ebook img

Arora et al. PDF

15 Pages·2012·0.63 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Arora et al.

ToxicologyandAppliedPharmacology258(2012)151–165 ContentslistsavailableatSciVerseScienceDirect Toxicology and Applied Pharmacology journal homepage: www.elsevier.com/locate/ytaap Review Nanotoxicology and in vitro studies: The need of the hour ⁎ Sumit Arora, Jyutika M. Rajwade, Kishore M. Paknikar CentreforNanobioscience,AgharkarResearchInstitute,G.G.Agarkarroad,Pune411004,India a r t i c l e i n f o a b s t r a c t Articlehistory: Nanotechnologyisconsideredasoneofthekeytechnologiesofthe21stcenturyandpromisesrevolutionin Received6May2011 ourworld.Objectsatnanoscale,takeonnovelpropertiesandfunctionsthatdiffermarkedlyfromthoseseen Revised12November2011 inthecorrespondingbulkcounterpartprimarilybecauseoftheirsmallsizeandlargesurfacearea.Studies Accepted15November2011 have revealed that the same properties that make nanoparticles so unique could also be responsible for Availableonline2December2011 theirpotentialtoxicity.Nanotechnologyisrapidlyadvancing,withmorethan1000nanoproductsalready onthemarket.Consideringthefactthatintendedaswellasunintendedexposuretonanomaterialsisincreas- Keywords: ingandpresentlynoclearregulatoryguideline(s)onthetesting/evaluationofnanoparticulatematerialsare Nanotoxicology Invitrocytotoxicity available,theinvitrotoxicologicalstudiesbecomeextremelyrelevantandimportant.Thisreviewpresentsa Bio-distributionofnanoparticles summaryofnanotoxicologyandaconciseaccountoftheinvitrotoxicitydataonnanomaterials.Fornanoma- Genotoxicityofnanoparticles terialstomoveintotheapplicationsarena,itisimportantthatnanotoxicologyresearchuncoversandunder- Moleculardeterminantsofnanotoxicology stands how these multiple factors influence their toxicity so that the ensuing undesirable effects can be avoided. ©2011ElsevierInc.Allrightsreserved. Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Nanotoxicology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Physicochemicalpropertiesofnanomaterials:biologicaleffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Routesofexposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Skin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Respiratorytract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Gastrointestinaltract(GIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Biodistribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Moleculardeterminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Genotoxicityandimmunogenicpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Regulatoryissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Methodsforassessingtoxicityofnanomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Currentlyusedinvitromethodsinnanotoxicology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Hemolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Genotoxicityassays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Newermethodstoassessnanomaterialtoxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Eco-toxicology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Datagapsandresearchneeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Conflictofinterest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 ⁎ Correspondingauthor.Fax:+912025651542. E-mailaddress:[email protected](K.M.Paknikar). 0041-008X/$–seefrontmatter©2011ElsevierInc.Allrightsreserved. doi:10.1016/j.taap.2011.11.010 152 S.Aroraetal./ToxicologyandAppliedPharmacology258(2012)151–165 Size/Shape Surface area Surface chemistry Physicochemical determinants Government Respiratory tract Routes of Industry Regulatory issue Skin exposure Academy Gastrointestinal Tract Nanotoxicology Mutagenesis Clearance Genotoxicity Biodistribution Chromosomal Opsonization Aberrations Molecular determinants Oxidative Inflammation stress Fig.1.Complexarrayofissuessurroundingtoxicityofnanoparticles. Introduction Anyinvivouseofnanoparticlesentailsthoroughunderstandingof thekineticsandtoxicologyoftheparticles(Lewinskietal.,2008),estab- Theprefix“nano”isderivedfromtheGreekword“nanos”meaning lishmentofprinciplesandtestprocedurestoensuresafemanufacture “dwarf”.Nanotechnologyinvolvesthemanipulationandapplicationof andusageofnanomaterials(Neletal.,2006),andcomprehensiveinfor- engineeredparticlesorsystemsthathaveatleastonedimensionless mation about their safety and potential hazard (Nel et al., 2006; than 100 nanometers (nm) in length (Hoyt and Mason, 2008). The Oberdorsteretal.,2005b). term “nanoparticles” applies only to engineered particles (such as metaloxides,carbonnanotubes,fullerenesetc.)anddoesnotapplyto Nanotoxicology particles under 100nm that occur naturally or are by-products of other processes such as welding fumes, fire smoke, or carbon black Nanotoxicologywasproposedasanewbranchoftoxicologytoad- (HoytandMason,2008). dress the gaps in knowledge and to specifically address the adverse Growingexplorationofnanotechnologyhasresultedintheidentifi- health effects likely to be caused by nanomaterials (Donaldson et al., cationofmanyuniquepropertiesofnanomaterialssuchasenhanced 2004).Intheoriginalarticleonnanotoxicology,Donaldsonetal.(2004) magnetic,catalytic,optical,electrical,andmechanicalpropertieswhen quoted,“disciplineofnanotoxicologywouldmakeanimportantcontri- comparedtoconventionalformulationsofthesamematerial(Ferrari, butiontothedevelopmentofasustainableandsafenanotechnology”. 2005;Qinetal.,1999;Vasiretal.,2005;Websteretal.,1999,2000). Nanotoxicologyencompassesthephysicochemical determinants, Thesematerialsareincreasinglybeingusedforcommercialpurposes routes of exposure, biodistribution, molecular determinants, geno- such as fillers, opacifiers, catalysts, water filtration, semiconductors, toxicity,andregulatoryaspects(Fig.1).Inaddition,nanotoxicology cosmetics,microelectronicsetc.leadingtodirectandindirectexposure isinvolvedinproposingreliable,robust,anddata-assuredtestproto- inhumans(Neletal.,2006).Apartfromtheuseofnanomaterialsin colsfornanomaterialsinhumanandenvironmentalriskassessment consumerproducts,numerousapplicationsarebeingreportedinthe (Donaldsonetal.,2004;Lewinskietal.,2008). biomedicalfield,especiallyasdrug-deliveryagents,biosensorsorimag- ingcontrastagents(Ferrari,2005;Vasiretal.,2005).Theapplications Physicochemicalpropertiesofnanomaterials:biologicaleffects pertainingtomedicineinvolvedeliberatedirectingestionorinjection ofnanoparticlesintothebody.Nanomaterialsforimaginganddrugde- The unusual physicochemical properties of engineered nanoma- liveryareoftenintentionallycoatedwithbiomoleculessuchasDNA, terialsareattributabletotheirsmallsize(surfaceareaandsizedistri- proteins,andmonoclonalantibodiestotargetspecificcells(Lewinski bution), chemical composition (purity, crystallinity, electronic et al., 2008). Materials in this size range may approach the length propertiesetc.),surfacestructure(surfacereactivity,surfacegroups, scale at which some specific physical or chemical interactions with inorganicororganiccoatingsetc.),solubility,shapeandaggregation. their environment can occur (Oberdorster et al., 2005a). Apart from Actually,theverysamepropertiesthatleadtothetechnicaladvan- this,duetotheirextremelysmallsize,nanomaterialspossessextremely tages of nanotechnology also lead to unique biological effects (Nel highsurfaceareatovolumeratiowhichrendersthemhighlyreactive. etal.,2006).InareviewbyNeletal.(2006)aquestion,“Donanoma- Highreactivitypotentiallycouldleadtotoxicityduetoharmfulinterac- terials properties necessitate a new toxicological science?” was tions of nanomaterials with biological systems and the environment raised.Itwasarguedthatthemaincharacteristicofnanomaterialsis (Oberdorsteretal.,2005b). their size in the transitional zone between individual atoms or S.Aroraetal./ToxicologyandAppliedPharmacology258(2012)151–165 153 Table1 Biologicaleffectsduetophysicochemicalpropertiesofnanomaterials. Physicochemicalproperty Toxicokineticfindings Biologicaleffects References Size 15nmgoldnanoparticles Mostwidespreadorgandistribution Biodistributionofthe Sonavaneet (NPs) includingblood,liver,lung,spleen, nanoparticles al.(2008) kidney,brain,heart,stomachinmice 15and50nmgoldNPs Passblood–brainbarrier(BBB) BloodBrainBarrier(BBB) Sonavaneet inmice permeability al.(2008) 40–50nmgoldNPs Activationofmembranereceptorsin Jiangetal. SK-BR-3cells (2008) 50nmgoldNPs MaximumuptakebyHelacells Chithraniet al.(2006) 50nmquantumdots Efficientreceptor-mediatedendocytosis Osakietal. inHelacells (2004) 1–10nmsilverNPs ExclusivelyattachtoHIV-1 Elechiguerra etal.(2005) 1–10nmsilverNPs Penetrateinsidethebacteria Moroneset al.(2005) Shape Open-endedSingle-walled EfficientblockingofionchannelsinCHO Sphericalshapedclose-ended Parketal. carbonnanotubes(SWNTs) cells SWNTsarecomparativelyless (2003) reactive SphericalgoldNPs HigheruptakebyHelacells Rrod-shapedgoldNPsshowed Chithraniet lessuptake al.(2006) Carbonparticles,except Stimulatedhumanplateletaggregation Biologicalreactivity:mixed Radomskiet C60CS, invitroandacceleratedtherateof carbonnanoparticles al.(2005) vascularthrombosisinratcarotid (MCNs)≥single-walledcarbon arteries nanotubes(SWNTs)>multi- walledcarbonnanotubes (MWNTs) Filomicelles(Filamentous Moreefficientfordrugdelivery Gengetal. micelles) thantheirspherical (2007) counterpartsinratsandmice Surface TiO2(300cm2Surfacearea) Increasedlymph-nodeburdensand Morereactiveinratsas Tranetal. area/ Inflammation comparedtoBaSO4(200cm2 (2000) volume Surfacearea) ratio TiO2andBaSO4Withsame Inflammatoryeffectsweresimilar Inflammation Tranetal. surfacearea (2000) Ultrafinecarbonblackparticles Causegreaterpulmonarytoxicity Increasedreactivityin Nikulaetal. (270m2/gsurfacearea) inrats comparisonwithlarger-sized (1995), carbonblackparticles(22m2/g Driscollet surfacearea) al.(1996) Chemical Incorporationof1%(w/w) IncreaseinUVAabsorptionand Wakefield composition manganesedopinginto reductioninfreeradical etal.(2004) titaniaparticles generationviasurfacereactions Carbonnanomaterials Differentgeometricstructuresexhibit Thecytotoxicityfollowsa Guangetal. quitedifferent sequenceorder: (2005) cytotoxicityinvitro SWNTs>MWNTs>quartz>C60 onalveolarmacrophages isolatedfromguineapigs Metaltracesassociatedwiththe Adose-andtime-dependentincrease Morereactiveascomparedto Pulskampet commercialcarbonnanotubes ofintracellularreactiveoxygenspecies purifiedcarbonnanotubes al.(2007) andadecreaseofthemitochondrial membranepotentialinratmacrophages (NR8383)andhumanA549lungcells Quantumdotscoremetalloid cancrosstheblood–brainbarrierand Aprobablecarcinogen Hardman complexesofCadmium,Cd placenta,andissystemicallydistributed (2006) toallbodilytissues,withliverandkidney beingtargetorgansoftoxicity Quantumdotscoremetalloid Amarkedimpactonthelocal Hardman complexesofSelenium,Se ecosystemresultedfrom (2006) elevatedenvironmental concentrationsofSe Ag,MoO3,Fe3O4,Al,MnO2andW Agwashighlytoxicwhereas,MoO3 Reducedcellproliferationand Hussainet (Tungsten) moderatelytoxicandFe3O4,Al,MnO2and death al.(2005) W(Tungsten)displayedlessornotoxicity atthedosestestedoninvitroratliver derivedcellline(BRL3A) La0.7Sr0.3MnO3(LSMO) LowcytotoxicityinCe-dopedsamplesas Improvedcellproliferation Kaleetal. nanoparticlesdopedwith wellasinsampleswithreducedLa/Srratio uponCedoping (2006) cerium(La0.7-xCexSr0.3MnO3 asrevealedbyinvitrostudiesonHT-1080 where0≤x≤0.7)andLa1 (humanfibrosarcoma)andA431 −ySryMnO3nanoparticleswith (humanskin/carcinoma)cells differentvaluesofy(La/Sr ratio) Surface NeutralNPsandlow Drugdeliveryapplicationsto Lockmanet charge concentrationanionicNPs braininrats al.(2004) CationicNPs (continuedonnextpage) 154 S.Aroraetal./ToxicologyandAppliedPharmacology258(2012)151–165 Table1(continued) Physicochemicalproperty Toxicokineticfindings Biologicaleffects References Toxiceffectatthebloodbrain Lockmanet barrierinrats al.(2004) AnionicNPsatlower Superioruptakeratesas Lockmanet concentrations comparedtoneutralorcationic al.(2004) NPsatthesameconcentrations inrats Positivesurfacechargedpoly Depositionintotissuesishigherthanneutral Higherdepositionintissues Nigavekaret (amidoamine)dendrimers surfacedendrimersinB16melanomaandDU al.(2004) 145humanprostatecancermousetumormodel Coatingofrespirablequartz InhibitsDNAstrandbreakageandformationof Reductionintoxicity Schinsetal. surfacewithaluminumlactateor 8-hydroxy-deoxyguanosine (2002) polyvinyl-pyridine-N-oxide inhumanlungepithelialcells (PVNO) Aggregation Rope-likeagglomeratesofcarbon Inducedmorepronouncedcytotoxiceffects Cytotoxicity Wicketal. state nanotubes thanwelldispersedcarbonnanotubesin (2007) humanMSTO-211Hcells moleculesandthecorrespondingbulkmaterials.Thiscanmodifythe Skin. Skinisthelargestprimarydefenseorganinourbodyanddi- physicochemicalpropertiesofthematerialaswellascreatetheop- rectlycomesintocontactwithmanytoxicagents.Theskinisstruc- portunityforincreaseduptakeandinteractionwithbiologicaltissues turedorgancomprisingthreelayers:theepidermis,thedermisand (Chithranietal.,2006;Sonavaneetal.,2008).Thiscombinationofef- the subcutaneous layer. The strongly keratinized stratum corneum fectscangenerateadversebiologicalresponsesinlivingcellsother- actsastheprimaryprotectinglayerandmaybetherate-limitingbar- wisenotseenwiththesamematerialinlarger(bulk)form(Neletal., riertodefendagainstthepenetrationofmostmicronsizedparticlesand 2006).Theincreaseinsurfaceareadeterminesthepotentialnumber harmfulexogenetictoxicants.Skinexposuretonanomaterialscanalso ofreactivegroupsontheparticlesurface.Table1summarizestheob- occur during the intentional application of topical creams and other servedbiologicaleffectsvis-à-visphysicochemicalpropertiesandthe drugtreatments(Curtisetal.,2006;Hagensetal.,2007;Oberdorster typesofnanomaterials.Shapeofthenanoparticleshasbeenshownto et al.,2005b).Accordingtoa studyby vander Merwe et al. (2009), haveapronouncedeffectonthebiologicalactivity.Itisreportedthatsil- nanocrystalline magnesium oxide and titanium dioxide applied to vernanoparticlesundergoshape-dependentinteractionwithE.coli(Pal dermatomed human skin (as dry powder, water suspension, and etal.,2007);Chithranietal.(2006)reportedbetteruptakeofspherical water/surfactantsuspension)for8hdidnotshowdermalabsorption goldnanoparticlesthangoldnanorodsinHeLacells.Incaseofanatase throughhumanskinwithintactfunctionalstratumcorneum.Inanother TiO nanomaterial,itwasshownthatalterationtoafiberstructureof study,Gontieretal.(2008)testedpenetrationoftopicallyappliedtita- 2 greaterthan15μmcreatedahighlytoxicparticlethatinitiatedanin- niumdioxide(TiO )nanoparticles(sizerange20–100nm)inporcine-, 2 flammatory response by alveolar macrophages and that length may healthyhuman-,andhumangrafted-skinsamples.Itwasseenthatpene- be an important determinant of nanomaterial biocompatibility trationofTiO nanoparticleswasrestrictedtothetopmost3–5corneocyte 2 (Hamiltonetal.,2009).AnotherstudybyJourneayetal.(2008)demon- layersofthestratumcomeum.Incontradistinctiontothisfinding,there stratedthatwater-solublerosettenanotubestructuresdisplaylowpul- are many reports that show deeper penetration of nanoparticles. monary toxicity due to their biologically inspired design and Lademannetal.(1999)showedthatTiO particlescouldgetthrough 2 self-assembled architecture. In a review on widely used metal oxide the human stratum corneum and reach epidermis and even dermis. and carbon nanomaterials, Landsiedel et al. (2010) emphasized that Flexingmovementofnormalskinwasshowntofacilitatethepenetra- physico-chemicalcharacterizationofnanomaterialsandtheirinterac- tion of micrometer-size fluorescent beads into the dermis (Tinkle et tionwithbiologicalmediaareessentialforreliablestudies.Inastudy al.,2003).Oberdorsteretal.(2005b)demonstratedpenetrationofava- with 1.5nm sized gold nanoparticles it was observed that surface rietyofnanoparticlesinthedermisandtranslocationtothesystemic chargewasamajordeterminantoftheiractiononcellularprocesses; vasculature via lymphatic system and regional lymph. Further, the charged NPs inducing cell death through apoptosis and neutral Ryman-Rasmussen et al. (2006) demonstrated that quantum dots NPsleadingtonecrosisinHaCaTcells(Schaeublinetal.,2011).Consid- with diverse physicochemical properties could penetrate the intact ering the physicochemical properties of various nanomaterials and stratumcorneumbarrierandgetlocalizedwithintheepidermalandder- their interactions with the biological environment, Maynard et al. mallayers.Inaclinicalstudy,treatmentofburnsusingnanosilvercoat- (2011)statethatthechallengespresentedbysimplenanoscalemate- eddressings(Tropetal.,2006)ledtoabnormalelevationofbloodsilver rialssuchasTiO ,ZnO,Ag,carbonnanotubes,andCeO arenowbegin- levelsandargyria(blueorgraydiscolorationoftheskinduetosilverac- 2 2 ning to be appreciated. But these simple materials are merely the cumulation in the body over time which is a ‘cosmetic problem’). vanguardofaneweraofcomplexmaterials,wherenovelanddynamic Thoughnanosilver-baseddressingsandsurgicalsutureshavereceived functionality is engineered into multifaceted substances. Further, approvalforclinicalapplicationandgoodcontrolofwoundinfection accordingtoMaynardetal.(2011),ifwearetomeetthechallengeof isachieved,theirdermaltoxicityisstillatopicofscientificdebateand ensuringthesafeuseofthisnewgenerationofsubstances,itistime concern.Despitelaboratoryandclinicalstudiesconfirmingthedermal tomovebeyond“nano”toxicologyandtowardanewtoxicologyofso- biocompatibility of nanosilver-based dressings (Chen et al., 2006a, phisticatedmaterials. 2006b;Muangmanetal.,2006;Suppetal.,2005;Wrightetal.,2002) Thusitisevidentthatphysicochemicalcharacteristicsofthema- severalotherresearchershavedemonstratedthecytotoxicityofthese terials are very important with respect to the observed biological materials.Paddle-Ledineketal.(2006)exposedculturedkeratinocytes effects. toextractsofseveraltypesofsilvercontainingdressings.Ofthese,ex- tractsofnanocrystallinesilvercoateddressingsweremostcytotoxic. Routesofexposure SimilarobservationswerealsoreportedbyLametal.(2004)inanother study.Fullerene-basedpeptideswerealsoshowntobecapableofpen- Thehumanbodyhasseveralsemi-openinterfacesfordirectsub- etratingintactskinandmechanicalstressorscouldfacilitatetheirtra- stance exchange with the environment, i.e. the skin, respiratory versalintothedermis(Rouseetal.,2007).Intradermallyadministered tractandgastrointestinaltract(GIT). quantum dots could enter subcutaneous lymphatics (Gopee et al., S.Aroraetal./ToxicologyandAppliedPharmacology258(2012)151–165 155 2007)andregionallymphnodes(Kimetal.,2004).Topicallyapplied Biodistribution fineandultrafineberylliumparticlescanbephagocytosedbymacro- phagesandLangerhanscellspossibly leadingto perturbationsofthe “Do nanoparticles show a different biodistribution profile than immune system (Tinkle et al., 2003). Epidermal keratinocytes have largesizedparticles?Howlongdotheyaccumulateintissues/organs? alsobeenshowntobecapableofphagocytosingavarietyofengineered Dotheyexhibitorganspecificity?Canclearanceofnanoparticlesbe nanoparticles and setting off inflammatory responses (Monteiro- accurately assessed? Does chemical composition of nanomaterial Riviere et al., 2005). It is worth noting that some other types of playanimportantroleinbiodistribution?”aresomeofthequestions nanoparticles,i.e.single-/multi-wallcarbonnanotubes,quantumdots with reference to studies on in vivo interactions of nanoparticles. withsurfacecoatingandnanoscaletitania,havebeenshowntohave Studiescarriedoutsofarpointatinvolvementofphysicalclearance toxiceffectsonepidermalkeratinocytesandfibroblastsandareca- processes(viz.,mucociliarymovement,epithelialendocytosis,inter- pableofalteringtheirgene/proteinexpression(Christieetal.,2006; stitialtranslocation,lymphaticdrainage,bloodcirculationtransloca- Dingetal.,2005;Monteiro-Riviereetal.,2005;Ryman-Rasmussen tion and sensory neuron translocation) and chemical clearance et al., 2006; Sarkar et al., 2007; Tian et al., 2006; Witzmann and processes such as dissolution, leaching and protein binding Monteiro-Riviere,2006;Zhangetal.,2007). (Oberdorster et al., 2005b). Certain kinds of nanoparticles can pass throughtheGITandarerapidlyeliminatedinfecesandinurineindi- catingthatabsorptionacrosstheGITbarrierandentryintothesys- Respiratorytract. Therespiratorysystemservesasamajorportal temic circulation (Curtis et al., 2006; Oberdorster et al., 2005b). forambientparticulatematerials.Pathologiesresultingfromairborne However,somenanoparticulatescanaccumulateintheliverduring particle materials, e.g. quartz, asbestos and carbon have long been first-passmetabolism(Oberdorsteret al., 2005b). After intravenous thoroughlyresearchedinoccupationalandenvironmentalmedicine administration, nanoparticles get distributed to the colon, lungs, (Alfaro-Moreno et al., 2007; Donaldson et al., 2001; Gillissen et al., bonemarrow,liver,spleen,andthelymphatics(Fabianetal.,2008; 2006;Kanjetal.,2006;Lametal.,2006;Ovreviketal.,2005;Parks Hagensetal.,2007;Huangetal.,2008).Suchdistributionisfollowed etal.,1999;Warheit,2001).Recently,thepathogeniceffectsandpa- by rapid clearancefrom the systemic circulation, predominantly by thologyofinhaledmanufacturednanoparticleshavereceivedatten- actionoftheliverandspleenicmacrophages(Moghimietal.,2005). tion (Donaldson et al., 2006; Lam et al., 2006; Nel et al., 2006; Clearanceandopsonizationofnanoparticlesdependsonsizeandsur- Oberdorsteretal.,2005a).Beingdifferentthanmicronsizedparticles facecharacteristics(Curtisetal.,2006;Moghimietal.,2005).Differ- thatarelargelytrappedandclearedbyupperairwaymucociliaryes- ential opsonization translates into variations in clearance rates and calatorsystem,particleslessthan2.5μmcangetdowntothealveoli. macrophage sequestration of nanoparticles (Moghimi et al., 2005). Thedepositionofinhaledultrafineparticles(aerodynamic-diameter Toincreasethepassiveretentionofnanomaterialsinsystemiccircu- b100nm) mainly takes place in the alveolar region (Curtis et al., lation,thesuppressionofopsonizationeventsisnecessaryatdesired 2006;Hagensetal.,2007).Afterabsorptionacrossthelungepitheli- sitesoranatomicalcompartments.Forexampleincaseofhydropho- um, nanomaterials can enterthe blood and lymph to reach cells in bic particles, a coating with poly(ethylene) glycol (PEG), would in- the bone marrow, lymph nodes, spleen and heart (Hagens et al., creasetheirhydrophilicity,henceincreasingthesystemiccirculation 2007; Oberdorster et al., 2005a). The latter could be of significance time(GarnettandKallinteri,2006).InanotherstudywithPEGylated since the association between inhaled ambient ultrafine particles (Polyethylene glycol coated) gold nanoparticles Myllynen et al. and cardiovascular events such as coagulation and cardiac rhythm (2008)observedthat10–30nmsizedparticlesdidnotcrosstheper- disturbances has been proven (Nurkiewicz et al., 2006; Yeates and fusedhumanplacentaandwerenotdetectedinfetalcirculation. Mauderly,2001).Othertargetsaftertranslocationincludethesensory AstudybyTakenakaetal.(2001)carriedoutinratsrevealedthat nerveendingsembeddedintheairwayepithelia,followedbyganglia inhaledultrafinesilvernanoparticlesweredistributedinliver,lungs andthecentralnervoussystemviaaxons(Oberdorsteretal.,2005b; and brain. The authors have shown considerable amount of silver OldforsandFardeau,1983).Takenakaetal.(2001)havedemonstrat- couldbedetectedinratbrainfollowinginhalationofsilvernanopar- edthatinbothinhalationandinstillationexperiments,ultrafinesilver ticles.FewotherstudieswithInhalednanoparticlesdemonstratedis- particlesweretakenupbyalveolarmacrophagesandaggregatedsil- tribution of particles to the lungs, liver, heart, kidney, spleen and ver particles persisted there for up to 7days. Aggregated silver brain(BeruBeetal.,2007;Hagensetal.,2007;Medinaetal.,2007; nanoparticlesandsomeothernanomaterialshavebeenshowntobe Oberdorsteretal.,2002)andclearanceviaphagocytosisinthealveo- cytotoxictoalveolarmacrophagecellsaswellasepitheliallungcells larregionbymacrophages(Curtisetal.,2006;GarnettandKallinteri, (Sotoetal.,2007). 2006;Oberdorsteretal.,2005b).Inaddition,atleastoneclinicalre- porthasassociatedimpairedliverfunctiontosilvernanoparticlesre- Gastrointestinaltract(GIT). NanomaterialscanreachtheGITafter leasedfromawounddressing(Tropetal.,2006). mucociliary clearancefrom therespiratorytractthrough thenasal Jongetal.(2008)demonstratedsizedependenttissuedistribution region,orcanbeingesteddirectlyinfood,water,cosmetics,drugs, ofgoldnanoparticleswiththesmallest(10nm)nanoparticlesshow- and drug delivery devices (Hagens et al., 2007; Oberdorster et al., ing the most widespread distribution (blood, liver, spleen, kidney, 2005b).Theutilityofbiodegradablenanoparticlesinthedeliveryof testis, thymus, heart, lung and brain) whereas the larger particles oralvaccineshasbeenproposedforantigensknowntobesuscepti- (50,100and250nm)weredetectedonlyinblood,liverandspleen. bletoproteolysis(Russell-Jones,2000).Apparentlystudiesontoxic- In another study on biodistribution of gold nanoparticles, Niidome ity of nanomaterials post oral ingestion are limited. Chen et al. et al. (2006), detected most of gold stabilized with hexadecyltri- (2006a, 2006b) determined the acute toxicity of copper particles methylammoniumbromide(CTAB)intheliverwhereas54%ofPEG- (bulk)andnanocopperinmiceandfoundthatnanocopperwassev- modifiedgoldnanoparticleswerefoundinbloodat0.5hafterintra- eralfoldstoxicthanbulkcopper(LD fornanocopper413mg/kg; venousinjection. 50 bulkcopper>5000mg/kg).Nanocopperwasalsoreportedtocause Owingtocharacteristicinternalizationandsystemicdistribution pathological damage to liver, kidney and spleen. Chung et al. ofinorganicandpolymericnanoparticles,thereisagrowinginterest (2010)recentlyreportedoccurrenceofsystemicargyriaafteringes- inexploringtheirusesforimaging,systemicdeliveryofdrugs,target tionofcolloidalnanosilverprovesitstranslocationfromtheintesti- specifickillingofcancerouscellsetc.Understandingtherelationship nal tract. Earlier Smith et al. (1995) reported the uptake of between the physico-chemical properties (size, surface charge, hy- fluorescently labeled polystyrene nanoparticles by intestinal lym- drophilicityetc.)ofnanoparticlesandtheirADME(absorption,distri- phatictissue(Peyer'spatches). bution, metabolism and elimination) characteristics is critical to 156 S.Aroraetal./ToxicologyandAppliedPharmacology258(2012)151–165 Fig.2.Possiblemechanismsbywhichnanomaterialsinteractwithbiologicaltissue.Examplesillustratetheimportanceofmaterialcomposition,electronicstructure,bondedsurface species(e.g.,metal-containing),surfacecoatings(activeorpassive),andsolubility,includingthecontributionofsurfacespeciesandcoatingsandinteractionswithotherenviron- mentalfactors(e.g.,UVactivation)FromNeletal.(2006)Science311,622–627.ReprintedwithpermissionfromAAAS. achieve desired biological effect (Li and Huang, 2008, Liang et al., bycatalaseorglutathioneperoxidase(GPx)(Fridovich,1995).Cata- 2008).Kunzmannetal.(2011)haveextensivelyreviewedthecom- laseisahighlyreactiveenzyme,whichconvertsH O toformwater 2 2 monly studied nanomaterials viz., iron oxide nanoparticles, dendri- and molecular oxygen (Mates and Sanchez-Jimenez, 1999). mers, mesoporous silica particles, gold nanoparticles, and carbon nanotubeswithreferencetotheirtoxicity,biocompatibility,biodistri- butionandbiodegradation.Theauthorsre-emphasizetheimportance Table2 Possiblepathophysiologicaloutcomesduetovariousnanomaterials. ofphysico-chemicalcharacteristicsofnanoparticlesaswellasensuing immunologicalreactionsvis-a-visthetargetbiologicalapplication.Zhi ExperimentalNMeffects Possiblepathophysiologicaloutcomes Yongetal.(2009)recommendtheuseofradiotracertechniquesforde- ROSgeneration* Protein,DNAandmembraneinjury,* terminingADMEcharacteristics. oxidativestress† Oxidativestress* PhaseIIenzymeinduction,inflammation†, Moleculardeterminants mitochondrialperturbation* Mitochondrialperturbation* Innermembranedamage*,permeability transition(PT)poreopening*,energy When exposed to light or transition metals, nanoparticles may failure*,apoptosis*,apo-necrosis, promote the formation of pro-oxidants which, in turn, destabilizes cytotoxicity the delicate balance between the biological system's ability to pro- Inflammation* Tissueinfiltrationwithinflammatory cells†,fibrosis†,granulomas†, duce and detoxify the reactive oxygen species (ROS) (Curtis et al., atherogenesis†,acutephaseprotein 2006;Kabanov,2006).Size,shapeandaggregationarenanomaterial expression(e.g.,C-reactiveprotein) characteristics that can culminate in ROS generation (Shvedova Uptakebyreticulo-endothelial Asymptomaticsequestrationandstorage etal.,2005a,2005b).Propertiessuchassurfacecoatingandsolu- system* inliver*,spleen,lymphnodes†,possible bilitymaypossiblydecreaseoramplifythesizeeffectasillustrated organenlargementanddysfunction Proteindenaturation,degradation* Lossofenzymeactivity*,auto-antigenicity inFig.2. Nuclearuptake* DNAdamage,nucleoproteinclumping*, ROSincludefreeradicalssuchasthesuperoxideanion(O2•−),hy- autoantigens droxylradicals(.OH)andthenon-radicalhydrogenperoxide(H O ), Uptakeinneuronaltissue* Brainandperipheralnervoussystem 2 2 whichareconstantlygeneratedincellsundernormalconditionsasa injury Perturbationofphagocyticfunction,* Chronicinflammation†,fibrosis†, consequenceofaerobicmetabolism.Whencellsareexposedtoany “particleoverload,”mediator granulomas†,interferenceinclearanceof insult (chemical/physical), it results in the production of ROS (Luo release* infectiousagents† etal.,2002).Butcellsarealsoendowedwithanextensiveantioxidant Endothelialdysfunction,effectson Atherogenesis*,thrombosis*,stroke, defensesystemtocombatROS,eitherdirectlybyinterceptionorindi- bloodclotting* myocardialinfarction rectlythroughreversalofoxidativedamage.Cellularantioxidantscan Generationofneoantigens, Autoimmunity,adjuvanteffects breakdowninimmunetolerance bedividedintoprimary(superoxidedismutase,glutathioneperoxi- Alteredcellcycleregulation Proliferation,cellcyclearrest,senescence dase,catalaseandthioredoxinreductase)orsecondarydefense(re- DNAdamage Mutagenesis,metaplasia,carcinogenesis duced glutathione) mechanisms (Stahl et al., 1998). Superoxide Effectssupportedbylimitedexperimentalevidencearemarkedwithasterisks(*); dismutase (SOD) converts the highly reactive radical superoxide effectssupportedbylimitedclinicalevidencearemarkedwithdaggers(†). intothelessreactiveperoxide(H2O2)whichfurthercanbedestroyed FromNeletal.(2006)Science311,622–627.ReprintedwithpermissionfromAAAS. S.Aroraetal./ToxicologyandAppliedPharmacology258(2012)151–165 157 Glutathioneperoxidasecatalyzesthereductionofavarietyofhydro- engineerednanomaterialsbytheimmunesystem,andtheoperat- peroxides(ROOHandH O )usingGSH,therebyprotectingmamma- ingprimarycellulardefensemechanisms. 2 2 lian cells against oxidative damage and also reducing cellular lipid hydroperoxides(Jornotetal.,1998).Undernormalconditions,more Regulatoryissues than95%oftheglutathione(GSH)inacellisreducedandsothein- tracellularenvironmentisusuallyhighlyreducing.However,deple- Asfarasthesafetyaspectsofnanomaterialsareconcerned;acade- tion of GSH will lower the reducing capacity of the cell and can mia,industryandregulatorygovernmentalagenciesshouldconsider therefore induce oxidative stress without the intervention of ROS. the unique biological properties of nanomaterials, and the related Free radicals also attack free fatty acids in cell membranesforming potential risks (Curtis et al., 2006; Lanone and Boczkowski, 2006; lipid hydroperoxides. Consequently, lipid peroxidation causes dam- Neletal.,2006).Multidisciplinarystudiesareencouragedtoestab- age to cell membrane. Oxidative stress induced by nanoparticles is lish nanomaterials classification and testing procedures which reported to enhance inflammation through upregulation of redox- wouldincludetoxicology,materialscience,medicine,molecularbiolo- sensitive transcription factors including nuclear factor kappa β gy, and bioinformatics (Curtis et al., 2006; Lanone and Boczkowski, (NFκβ),activatingprotein1(AP-1),extracellularsignalregulatedki- 2006).Regulatoryaspectsonthesynthesis,useanddisposalofnano- nases (ERK) c-Jun, N-terminal kinases, JNK, and p38 mitogen- particlesarebeyondthescopeofthisreview. activated protein kinases pathways (Curtis et al., 2006; Kabanov, 2006). The possible pathophysiological outcomes of effects due to Methodsforassessingtoxicityofnanomaterials nanomaterials have been concisely complied and presented in Table2.Generallyspeaking,biologicalsystemsareabletointegrate Aswithanyotherman-madematerials,bothinvitroandinvivo multiple pathways of injury into a limited number of pathological studies on biological effectsof nanoparticles need to be performed. outcomes,suchasinflammation,apoptosis,necrosis,fibrosis,hyper- Invitromodelsystemsprovidearapidandeffectivemeanstoassess trophy, metaplasia, and carcinogenesis (Table 2). However, even if nanoparticles for a number of toxicological endpoints. They also nanomaterials do not introduce new pathology, there could be allowdevelopmentofmechanism-drivenevaluationsandprovidere- novelmechanismsofinjurythatrequirespecialtools,assays,andap- finedinformationonhownanoparticlesinteractwithhumancellsin proachestoassesstheirtoxicity.Specificbiologicalandmechanistic many ways. Such studies can be used to establish concentration– pathways can be elucidated under controlled conditions in vitro; effect relationships and the effect-specific thresholds in cells. these,inconjunctionwithinvivostudieswouldrevealalinkofthe These assays are suited for high-throughput screening of an ever mechanismofinjurytothepathophysiologicaloutcomeinthetarget increasing number of new engineered nanomaterials obviating organ(Neletal.,2006). the need for in vivo testing of individual materials. They also serve as well defined systems for studying the structure–activity Genotoxicityandimmunogenicpotential relationshipsinvolvingnanomaterials. Someofthedistinctadvantagesofinvitrosystemsusingvarious Reactiveoxygenspecies(ROS),duetotheirhighchemicalreactiv- celllinesinclude;(1)revelationofprimaryeffectsoftargetcellsin ity can react with DNA, proteins, carbohydrates and lipids in a de- theabsenceofsecondaryeffectscausedbyinflammation;(2)identifica- structivemannercausingcelldeatheitherbyapoptosisornecrosis. tionofprimarymechanismsoftoxicityintheabsenceofthephysiolog- Themostfrequentlyaffectedmacromoleculesarethosegenesorpro- ical and compensatory factors that confound the interpretation of teins,whichhaverolesinoxidativestress,DNAdamage,inflamma- whole animal studies; (3) efficiency, rapidity and cost-effectiveness; tion orinjurytotheimmunesystem.Forexample, sub-micronic to and (4) scope for improvements in design of subsequent expensive nanometer-sizedpreparationsofSiO werefoundtoincreasearachi- wholeanimalstudies(Huangetal.,2010).Otheradvantagessuchasre- 2 donicacidmetabolismeventuallyleadingtolunginflammationand duction in variability between experiments; reduced requirement of pulmonarydiseaseaswellasexpressioningenesdirectlyrelatedto test materials thereby leading to generation of limited amounts of inflammation (Driscoll et al., 1996; Englen et al., 1990). Similar re- toxicwastes;possibilityofusingtransgeniccelllinescarryinghuman sults were obtained by Ishihara et al. (1999) for nanometer sized genes etc. have been discussed in a review by Takhar and Mahant TiO particlesandTiO whiskers(widthof140nm).Basedondetailed (2011).Utilityofsuchassayshasalsobeendemonstratedinassessment 2 2 analysesofstudieswhichinvestigatedthemechanismsofthesead- ofpulmonaryhazardsduetofineandnanoscalematerials(Sayesetal., verseeffects,severalresearchershaveputforththeconceptofprima- 2009;Warheitetal.,2009). ryversussecondarygenotoxicity(Knaapenetal.,2004;MacNeeand The potential dangers of exclusive use of in vitro testing have Donaldson,2003;VallyathanandShi,1997).Genotoxicitydirectlyre- been documented by Donaldson et al. (2009) and the authors latedtotheexposureofthe‘substance’isreferredtoasprimarygen- statethatcellsinculturedonotexperiencetherangeofpathogen- otoxicity. Secondary genotoxicity is the result of the ‘substance’ iceffectsthatarelikelytobeobservedinvivo;whicharepartlyre- interactingwithcellsortissuesandreleasingfactors,which,inturn, lated to issues of translocation, toxicokinetics and coordinated cause adverse effects such as inflammation and oxidative stress. tissue responses. The latter is the most under-researched area in Mostinvestigationsongenotoxicityandcellularinteractionsofengi- toxicology. In another study, Monteiro-Riviere et al. (2009) have neerednanomaterialsarelimitedtoscreeningforcytotoxicity.Afew observed that classical dye-based assays such as MTT and neutral studies have focused on immunological responses of nanoparticles. red(NR) thatdeterminecell viability produce invalidresults with Moghimi et al. (2005) showed that PEG-grafted liposome infusion some nanomaterials due to interaction and/or adsorption of the triggered non-IgE-mediated signs of hypersensitivity whereas dye/dye products. Further, carbon nanomaterials interact with peptide-functionalized carbon nanotubeswereshownto formim- assaymarkerstocausevariableresultswithclassicaltoxicologyas- munogeniccomplexes,enhancingtheantibodyresponse(Curtiset saysandmaynotbesuitableforassessingnanoparticlescytotoxic- al.,2006).Thesestudieshighlighttheneedforundertakingfurther ity. Thus the authors indicate the lower utility of in vitro assays investigations on the antigenicity (capacity to evoke immune re- using human cell lines. The interaction of fluorimetric dyes with sponse)ofnanoparticles per se andtheircomplexes(with cellular dextran coated SPIONS has been reported by Griffiths et al. biomolecules) as well as the resulting specific immune responses (2011);suchinteractionsneedseriousconsiderationincytotoxici- (Curtisetal.,2006;LanoneandBoczkowski,2006).Interactionsof ty assays. In a recent article by Dhawan and Sharma (2010) the nanomaterials with eukaryotic cells have been recently reviewed methods for both in vitro and in vivo toxicity of nanomaterials by Shvedova et al. (2010) with reference to recognition of have been reviewed. The authors discussed interferences in in 158 S.Aroraetal./ToxicologyandAppliedPharmacology258(2012)151–165 vitro assays (due to the unique physico-chemical properties of study mechanisms underlying toxicity a combination of assays is nanomaterials), as well as major challenges for in vivo assays oftenrequired. such as dosimetry, optimization of dispersion, evaluation of inter- actions and biodistribution etc. Hence it is essential that multiple Hemolysis. Invitrohemolysisisatesttoevaluatethebiocompati- assaysbeemployeddependingonthetypeofnanomaterialinad- bilityofnanoparticles. Inthisassaytheimpactofphysico-chemical ditiontoimagingtechniquessuchastransmissionelectronmicros- characteristics of nanoparticles viz., size, porosity and surface func- copytovalidatechemicalmarker-basedviabilityassays. tionalityonhumanredbloodcells(RBCs)isevaluatedbyquantifying the release of hemoglobin. Mesoporous SiO and amine-modified 2 SiO were observed to exhibit reduced hemolysis in comparison Currentlyusedinvitromethodsinnanotoxicology 2 withbareSiO (Yuetal.,2011). 2 Presently,in absenceofanyclear guideline(s) by theregulatory agencies on the testing/evaluation of nanoparticulate materials, in Genotoxicityassays. Thecytotoxiceffectsforalmostallkindsofme- vitro studies (using established cell lines and primary cells derived tallic,metaloxide,semiconductornanoparticles,polymericnanoparticles from target tissues) become extremely relevant and important. In andcarbonbasednanomaterialsetc.havebeenreported.Forestablishing general, all the current experimental techniques of cellular biology ‘safe’nanotechnologyitwouldbenecessarytoprovenon-genotoxicna- and toxicology can be employed for nanotoxicological studies tureofthenanomaterialinquestion.Severalgenotoxicityassayscanbe (Monteiro-RiviereandTran,2007).Thetechniquesthatcanbeused carriedoutinvitro.Forexample,inarecentarticlebyGonzalezetal. toassesstoxicityofnanomaterialsinclude(1)invitroassaysforcell (2011)theapplicabilityofinvitromicronucleus(MN)assayasdescribed viability/proliferation,mechanisticassays[ROSgeneration,apoptosis, inOECDguidelinefortestingnanomaterialsisreviewed.Severaltypesof necrosis,DNAdamagingpotential](2)microscopicevaluationofin- nanomaterialswereshowntoinduceasignificantincreaseofMNfre- tracellular localization [include SEM-EDS, TEM, AFM, Fluorescence quencies. Based on the micronucleus test (MNinv) data on 21 spectroscopy,MRI,VEDICmicroscopy](3)geneexpressionanalysis, nanomaterials,itwasproposedthattheinvitroMNtestisquiteappro- high-throughputsystems(4)invitrohemolysisand(5)genotoxicity priate to screen nanoparticles for potential genotoxicity. However it etc. wasrecommendedthatprotocolsshouldbeformulatedtoastoachieve Thefirststeptowardsunderstandinghowanagentwillreactin maximumsensitivityandavoidfalsenegatives.Determinationofthecel- the body often involves cell-culture studies. Compared to animal lulardose,cytochalasin-Btreatment,timeofexposure,serumlevelsand studies,invitrostudiesarelessethicallyambiguous,areeasiertocon- choiceofcytotoxicityassaywasadvisedforabetterinterpretationofMN trolandreproduceandarelessexpensive.Inthecaseofcytotoxicity, frequencyresults. itisimportanttorecognizethatinadditiontotheconcentrationof Thecometassayisawidelyusedinvitroassayinfundamentalre- thepotentiallytoxicagentbeingtested,cellsinculturearesensitive search for DNA damage and repair, in genotoxicity testing of novel tochangesintheirenvironmentsuchasfluctuationsintemperature, chemicals and pharmaceuticals, environmental biomonitoring and pH,nutrientandwasteconcentrations.Therefore,controllingtheex- humanpopulationmonitoring.Ithasbeenemployedfortoxicityas- perimental conditions is crucial to ensure that the measured cell sessmentofnanoparticles.InthearticlebyKarlsson(2010)atleast deathcorrespondstothetoxicityoftheaddednanoparticlesversus 46 cellular in vitro studies and several in vivo studies using the theunstableculturingconditions. Inaddition,asnanomaterialscan cometassayhavebeenreviewed.Thesestudieshadusedthecomet adsorbdyesandcanberedoxactive,itisimportantthatthechoice assaytoinvestigatethetoxicityofmanufacturednanoparticles.Find- of the cytotoxicity assay is appropriate. Conductingmultipletestsis ingsindicatethatmajorityofthenanoparticlesexhibitedhighreac- advantageoustoensurevalidconclusionsaredrawn(Lewinskietal., tivity and cause DNA strand breaks or oxidative DNA lesions. 2008). Consideringthesensitivityoftheassayitcanenabletheassessment In vitro cytotoxicity studies of nanoparticles using different cell oftheirrelativepotency.However,theauthoralsostatesthat,addi- lines,incubationtimesandcolorimetricassayswithdifferentnano- tional methods to measure DNA damage/genotoxicity should be materials are increasingly being published. It should also be borne employedandmorestudiesinvestigatingmutagenicitywouldprove inmindthatwhilethenumberofnanomaterialstypesandapplica- valuable. tionscontinuestoincrease,studiestocharacterizetheireffectsafter AmesTest(orBacterialReversionMutationTest)isyetanotherin exposure and to address their potential toxicity are comparatively vitro assay used to assess the genotoxic potential of nanomaterials. few(Lewinskietal.,2008).Itcanbesaidthatrelativelyfewernumber Thetestemployshistidinedependent(auxotrophic)mutantstrains ofassayshavebeenusedtoassessthecytotoxicpotentialofawhole ofSalmonellatyphimurium.Thistestisusuallyemployedasanadjunct rangeofnanomaterialsfromcarbonnanotubestometallicnanoparti- techniquebecauseitisdifficulttointerpretthedatageneratedina clestosemiconductornanoparticleswithcompletelydiverseapplica- prokaryoticsystemtoaeukaryoticgenotoxicitytesting.Furthermore tions. As is clear from the literature, for nanomaterials, the major resultscouldbeambiguousinsomeinstanceswhencertainnanoma- biologicaleffectsinvolveinteractionswithcellularcomponentssuch terialsarenotabletocrossthebacterialwallorinsituationswhere astheplasmamembrane,organellesorgeneticmaterial.Itisimpor- thenanomaterialsarebactericidal. tant to perform cytotoxicity studies for each nanomaterial type be- Singhetal.(2009)havereviewedtheabilitiesofmetalnanoparti- cause of their unique biological response (Lewinski et al., 2008). cles,metal-oxidenanoparticles,quantumdots,fullerenes,andfibrous SimilarobservationswerereportedbyKrolletal.(2011)for23engi- nanomaterials,withreferencetotheirpotentialtodamageorinteract neerednanomaterialswhichweretestedusingtendifferentcelllines withDNA.Inthesestudieschromosomalfragmentation,DNAstrand inthreedifferentassays.Accordingtotheauthors,invitrotoxicityof breakages, point mutations, oxidative DNA adducts and alterations the analyzed engineered nanomaterials was not attributed to a de- in gene expression profiles have largely been assessed based on in fined physicochemical property and the accurate identification of vitroassaysforthediversegroupofmaterialsstudied.Studiesonneu- nanomaterial cytotoxicity would requirea matrixbased on a set of rologicaleffectsofnanoparticleshavebeenreviewedbyYangetal. sensitivecelllinesandinvitroassaysmeasuringdifferentcytotoxicity (2010);moststudiesfocusontheinteractionbetweenCNSneuronal endpoints. Table 3 summarizes the toxicity assays being currently lines(PC-12,CA1andCA3)andnanoparticles(includingCu,CuO,Zn usedforseveralclassesofnanomaterials.Thereisnotasinglemethod andAg).Accordingtotheauthors,morestudiesshouldbefocusedon that is satisfactory forobtaining all theinformation on thetoxicity. biologicalcellsofhippocampalmembrane.InarecentreviewBecker Since differentnanoparticles elicit different biological responses; to et al. (2011) have stated that with the available tests/assays, S.Aroraetal./ToxicologyandAppliedPharmacology258(2012)151–165 159 Table3 Summaryoftoxicityassaysfordifferentnanoparticles. Assay Purpose Usedfornanoparticles References Lightmicroscopy Morphologicalobservations Single-walledcarbonnanotubes(SWNTs) Fioritoetal.(2006) Silvernanoparticles Aroraetal.(2008); Aroraetal.(2009) Neutralredassay Cellviability(lysosomalactivity) Carbonnanotubes, Flahautetal.(2006); Monteiro-Riviereand Inman(2006) Silver,molybdenum,aluminum,ironoxide Hussainetal.(2005) andtitaniumdioxidenanoparticles Titaniumdioxidenanoparticles Shuklaetal.(2011) Colonyformationassay Proliferativecapacity Carbonbasednanomaterials Herzogetal.(2007) Trypanblue Cellviability/cellgrowth(membrane Goldnanoparticles Goodmanetal.(2004) integrity) SWNTs Bottinietal.(2006) Calceinacetoxymethyl(calceinAM)/ Cellviability(cellmetabolicactivity/ Fullerenes, Sayesetal.(2004) ethidiumhomodimer membraneintegrity) Goldnanoshells Hirschetal.(2003) Looetal.(2004) Lactatedehydrogenase(LDH) Cellviability(membraneintegrity) Carbonnanoparticles Sayesetal.(2004); Mulleretal.(2005), Uoetal.(2005) Tetrazoliumsalts(MTT,MTS,XTT,WST) Cellviability/cellgrowth(cell Fullerenes Sayesetal.(2004) metabolicactivity) Carbonnanoparticles Flahautetal.(2006) Monteiro-Riviereand Inman(2006) Silvernanoparticles Aroraetal.(2008), Aroraetal.(2009) TiO2,SiCnanoparticlesormulti-walled Barilletetal.(2010) carbonnanotubes(MWCNT). 23engineerednanomaterialsincludingTiO2, Krolletal.(2011) CeO2,carbonblack AlOOH,Ti–Zr,Al–Ti–Zr,ZrO2,BaSO4,SrCO3 ResazurinorAlamarblue Cellviability/cellgrowth(cell Quantomdots, Selverstovetal. metabolicactivity) (2006),Selvanetal. (2005) Propidiumiodide Cellviability/cellgrowth/apoptosis Carbonnanoparticles Pantarottoetal. (membranepermeability) (2004),Kametal. (2004),Kostareloset al.(2007) SiO2nanoparticles Yuetal.(10.1021/nn2013904 LDHassay Celldeath 23engineerednanomaterialsincludingTiO2, Krolletal.(2011) CeO2,carbonblack AlOOH,Ti–Zr,Al–Ti–Zr,ZrO2,BaSO4,SrCO3 DNAladdering Biochemicalhallmarkofapoptosis Silvernanoparticles Gopinathetal.(2008), Aroraetal.(2008) Acridineorange/ethidiumbromide Apoptosis/necrosis Silvernanoparticles Gopinathetal.(2008), Aroraetal.(2008), Aroraetal.(2009), Jainetal.(2009) Caspase-3activity Apoptosis Silvernanoparticles Aroraetal.(2008), Aroraetal.(2009), Jainetal.(2009) Levelsofreduced(GSH)andoxidized Oxidativestress Polymericnanoparticles Fernandez-Urrusuno (GSSG)glutathione,superoxide etal.(1997) dismutase(SOD),glutathione peroxidase(GPx),catalase(CT),ROS production ROSproductionandlevelsofGSH Oxidativestress Silver,molybdenum,aluminum,ironoxide Hussainetal.(2005) andtitaniumdioxidenanoparticles, VitaminE,levelsofGSHandlipid Oxidativestress SWNTs Shvedovaetal.(2003) peroxidation LevelsofGSHandlipidperoxidation Oxidativestress C60fullerenes Sayesetal.(2005) LevelsofGSH,GPx,SOD,catalase(CT)and Oxidativestress Silvernanoparticles Aroraetal.(2008), lipidperoxidation Aroraetal.(2009), Jainetal.(2009) ROSgeneration Oxidativestress Titaniumdioxidenanoparticles Shuklaetal.(2011) DCFassay Oxidativestress 23engineerednanomaterialsincludingTiO2, Krolletal.(2011) CeO2,carbonblack AlOOH,Ti–Zr,Al–Ti–Zr,ZrO2,BaSO4,SrCO3 TiO2,SiC Barilletetal.(2010) nanoparticlesormulti-walledcarbonnanotubes (MWCNT). Transmissionelectronmicroscopy Visualizationofintracellular Fullerenederivatives Foleyetal.(2002) localization Ultrafineparticulates Lietal.(2003) Silvernanoparticles Aroraetal.(2009), Jainetal.(2009) Titaniumdioxidenanoparticles Shuklaetal.(2011) (continuedonnextpage) 160 S.Aroraetal./ToxicologyandAppliedPharmacology258(2012)151–165 Table3(continued) Assay Purpose Usedfornanoparticles References Synchrotronradiationbasedtechniques Biodistributionofnanoparticlesinvitro NanoscaleZerovalentiron,Titanium Wangetal.(2010) andinvivo,interactionswithbiological dioxide,ZnO,CeO2etc. systemsincludingROSgeneration, chemicalspeciationetc. Cellularuptakeusingradiolabelled Cellularuptake Cobaltnanoparticles Pontietal.(2009) nanoparticles Invitromicronucleustest Genotoxicity Severalclassesofnanoparticles Gonzalezetal.(2011) Alliumcepachromosomedamagetest Genotoxicity Chitosan/Polymethylmethacrylate deLimaetal.(2010) nanoparticles Cometassay DNAdamage metalnanoparticles,carbonbased Karlsson(2010) nanomaterials,magneticnanomaterials, metaloxidenanoparticlesetc. TiO2,SiC Barilletetal.(2010) nanoparticlesormulti-walledcarbon nanotubes (MWCNT). Colonyformingefficiencytest Cytotoxicity, Cobaltnanoparticles Pontietal.(2009) Hemoglobinestimation Hemolysis SiO2nanoparticles Yuetal.(2011) carcinogenicityofnanomaterialscanonlybeassessedonacase-by- (‘signatures’) for thousands of different nanomaterials in order to casebasis. promote the safe development of such materials. The authors also point out that, HTS will not replace conventional toxicology but Newermethodstoassessnanomaterialtoxicity couldaidintheprioritizationofnanomaterialsforfurthertesting;in- cluding animal testing. HTS may also allow for the development of Based on measurements of certain physical parameters such as modelsthatpredictbehaviorofnanoparticlesinbiologicalsystems. size,zetapotentialandbiologicalpropertysuchaslactatedehydroge- Similar to the above report, George et al. (2011) describe use of naserelease,SayesandIvanov(2010)havedevelopedamathemati- multi-parametric,automatedscreeningassaythatincorporatessub- cal model to provide insights on how engineered nanomaterial lethal and lethal cellular injury responses to perform high- featuresinfluencecellularresponses.Thestudyprovesthatpredictive throughput analysis of a batch of commercial metal/metal oxide computationalmodelsforbiologicalresponsescausedbyexposureto nanoparticles(nano-ZnO,Pt,Ag,SiO ,Al O )withtheinclusionofa 2 2 3 nanomaterialscanbedevelopedandappliedtoassessnanomaterial quantumdot(QD1).Thedataoninvitroassayswasco-relatedwith toxicity. invivodatausingzebra-fishembryos.Theapproachwasusedtopre- Withtheadventofnanotechnology,increasinglylargenumbersof dicttoxicityandprioritizenanomaterialsforinvivotesting. compounds have been introduced in the environment and data on toxicityofthesematerialsisrequired.Insuchcases,traditionaltoxic- Eco-toxicology ity testing using animal models is often not possible because it is oftentime-intensive,lowcapacity,expensiveandassessesonlyalim- Toensurea‘safe’nanotechnologyindustrytheneedforproactive ited number of endpoints. North and Vulpe (2010) propose researchintheareaecotoxicologyofnanomaterialshasbeenempha- mechanism-centered high-throughput testing as an alternative ap- sizedNeletal.(2006).Severalassaysforeco-toxicologicaltestingof proach to meet this pressing need for analysis of responses due to nanomaterialshavebeendeveloped.Literatureonthetoxicityofme- the large number and types of nanomaterials. According to the au- tallic nanoparticles to bacteria has been reviewed by Niazi and Gu thorsthisapproachalongwithfunctionaltoxicogenomics(whichis (2009). Various mechanisms that govern toxicity as well as useful- theglobalstudyofthebiologicalfunctionofgenesonthemodulation nessofbacterialsystemstostudytoxicityofmanufacturednanopar- ofthetoxiceffectofacompound),canplayanimportantroleiniden- ticles have been explained. In another study, C suspensions have 60 tifying the essential cellular components and pathways involved in beenshowntobetoxictobacteria(Lyonetal.,2005,2006),fathead toxicityresponse. minnows(Pimephalespromelas)(Zhuetal.,2006),andzebrafishem- Genomearrayshavebeenusedtoassesstheeffectsofnanoparticles. bryos(Usenkoetal.,2007;Zhuetal.,2007).Toxicityofsingle-walled AccordingtoLeeetal.(2010)theinhaledsilvernanoparticlescaused carbonnanotube(SWNT)-basednanomaterialstoanestuarinecope- modulationoftheexpressionofseveralgenesassociatedwithmotor pod(Amphiascustenuiremis),Daphnia,andrainbowtrouthavebeen neurondisorders,neurodegenerativediseaseandimmunecellfunction, reported (Roberts et al., 2007; Smith et al., 2007; Templeton et al., indicatingpotentialneuro-andimmune-toxicity.Accordingtotheau- 2006).Adamsetal.(2006)comparedtheecotoxicitiesofTiO ,ZnO, 2 thorsthesegenesmayassistinthedevelopmentofsurrogatemarkers and SiO nanoparticles suspended in water using Escherichia coli 2 forsilvernanoparticlesexposureand/ortoxicity. andBacillussubtilisastwomodelbacterialspeciesanditwasreported Jin et al. (2010) have reported the utility of high-throughput thatZnOwastoxictoBacillussubtilis.Experimentsonembryoniczeb- screening(HTS)methodsforscreeningtheeffectofsilvernanoparti- rafish demonstrated similar results; ZnO nanoparticles were more clesonbacterialcells.Thishelpsformonitoringtheecologicaleffects toxicthanTiO orAl O nanoparticles(Zhuetal.,2008).Moreover, 2 2 3 ofnanoparticles.SimilarstudieswereperformedwithZnOandiron Hund-RinkeandSimon(2006)reportedthefirstresultsonthetox- dopedZnOparticles(Lietal.,2011).Sadiketal.(2009)describepor- icityofTiO nanoparticlestoDaphnia (acommon freshwater zoo- 2 table, dissolved oxygen electrochemical sensor arrays capable of plankton) and green algae (Desmodesmus subspicatus). In a detecting the engineered nanomaterials (quantum dots and fuller- comprehensive study on the 48-h acute toxicity of water suspen- enes) as well as provide rapid nanotoxicological information. Such sions of six manufactured nanomaterials (i.e., ZnO, TiO , Al O , 2 2 3 sensorswillbeofutilitybecauseoftheirportablenature.Feliuand C ,SWCNTs,andMWCNTs)toDaphniamagna,usingimmobiliza- 60 Fadeel(2010)haveextensivelyreviewedHTSmethodsdevelopedin tion and mortality as toxicological endpoints, a dose dependence miniaturizeddevicesforscreeningofnanomaterialstoxicity.Theau- inacutetoxicitywasdemonstrated(Zhuetal.,2009).Withfishhe- thorsclearlystatethegoalofHTS:toutilizerapid,automatedscreen- patocyteculturesasmodelsystemScownetal.(2010)havenoted ing approaches to provide detailed and comparable toxicity data their suitability for studies investigating the cellular uptake of

Description:
(2008) demon- strated that water-soluble rosette nanotube structures display low pul- tration of TiO2 nanoparticles was restricted to the topmost 3–5 corneocyte pable of altering their gene/protein expression (Christie et al., 2006; .. gy, and bioinformatics (Curtis et al., 2006; Lanone and Boc
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.