Array Signal Processing Algorithms for Beamforming and Direction Finding This thesis is submitted in partial fulfilment of the requirements for Doctor of Philosophy (Ph.D.) LeiWang CommunicationsResearchGroup DepartmentofElectronics UniversityofYork December 2009 ABSTRACT Array processing is an area of study devoted to processing the signals received from an antenna array and extracting information of interest. It has played an important role in widespread applications like radar, sonar, and wireless communications. Numerous adaptivearrayprocessingalgorithmshavebeenreportedintheliteratureinthelastseveral decades. Thesealgorithms,inageneralview,exhibitatrade-offbetweenperformanceand requiredcomputationalcomplexity. In this thesis, we focus on the development of array processing algorithms in the ap- plication of beamforming and direction of arrival (DOA) estimation. In the beamformer design, we employ the constrained minimum variance (CMV) and the constrained con- stantmodulus(CCM)criteriatoproposefull-rankandreduced-rankadaptivealgorithms. Specifically, for the full-rank algorithms, we present two low-complexity adaptive step sizemechanismswiththeCCMcriterionforthestepsizeadaptationofthestochasticgra- dient (SG) algorithms. The convergence and steady-state properties are analysed. Then, the full-rank constrained conjugate gradient (CG) adaptive filtering algorithms are pro- posed according to the CMV and CCM criteria. We introduce a CG based weight vector toincorporatetheconstraintinthedesigncriteriaforsolvingthesystemofequationsthat arises from each design problem. The proposed algorithms avoid the covariance matrix inversionandprovideatrade-offbetweenthecomplexityandperformance. In reduced-rank array processing, we present CMV and CCM reduced-rank schemes based on joint iterative optimization (JIO) of adaptive filters. This scheme consists a bank of full-rank adaptive filters that forms the transformation matrix, and an adaptive reduced-rank filter that operates at the output of the bank of filters. The transformation matrixandthereduced-rankweightvectorarejointlyoptimizedaccordingtotheCMVor CCM criteria. For the application of beamforming, we describe the JIO scheme for both thedirect-formprocessor(DFP)andthegeneralizedsidelobecanceller(GSC)structures. For each structure, we derive SG and recursive least squares (RLS) type algorithms to iteratively compute the transformation matrix and the reduced-rank weight vector for the reduced-rank scheme. An auxiliary vector filtering (AVF) algorithm based on the CCM design for robust beamforming is presented. The proposed beamformer decomposes the adaptive filter into a constrained (reference vector filter) and an unconstrained (auxiliary vectorfilter)component. Theweightvectorisiteratedbysubtractingthescalingauxiliary vectorfromthereferencevector. For the DOA estimation, the reduced-rank scheme with the minimum variance (MV) power spectral evaluation is introduced. A spatial smoothing (SS) technique is employed in the proposed method to improve the resolution. The proposed DOA estimation algo- rithms are suitable for large arrays and to deal with direction finding for a small number ofsnapshots,alargenumberofusers,andwithouttheexactinformationofthenumberof sources. CONTENTS Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x ListofSymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 PriorWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 DOAEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 ListofPublications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. AdaptiveStepSizeCCMSGAlgorithms forAdaptiveBeamforming. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 ArrayStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 AdaptiveArrayStructure . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 AntennaArrayandDirectionofArrival . . . . . . . . . . . . . . 14 2.3 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 AdaptiveSGAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 ProposedAdaptiveStepSizeMechanisms . . . . . . . . . . . . . . . . . 17 2.5.1 ModifiedAdaptiveStepSize(MASS) . . . . . . . . . . . . . . . 18 2.5.2 TimeAveragingAdaptiveStepSize(TAASS) . . . . . . . . . . . 18 2.5.3 ComputationalComplexity . . . . . . . . . . . . . . . . . . . . . 19 2.6 AnalysisoftheProposedAlgorithms . . . . . . . . . . . . . . . . . . . . 20 2.6.1 ConvergenceAnalysis . . . . . . . . . . . . . . . . . . . . . . . 21 SufficientConditionfortheConvergenceoftheMeanWeightVector 21 Steady-StateStepSizeValueforMASS . . . . . . . . . . . . . . 22 Steady-StateStepSizeValueforTAASS . . . . . . . . . . . . . 23 2.6.2 Steady-stateAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6.3 TrackingAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.7 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3. Constrained Adaptive Filtering Algorithms Based on the Conjugate Gradient MethodforBeamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 ProposedAdaptiveCGalgorithms . . . . . . . . . . . . . . . . . . . . . 41 3.3.1 ConjugateGradientAlgorithms . . . . . . . . . . . . . . . . . . 41 3.3.2 ProposedConventionalConjugateGradient(CCG)Algorithms . . 42 TheCMV-CCGAlgorithm . . . . . . . . . . . . . . . . . . . . . 42 TheCCM-CCGAlgorithm . . . . . . . . . . . . . . . . . . . . . 44 3.3.3 ProposedModifiedConjugateGradient(MCG)Algorithms . . . . 45 TheProposedCMV-MCGAlgorithm . . . . . . . . . . . . . . . 45 TheProposedCCM-MCGAlgorithm . . . . . . . . . . . . . . . 48 3.4 AnalysisoftheProposedMethods . . . . . . . . . . . . . . . . . . . . . 49 3.4.1 GlobalConvergenceandProperties . . . . . . . . . . . . . . . . 49 3.4.2 ComputationalComplexity . . . . . . . . . . . . . . . . . . . . . 49 3.4.3 ConvergenceAnalysis . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4. AdaptiveReduced-rankCMVBeamforming andDOAAlgorithmsBasedonJointIterativeOptimizationofFilters. . . . . . 60 4.1 IntroductionforBeamforming . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3 ProposedReduced-rankMethod . . . . . . . . . . . . . . . . . . . . . . 62 4.4 AdaptiveAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4.1 StochasticGradientAlgorithm . . . . . . . . . . . . . . . . . . . 65 4.4.2 RecursiveLeastSquaresAlgorithms . . . . . . . . . . . . . . . . 65 4.4.3 ComplexityofProposedAlgorithms . . . . . . . . . . . . . . . . 67 4.4.4 AutomaticRankSelection . . . . . . . . . . . . . . . . . . . . . 67 4.5 AnalysisofAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.5.1 StabilityAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.5.2 MSEConvergenceAnalysis . . . . . . . . . . . . . . . . . . . . 70 4.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.6.1 MSEAnalysisPerformance . . . . . . . . . . . . . . . . . . . . 74 4.6.2 SINRPerformance . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.7 IntroductionforDOAEstimation . . . . . . . . . . . . . . . . . . . . . . 79 4.8 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.9 TheJIOSchemeforDOAEstimation . . . . . . . . . . . . . . . . . . . 81 4.10 ProposedReduced-RankAlgorithms . . . . . . . . . . . . . . . . . . . . 82 4.11 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5. AdaptiveReduced-rankCCMAlgorithmsBasedonJointIterativeOptimization ofFiltersandAuxiliaryVectorFilteringforBeamforming. . . . . . . . . . . . 88 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 PreliminaryWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.1 Full-rankBeamformerDesignfortheDFP . . . . . . . . . . . . 90 5.2.2 Full-rankBeamformerDesignfortheGSC . . . . . . . . . . . . 91 5.3 Reduced-rankBeamformerDesign . . . . . . . . . . . . . . . . . . . . . 92 5.3.1 BeamformerDesignfortheDFP . . . . . . . . . . . . . . . . . . 93 5.3.2 BeamformerDesignfortheGSC . . . . . . . . . . . . . . . . . . 93 5.4 ProposedCCMReduced-rankScheme . . . . . . . . . . . . . . . . . . . 94 5.4.1 ProposedCCMReduced-rankSchemefortheDFP . . . . . . . . 94 5.4.2 ProposedCCMReduced-rankSchemefortheGSC . . . . . . . . 97 5.5 AdaptiveAlgorithmsoftheCCMReduced-rankScheme . . . . . . . . . 98 5.5.1 StochasticGradientAlgorithms . . . . . . . . . . . . . . . . . . 99 TheSGAlgorithmfortheDFP . . . . . . . . . . . . . . . . . . . 99 TheSGAlgorithmfortheGSC . . . . . . . . . . . . . . . . . . 100 5.5.2 RecursiveLeastSquaresAlgorithms . . . . . . . . . . . . . . . . 100 TheRLSAlgorithmfortheDFP . . . . . . . . . . . . . . . . . . 101 TheRLSAlgorithmfortheGSC . . . . . . . . . . . . . . . . . . 102 5.5.3 Gram-SchmidtTechniqueforProblem2 . . . . . . . . . . . . . . 105 5.5.4 AutomaticRankSelection . . . . . . . . . . . . . . . . . . . . . 105 5.6 AnalysisoftheProposedAlgorithms . . . . . . . . . . . . . . . . . . . . 106 5.6.1 ComplexityAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 107 5.6.2 AnalysisoftheOptimizationProblem . . . . . . . . . . . . . . . 110 5.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.8 ProposedCCM-AVFAlgorithm . . . . . . . . . . . . . . . . . . . . . . 119 5.8.1 ProposedCCM-AVFScheme . . . . . . . . . . . . . . . . . . . 119 5.8.2 ProposedCCM-AVFAlgorithm . . . . . . . . . . . . . . . . . . 119 5.8.3 InterpretationsaboutProposedCCM-AVFAlgorithm . . . . . . . 122 5.9 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6. ConclusionsandFutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.1 SummaryofWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Appendix 130 A. Derivationof(2.28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 B. ConvexityConditionfortheCCMCriterion . . . . . . . . . . . . . . . . . . . 132 C. PreservationofMVandExistenceofMultipleSolutions . . . . . . . . . . . . 134 D. AnalysisoftheOptimizationoftheJIOCMVScheme . . . . . . . . . . . . . 135 E. DerivationofTransformationMatrix . . . . . . . . . . . . . . . . . . . . . . 138 F. Derivationof(5.31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Description: