.....................................................................................................85 ix LIST OF FIGURES Figure 1 The global arsenic cycle [Shih, 2005]............................................................................6 Figure 2 The Eh-pH diagram for arsenic at 25 °C and 1 atm, with total arsenic 10-5 mol/L and total sulfur 10-3 mol/L; solid species are indicated in parentheses in crosshatched area [Shih, 2005]...................................................................................................................8 Figure 3 Ferric hydroxide speciation (the species are Fe(OH) +, Fe(OH) and Fe(OH) -, 2 3 4 respectively) [Chwirka et al., 2004]............................................................................25 Figure 4 Pressure Driven Membrane Process Classification [EPA, 2000].................................30 Figure 5 Schematic representation of microfiltration [Bruggen et al., 2003].............................31 Figure 6 Aeration of the feed water............................................................................................41 Figure 7 The experimental set-up of dead-end cell system........................................................43 Figure 8 Perkin-Elmer model 1100B atomic absorption spectrophotometer used for the analysis of iron and manganese................................................................................................46 Figure 9 Absorbance as a function of Fe concentration.............................................................46 Figure 10 Absorbance as a function of Mn concentration..........................................................47 Figure 11 Perkin-Elmer model 4100ZL Zeeman graphite furnace atomic absorption spectrometer used for arsenic analysis........................................................................48 Figure 12 Calibration curve for arsenic analysis........................................................................50 Figure 13 Residual arsenic concentrations achieved with an initial Fe/As ratio of 100 as a function of pH.............................................................................................................53 Figure 14 Typical flux rate of DI water with Supor®200 membrane at 10 psi (blank test).......55 Figure 15 Typical permeability of DI water with Supor®200 membrane at 10 psi (blank test).55 x
Description: