Array Processing Techniques for Direction of Arrival Estimation, Communications, and Localization in Vehicular and Wireless Sensor Networks Marco Antonio Marques Marinho Supervisors: Alexey Vinel João Paulo Carvalho Lustosa da Costa Felix Antreich DOCTORAL THESIS | Halmstad University Dissertations no. 43 Array Processing Techniques for Direction of Arrival Estimation, Communications, and Localization in Vehicular and Wireless Sensor Networks © Marco Antonio Marques Marinho Halmstad University Dissertations no. 43 ISBN 978-91-87045-88-2 (printed) ISBN 978-91-87045-89-9 (pdf) Publisher: Halmstad University Press, 2018 | www.hh.se/hup Aos meus pais: Marco Antonio e Marcelita, tudo que hÆ de bom em mim nasceu de vocŒs.AprendimuitoaolongodessesanosdedoutoradolongedevocŒs, mas a maior li(cid:231)ªo que aprendi Ø vocŒs sªo as pessoas mais importantes da minha vida. Amo vocŒs acima de tudo. Ao meu irmªo: Murilo,companheiroaolongodessajornadaqueescolhemos.Semnos- sas conversas e discussıes sobre a vida de um doutorando eu provavel- mente teria perdido a batalha mais importante dessa guerra, a de mater-me sªo e sensato. Obrigado por tudo. A minha noiva: Stephanie, minha parceira e amiga. A dist(cid:226)ncia ao longo desses anos nªo foi capaz de diminuir seu amor, companheirismo e carinho. Obri- gado por sua dedica(cid:231)ªo e paciŒncia nos momentos mais dif(cid:237)ceis. Sua for(cid:231)a em frente as di(cid:28)culdades foi uma grande fonte de inspira(cid:231)ªo. Te amo. Marco Antonio Marques Marinho i Abstract Array signal processing in wireless communication has been a topic of inter- est in research for over three decades. In the fourth generation (4G) of the wireless communication systems, also known as Long Term Evolution (LTE), multi antenna systems have been adopted according to the Release 9 of the 3rd Generation Partnership Project (3GPP). For the (cid:28)fth generation (5G) of the wireless communication systems, hundreds of antennas should be incorpo- rated to the devices in a massive multi-user Multiple Input Multiple Output (MIMO) architecture. The presence of multiple antennas provides array gain, diversitygain,spatialgain,andinterferencereduction.Furthermore,arraysen- ablespatial(cid:28)lteringandparameterestimation,whichcanbeusedtohelpsolve problemsthatcouldnotpreviouslybeaddressedfromasignalprocessingper- spective.Theaimofthisthesisistobridgesomegapsbetweensignalprocessing theory and real world applications. Array processing techniques traditionally assume an ideal array. Therefore, in order to exploit such techniques, a robust set of methods for array interpolation are fundamental and are developed in this work. In this dissertation, novel methods for array interpolation are pre- sentedandtheirperformanceinrealworldscenariosisevaluated.Problemsin the(cid:28)eldofwirelesssensornetworksandvehicularnetworksarealsoaddressed fromanarraysignalprocessingperspective.Signalprocessingconceptsareim- plemented in the context of a wireless sensor network. These concepts provide a level of synchronization su(cid:30)cient for distributed multi antenna communica- tiontobeapplied,resultinginimprovedlifetimeandimprovedoverallnetwork behaviour.Arraysignalprocessingmethodsareproposedtosolvetheproblem of radio based localization in vehicular network scenarios with applications in road safety and pedestrian protection. iii Acknowledgments To Prof. Felix Antreich, my friend, mentor, and co-supervisor. For helping me out through the rough patches along the way, not just academically, but also when got the short end of the stick after physical encounters with motor vehicles. Without his support and guidance I would not have arrived at this destination. It is a great honor to work and research alongside him. To my supervisor Prof. Joªo Paulo Carvalho Lustosa da Costa, to whom I own so much, for the endless support throughout my entire academic career. I am thankful for his patience, trust and for the endless opportunities he has provided me during my academic career. It is thanks to him I have gotten to experience so much of the world and had the opportunity to know so many interesting (cid:28)elds of research. To my supervisor Prof. Alexey Vinel, who deposited so much trust in me by accepting me as a student in Halmstad. He always did his best and dedi- cated so much time to ensure I could apply my knowledge to interesting and relevant topics during my stay in Sweden. I appreciate all his e(cid:27)ort to make my Ph.D. experience productive and stimulating. Without his help many in- teresting results would never have come to be. To Prof. Edison Pignaton de Freitas for his support and incentive across my academic career. He was always able to keep a good humour even when I had lost mine. His seamlessly endless ability to moderate con(cid:29)ict and connect people have help me throughout this journey and serve as a great inspiration. To Prof. Fredrik Tufvesson for the time dedicated to following my work and for all the suggestions and guidance o(cid:27)ered. v Contents Introduction 1 1 Array Interpolation 5 1.1 Overview and Contribution . . . . . . . . . . . . . . . . . . . . 5 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.1 Forward Backward Averaging (FBA) . . . . . . . . . . . 13 1.4.2 Spatial Smoothing (SPS) . . . . . . . . . . . . . . . . . 14 1.4.3 Model Order Selection . . . . . . . . . . . . . . . . . . 14 1.4.4 Estimation of Signal Parameters via Rotational Invari- ance Techniques (ESPRIT) . . . . . . . . . . . . . . . . 15 1.4.5 Vandermonde Invariance Transformation (VIT) . . . . 17 1.5 Array Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Classical Interpolation . . . . . . . . . . . . . . . . . . . . . . . 19 1.7 Sector Selection and Discretization . . . . . . . . . . . . . . . . 23 1.7.1 UT Discretization . . . . . . . . . . . . . . . . . . . . . 26 1.7.2 Principal Component Discretization . . . . . . . . . . . 28 1.8 Linear Adaptive Array Interpolation . . . . . . . . . . . . . . . 29 1.8.1 Data Transformation and Model Order Selection . . . . 32 1.8.2 Linear UT Array Interpolation . . . . . . . . . . . . . . 34 1.9 Multidimensional Linear Interpolation . . . . . . . . . . . . . . 35 1.9.1 Tensor Algebra Concepts . . . . . . . . . . . . . . . . . 35 1.9.2 Multidimensional Data Model . . . . . . . . . . . . . . . 36 1.9.3 Multidimensional Interpolation . . . . . . . . . . . . . . 37 1.10 Nonlinear Array Interpolation . . . . . . . . . . . . . . . . . . . 38 1.10.1 MARS based interpolation . . . . . . . . . . . . . . . . 39 1.10.2 GRNN based interpolation . . . . . . . . . . . . . . . . 40 1.11 Numerical Simulation Results . . . . . . . . . . . . . . . . . . . 41 1.11.1 Multidimensional Linear Performance Results . . . . . . 41 1.11.2 Nonlinear Performance Results . . . . . . . . . . . . . . 44 1.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 vii 2 Cooperative MIMO for Wireless Sensor Networks 51 2.1 Overview and Contribution . . . . . . . . . . . . . . . . . . . . 51 2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3 Wireless Sensor Networks Organization . . . . . . . . . . . . . 54 2.4 Cooperative MIMO . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.5 Energy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.5.1 Conventional Techniques. . . . . . . . . . . . . . . . . . 59 2.5.2 Cooperative MIMO . . . . . . . . . . . . . . . . . . . . 61 2.6 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.6.1 E(cid:27)ects of Synchronization Error on Cooperative MIMO 64 2.6.2 Proposed Coarse Synchronization Scheme . . . . . . . . 65 2.6.3 Proposed Fine Synchronization Schemes . . . . . . . . . 66 2.6.4 Synchronization error propagation . . . . . . . . . . . . 70 2.7 Adaptive C-MIMO Clustering . . . . . . . . . . . . . . . . . . 73 2.7.1 Adaptive C-MIMO clustering . . . . . . . . . . . . . . . 74 2.7.2 Numerical Simulations . . . . . . . . . . . . . . . . . . . 78 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3 Array Processing Localization for Vehicular Networks 87 3.1 Overview and Contribution . . . . . . . . . . . . . . . . . . . . 87 3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.3 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.4 Space-AlternatingGeneralizedExpectationMaximization(SAGE) Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.5 Scenario Description . . . . . . . . . . . . . . . . . . . . . . . . 92 3.6 Array Processing Localization . . . . . . . . . . . . . . . . . . . 93 3.6.1 Flip-Flop Estimation . . . . . . . . . . . . . . . . . . . 93 3.6.2 Joint Direct Position Estimation . . . . . . . . . . . . . 96 3.6.3 DOA only estimation . . . . . . . . . . . . . . . . . . . 97 3.6.4 Applicability of DOA Estimation for Positioning . . . . 98 3.7 Three Dimensional DOA Based Estimation . . . . . . . . . . . 99 3.7.1 Scenario Description . . . . . . . . . . . . . . . . . . . . 99 3.7.2 De(cid:28)nition of the Attitude Angles . . . . . . . . . . . . . 99 3.7.3 Direction vector computation . . . . . . . . . . . . . . . 100 3.7.4 Position estimation . . . . . . . . . . . . . . . . . . . . 100 3.8 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.8.1 Results for Simulated Data . . . . . . . . . . . . . . . . 101 3.8.2 Results for Real Data . . . . . . . . . . . . . . . . . . . 104 3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Conclusion 109 Author’s Publications 113 References 117 viii
Description: