Short Course Aromatic Heterocyclic Chemistry An Outline of Fundamental Reactivity of Thiophenes, Furans, Pyrroles, Indole and Pyridine Professor Daniel L. Comins Department of Chemistry North Carolina State University N N Raleigh, North Carolina USA H Scheme 1. Typical Reactivity of Thiophenes, Furans and Pyrroles D.Comins-2 Electrophilic Aromatic Substitution: α-Attack Predominates β E E E E α Z Z H Z H Z H Z = S, O, NH, NR H Electron rich heterocycles The heteroatom activates the ring toward electrophilic substitution; mild conditions are generally required. Since these heterocycles are electron rich, they are not E prone to nucleophilic attack. Z Electrophilic Aromatic Substitution: Effect of Substituents major R electron R electron minor minor minor donating withdrawing minor R R Z Z Z Z electron electron major major major donating withdrawing Further information, see: (1) Handbook of Heterocyclic Chemistry, Katritzky and Pozharskii, p. 302-304; (2) Heterocyclic Chemistry, J. A. Joule and K. Mills, 5th Ed., Wiley, 2010. D. Comins-3 Scheme 2. Typical Reactivity of Thiophenes, Furans and Pyrroles Substitution via Ring Metalation: α-Deprotonation Predominates β R-Li E α Li E Z Z Z Z = S, O, NR Electron rich heterocycles Since these heterocycles are electron rich, they undergo deprotonation instead of nucleophilic attack with alkyllithiums. Substitution via Ring Metalation: Effect of Directing Groups DG minor major minor minor DG Z Z major D.Comins-4 Scheme 3. General Synthesis of Thiophenes, Furans and Pyrroles Preparation from 1,4-Dicarbonyl Compounds: The Paal-Knorr Synthesis The Paal-Knorr Synthesis is a synthetically valuable method that generates either furans, pyrroles, or thiophenes from 1,4-diketones. H+ R R R R O O O R'-NH 2 R R R R N O O R' P S 4 10 R R R R S O O Scheme 4. Reactions of Thiophenes D. Comins-5 Electrophilic Aromatic Substitution: Nitration NO 2 β conc. HNO , Ac O 3 2 α AcOH, 0 °C NO S S 2 S 70 % 6 : 1 acetyl nitrate O N 2 NO 2 NO O N NO 2 NO 2 2 S 2 S S 1 : 1 conc. HNO 3 (CF CO) O S 3 2 NO2 S 78 % Katritzky, et. al., ARKIVOC, 2005, 179. D. Comins-6 Scheme 5. Reactions of Thiophenes Electrophilic Aromatic Substitution: Nitration-cont. O N NO 2 2 NO 2 Me Me Me S S S major minor Me Me Me NO 2 O N NO 2 2 S S S minor major D. Comins-7 Scheme 6. Reactions of Thiophenes Electrophilic Aromatic Substitution: Sulfonation ClSO H, PCl , rt 3 5 70% SO Cl 2 S S Scheme 7. Reactions of Thiophenes D. Comins-8 Electrophilic Aromatic Substitution: Halogenation The rate of halogenation of thiophene at rt is about 108 x that of benzene. 1 eq. NCS, cat. HClO 4 Cl hexane, rt, 12 h S S 88% 1 eq. NBS, cat. HClO 4 hexane, rt, 1 h Br S S 90% 2 eq. NBS, cat. HClO 4 Br Br hexane, rt, 24 h S S 95% Reference: Goldberg and Alper, J. Org. Chem. 1993, 58, 3072. Scheme 8. Reactions of Thiophenes D. Comins-9 Electrophilic Aromatic Substitution: Halogenation-cont. 1 eq. NBS, cat. HClO 4 Br Me Me hexane, rt, 18 h S S 80% 1 eq. NCS, cat. HClO 4 I hexane, rt, 24 h Cl I S S 70% Br Br 1 eq. NBS, cat. HClO 4 Br hexane, rt, 24 h S S 93% Reference: Goldberg and Alper, J. Org. Chem. 1993, 58, 3072. Scheme 9. Reactions of Thiophenes D. Comins-10 Electrophilic Aromatic Substitution: Halogenation-cont. Br 3 eq Br , 48% HBr 2 Br Br rt to 75 °C S S 75% Br Zn/AcOH, heat Br 90% S Br Br Br NaBH , Pd cat. S 4 MeCN, reflux Br S 83% Note: Zinc/AcOH will selectively remove α-halogens from polyhalothiophenes. Reference: See: Heterocyclic Chemistry, J. A. Joule and K. Mills, 5th Ed., Wiley, 2010.
Description: