ARNOLD PIZER MATHSummer 2001 Homework Set0due1/1/05at2:00AM This (cid:2)rst set(set0)isdesignedto acquaintyouwith usingWeBWorK. Yourscoreonthis setwill not becounted towardyour (cid:2)nalgrade Youmayneedto give4or5signi(cid:2)cant digitsfor some((cid:3)oatingpoint)numericalanswersin ordertohavethemacceptedbythe computer. First enter the function sin x. When enteringthe function, 1.(1pt)set0/prob1.pg you shouldenter sin(x), but WeBWorK will also accept sin x This problem demonstrateshow you enter numerical answers or even sinx. If you remember your trig identities, sin(x) = - intoWeBWorK. cos(x+pi/2)and WeBWorK will accept this or anyother func- Evaluatetheexpression3( 7)(10 1 2(7)): tionequaltosin(x),e.g.sin(x)+sin(x)**2+cos(x)**2-1 (cid:0) (cid:0) (cid:0) In the case aboveyouneed to enter a number, since we’re testing whetheryoucanmultiplyout thesenumbers. (Youcan Wesaidyoushouldentersin(x)eventhoughWeBWorKwill useacalculatorifyouwant.) alsoacceptsinxorevensinxbecauseyouarelesslikelytomake Formostproblems,youwill beabletogetWeBWorK to do amistake. Tryenteringsin(2x)withouttheparenthesesandyou someoftheworkforyou.Forexample may be surprisedat what youget. Use the Preview button to Calculate(-7)*(10): see what youget. WeBWorK will evaluatefunctions (such as Theasteriskiswhatmostcomputersusetodenotemultipli- sin)beforedoinganythingelse,sosin2xmeans(cid:2)rstapplysin cationandyoucanusethiswithWeBWorK.ButWeBWorKwill whichgivessin(2)andthenmutiplebyx.Tryit. alsoallowyoutouseaspacetodenotemultiplication. Youcan either 7 10or-70oreven 710. Allwillwork.Trythem. Nowenterthefunction2cost. Notethisisafunctionoftand (cid:0) (cid:3) (cid:0) Now try calculating the sine of 45 degrees ( that’s sine notx.Tryentering2cosxandseewhathappens. of pi over 4 in radians and numerically sin(pi/4) equals 0.707106781186547or,moreprecisely,1=p2). Youcanenter thisassin(pi/4),assin(3.1415926/4),as1/sqrt(2),as2**(-.5), 3.(1pt)set0/prob1b.pg etc. This isbecauseWeBWorK knowsaboutfunctionslikesin Thisproblemwillhelpyoulearntherulesofprecedence,i.e. the and sqrt (square root). (Note: exponents can be indicated by orderinwhichmathematicaloperationsareperformed.Youcan eithera(cid:148)caret(cid:148)or**). Tryit. useparentheses(andalsosquarebrackets[]and/orcurlybraces sin(p=4)= )ifyouwanttochangethenormalwayoperationswork. fg Here’s the listofthefunctions which WeBWorK under- So (cid:2)rst let us review the normal way operations are per- formed. stands. WeBWorK ALWAYS uses radian mode for trig func- Therules aresimple. Exponentiationisalwaysdonebefore tions. Youcanalsousejuxtapositiontodenotemultiplication. E.g. multiplicationanddivision andmultiplicationanddivision are enter2sin(3p=2). Youcanenterthisas2*sin(3*pi/2)ormore alwaysdonebefore additionandsubtraction. (Mathematically simplyas2sin(3pi/2).Tryit: wesayexponentiationtakesprecedenceovermultiplicationand division,etc.). Forexamplewhatis1+2*3? Sometimesyouneedtouse()’stomakeyourmeaningclear. andwhatis2 32? E.g. 1/2+3is3.5,but1/(2+3)is.2Why?Tryenteringbothand (cid:1) usethe(cid:147)Preview(cid:148)buttonbelowtoseethedifference.Inaddition Nowsometimeyouwanttoforcethingstobedoneinadifferent to()’s,youcanalsouse[]’sand ’s. fg way. This is whatparenthesesareusedfor. Theruleis: what- You can alwaystry to enter answers and let WeBWorK do everisenclosedinparenthesesisdonebeforeanythingelse(and thecalculating. WeBWorKwill tellyouiftheproblemrequires thingsintheinnermostparenthesesaredone(cid:2)rst). a strict numericalanswer. The way we use WeBWorK in this Forexamplehowdoyouenter class there is no penalty for getting an answer wrong. What 1+sin(3) counts is that you get the answer right eventually (before the ? 2+tan(4) due date). For complicatedanswers, youshouldusethe (cid:147)Pre- view(cid:148) button to checkfor syntaxerrors andalso to checkthat Hint: thisis agoodplaceto use[ ]’sandalsoto usethe(cid:147)Pre- theansweryouenterisreallywhatyouthinkitis. view(cid:148)button. 2.(1pt)set0/prob1a.pg Herearesomemoreexamples: Thisproblemdemonstrateshowyouenterfunctionanswersinto (1+3)9=36, (2*3)**2=6**2= 36, 3**(2*2)=3**4= 81, WeBWorK. (2+3)**2=5**2=25,3**(2+2)=3**4=81 1 (Here we have used ** to denoteexponentiation and you can 5. Thedistancefromxto-5ismorethan1 also use this instead of a (cid:147)caret(cid:148) if you want). Try entering A. 5<x some of these and use the (cid:148)Preview(cid:148) button to see the result. (cid:0) B. x+5 1 The (cid:148)correct(cid:148)result for this answer blank is 36, but by using j j(cid:20) C. x< 5 the(cid:147)Preview(cid:148)button,youcanenterwhateveryouwantanduse (cid:0) D. x+5 >1 WeBWorKasahandcalculator. j j E. x 5 (cid:21)(cid:0) ForthisproblemWeBWorKonlytellsyouthatallyouranswers Thereisoneotherthingtobecarefulof. Multiplicationand arecorrectorthatatleastoneis wrong. This makestheprob- division have the same precedenceand there are no universal lemharderandisusuallyusedonlyforT/Fandmatchingques- rulesasto whichshouldbedone(cid:2)rst. Forexample,whatdoes tions. The idea isto encourageyouto think ratherthanto just 2/3*4mean?(Notethat/isthe(cid:148)divisionsymbol(cid:148),whichisusu- tryguessing. allywrittenasalinewithtwodots,butunfortunately,this(cid:148)line If you are having trouble reading the mathematics on the with two dots(cid:148) symbol is not on computer keyboards. Don’t screen, this means that youare using (cid:148)text(cid:148)mode. If youare thinkof/asthehorizontallineinafraction. Askyourselfwhat usingNetscapeorMSIEthenyoucangetaneasiertoreadver- 1/2/2shouldmean.) WeBWorKandmostothercomputersread sionoftheequationsbyreturningtotheproblemlistpage(use things from left to right, i.e. 2/3*4 means (2/3)*4 or 8/3, IT thebuttonatthetopofthispage)andchoosing(cid:148)formatted-text(cid:148) DOES NOTMEAN2/12. Some computersmaydooperations or(cid:148)typeset(cid:148)insteadof(cid:148)text(cid:148). Sometimesthereisa 15-20sec- from righttoleft. Ifyouwant2/(3*4)=2/12,youhaveto use onddelayinviewingaproblemin(cid:148)typeset(cid:148)modethe(cid:2)rsttime. parentheses.Thesamethinghappenswithadditionandsubtrac- tion. 1-3+2=0but1-(3+2)=-4. This isonecasewhereusing 6.(1pt)set0/prob4/prob4.pg parenthesesevenif theyarenot neededmightbe a goodidea, This problem demonstrates a WeBWorK problem involving e.g. write (2/3)*4eventhoughyoucouldwrite 2/3*4. This is graphics. alsoacasewherepreviewingyouranswercansaveyoualota Thesimplestfunctionsarethelinear(oraf(cid:2)ne)functions(cid:151) griefsinceyouwillbeabletoseewhatyouentered. thefunctionswhosegraphsareastraightline. Theyareimpor- Enter2/3*4andusethePreviewbuttontoseewhatyouget. tantbecausemanyfunctions(theso-calleddifferentiablefunc- tions)(cid:147)locally(cid:148)looklikestraightlines. ((cid:147)locally(cid:148)meansthatif 4.(1pt)set0/prob2.pg wezoomin andlookatthefunctionatverypowerfulmagni(cid:2)- ThisproblemdemonstratesaWeBWorKTrue/Falsequestion. cationitwilllooklikeastraightline.) Enter a T or an F in each answer space below to indicate Enter the letter of the graph of the function which corre- whetherthecorrespondingstatementistrueorfalse. spondstoeachstatement. Youmustgetalloftheanswerscorrecttoreceivecredit. 1. Thegraphofthelineisincreasing 1. 5< 7 (cid:0) (cid:0) 2. Thegraphofthelineisdecreasing 2. 6 1 6 (cid:0) (cid:20) 3. Thegraphofthelineisconstant 3. p 3:1416 (cid:21) 4. Thegraphofthelineisnotthegraphofafunction 4. 8 8 (cid:0) (cid:20)(cid:0) Noticethatifoneofyouranswersiswrongthen,inthisprob- lem,WeBWorK will tell youwhichpartsarewrongandwhich parts areright. This isthebehaviorfor mostproblems,but for true/falseor multiple choicequestionsWeBWorK will usually onlytellyouwhetherornotalltheanswersarecorrect.Itwon’t A B C D tellyouwhichonesarewrong. Theideaistoencourageyouto thinkratherthantojusttryguessing. Thisisanotherproblemwhereyouaren’ttoldifsomeofyour Ineverycaseallof theanswersmust be correctbeforeyou answersareright.(Withmatchingquestionsandtruefalseques- getcreditfortheproblem. tions, thisisthestandardbehavior(cid:150)otherwiseit istoo easyto guessyourwaytotheanswerwithoutlearninganything.) 5.(1pt)set0/prob3.pg Ifyouarehavingahardtimeseeingthepictureclearly,click ThisproblemdemonstratesaWeBWorKMatchingquestion. onthepicture.Itwillexpandtoalargerpictureonitsownpage Matchthestatementsde(cid:2)nedbelowwiththeletterslabeling sothatyoucaninspectitmoreclosely. theirequivalentexpressions. Someproblemsdisplayalinktoawebpagewhereyoucan Youmustgetalloftheanswerscorrecttoreceivecredit. getadditionalinformationorahint:Hint 1. xisgreaterthan-5 2. xisgreaterthanorequalto-5 7.(1pt)set0/prob5.pg 3. xislessthan-5 This problemdemonstratesa WeBWorK questionthatrequires 4. Thedistancefromxto-5islessthanorequalto1 youtoenteranumberorafraction. 2 Evaluatetheexpression j107(cid:0)272j. Giveyouranswerindeci- as correct or incorrect, so you can go back and do problems 25 malnotationcorrecttothreedje(cid:0)cimj alplacesorgiveyouranswer youskippedorcouldn’tgetrightthe(cid:2)rsttime. Onceyouhave asafraction. donea problem correctly it is ALWAYS listed as correcteven ifyougobackanddoit incorrectlylater. This meansyoucan Now that you have (cid:2)nished you can use the (cid:148)Prob. List(cid:148) useWeBWorKtoreviewcoursematerialwithoutanydangerof buttonatthetop ofthepageto returntotheproblemlist page. changingyourgrade. You’ll see that theproblems youhave donehavebeenlabeled PreparedbytheWeBWorKgroup,Dept.ofMathematics,UniversityofRochester, cUR (cid:13) 3 ARNOLD PIZER rochester problib fromCVSJune25,2004 RochesterWeBWorK ProblemLibrary WeBWorKassignmentMAAtutorialdue1/1/05at2:00AM Completethesentence: world! Youcanviewthesource forthisproblem. 5.(1pt)setMAAtutorial/matchinglistexample.pg Youcanviewthesource forthisproblem. 2.(1pt)setMAAtutorial/standardexample.pg Matchinglistexample To see a different version of the problem changethe problem StandardExample seedandpressthe’SubmitAnswer’buttonbelow. Completethesentence: ProblemSeed:Changetheproblemseedtochangetheprob- world; lem:1440 Enterthesumofthesetwonumbers: 3+5= Placetheletterofthederivativenextto eachfunctionlisted Enterthederivativeof below: f(x)=x5 1. x20 2. 2x2 f (x)= 0 3. tan(x) 4. sin(x) Youcanviewthesource forthisproblem. A. 4x1 3.(1pt)setMAAtutorial/simplemultiplechoiceexample.pg B. sec2(x) C. 20x19 Multiplechoiceexample D. cos(x) To see a different version of the problem change the problem Let’s print the questionsagain, but insist that the (cid:2)rst two seedandpressthe’SubmitAnswer’buttonbelow. questions(aboutsinandcos)alwaysbeincluded.Hereisasec- ProblemSeed:Changetheproblemseedtochangetheprob- ondwaytoformatthisquestion,usingtables: lem:2762 Whatisthederivativeoftan(x)? 1. tan(x) A. cos(x) A. (cid:0)cot(x) 23.. scions((xx)) CB.. s(cid:0)ecsi2n((xx)) B. sec2(x) C. tan(x) Andbelow is yet anotherway to enter a table of questions D. cosh(x) andanswers: E. sin(x) Enterthelettercorrespondingtothecorrectanswer: A. cos(x) B. sin(x) Youcanviewthesource forthisproblem. 1. tan(x) C. s(cid:0)ec2(x) 2. sin(x) D. Thederivativeis 4.(1pt)setMAAtutorial/multiplechoiceexample.pg 3. cos(x) notprovided Multiplechoiceexample Youcanviewthesource forthisproblem. To see a different version of the problem change the problem seedandpressthe’SubmitAnswer’buttonbelow. 6.(1pt)setMAAtutorial/truefalseexample.pg ProblemSeed:Changetheproblemseedtochangetheprob- lem:3734 TrueFalseExample To see a different version of the problem changethe problem Whatisthederivativeoftan(x)? seedandpressthe’SubmitAnswer’buttonbelow. A.sin(x) ProblemSeed:Changetheproblemseedtochangetheprob- (cid:15) B.cosh(x) lem:4322 (cid:15) C. cot(x) (cid:15) D.(cid:0)sech(x) Enter T or F dependingonwhetherthe statement istrue or (cid:15) E.tan(x) false.(YoumustenterTorF(cid:150)TrueandFalsewillnotwork.) (cid:15) F.cos3(x) 1. Allclosedsetsarecompact (cid:15) G.sec2(x) 2. Allcompactsetsareclosed (cid:15) 1 3. All differentiable strictly increasing functions have Identify the graphs A (blue), B( red) and C (green) as the non-negativederivativesateverypoint graphsof a function and its derivatives (click on the graph to 4. Allfunctionswithpositivederivativesareincreasing. seeanenlargedimage): isthegraphofthefunction Youcanviewthesource forthisproblem. isthegraphofthefunction’s(cid:2)rstderivative isthegraphofthefunction’ssecondderivative 7.(1pt)setMAAtutorial/popuplistexample.pg Youcanviewthesource forthisproblem. TrueFalsePop-up Example To see a different version of the problem change the problem 9.(1pt)setMAAtutorial/onthe(cid:3)ygraphicsexample2.pg seedandpressthe’SubmitAnswer’buttonbelow. ProblemSeed:Changetheproblemseedtochangetheprob- On-the-(cid:3)yGraphicsExample2 lem:1620 To see a different version of the problem changethe problem seedandpressthe’SubmitAnswer’buttonbelow. Indicatewhethereachstatementistrueorfalse. ProblemSeed:Changetheproblemseedtochangetheprob- lem:451 ? 1. All differentiable strictly increasing functions have WARNING:UseSHIFTreloadwhenrefreshingtomakesure non-negativederivativesateverypoint thattheimageisrefreshed!!!!! ? 2. Allcompactsetsareclosed ? 3. Allclosedsetsarecompact ? 4. Allcontinuousfunctionsaredifferentiable. Youcanviewthesource forthisproblem. 8.(1pt)setMAAtutorial/onthe(cid:3)ygraphicsexample1.pg On-the-(cid:3)yGraphicsExample1 To see a different version of the problem change the problem seedandpressthe’SubmitAnswer’buttonbelow. ProblemSeed:Changetheproblemseedtochangetheprob- lem:1458 WARNING:UseSHIFTreloadwhenrefreshingtomakesure thattheimageisrefreshed!!!!! Identify the graphs A (blue), B( red) and C (green) as the graphsof a function and its derivatives (click on the graph to seeanenlargedimage): isthegraphofthefunction isthegraphofthefunction’s(cid:2)rstderivative isthegraphofthefunction’ssecondderivative Youcanviewthesource forthisproblem. 10.(1pt)setMAAtutorial/staticgraphicsexample/staticgraphicsexample.pg StaticgraphicsExample 2 Toseeadifferentversionoftheproblemchangetheproblemseedandpressthe’SubmitAnswer’buttonbelow. ProblemSeed:Changetheproblemseedtochangetheproblem:2428 ThisisagraphofthefunctionF(x):(Clickonimageforalargerview) Entertheletterofthegraphbelowwhichcorrespondstothetransformationofthefunction. 1. F(x=3) 2. F(x+3) 3. F( x) (cid:0) (cid:0) 4. F(x 3) (cid:0) A B C D Youcanviewthesource forthisproblem. 11.(1pt)setMAAtutorial/hermitegraphexample.pg Hermitepolynomialgraphexample Toseeadifferentversionoftheproblemchangetheproblemseedandpressthe’SubmitAnswer’buttonbelow. ProblemSeed:Changetheproblemseedtochangetheproblem:1823 Wearedevelopingotherwaystospecifygraphswhicharetobecreated’onthe(cid:3)y’. Allofthesenewmethodsconsistofadding macropackagestoWeBWorK.SincetheydonotrequirethecoreofWeBWorKtobechanged,theseenhancementscanbeaddedby anyoneusingWeBWorK. Thesetwopiecewiselineargraphswerecreatedbyspecifyingthepointsatthenodes. Clickonthegraphtoviewalargerimage. 3 Iftheblackfunctioniswrittenas f(x),thentheorangefunctionwouldbewrittenas f( ). Thisgraphwascreatedusingahermitesplinebyspecifyingpointsat x -4 -3 -2 -1 0 1 2 3 4 y 0 1 2 0 2 0.5 1 1 2 yp 0.1 1 0 -2 0 1 2 -3 1 Listtheinternallocalminimumpointsinincreasingorder: Youcanviewthesource forthisproblem. 12.(1pt)setMAAtutorial/htmllinksexample/htmllinksexample.pg Andthetablebelowhasthreemoregraphswhicharestored HTMLlinksexample inthedirectorycontainingthecurrentproblem. This exampleshowshowtolinkto resourcesoutsidetheprob- lemitself. Linkingtootherwebpagesovertheinternetiseasy. Forex- ample, youcan get more information aboutthe buffonneedle problem and how it is used by ants to (cid:2)nd new nest sites by linkingtoIvarsPeterson’scolumnontheMAAsite. Youcanviewthesource forthisproblem. All of the (cid:2)les in the html directory of your WeBWorK 13.(1pt)setMAAtutorial/javascriptexample1.pg coursesite canbe readbyanyonewith awebbrowserandthe URL (the addressofthe(cid:2)le). This isagoodplaceto put(cid:2)les JavaScriptExample1 thatarereferencedbymorethanoneprobleminyourWeBWorK To see a different version of the problem changethe problem course. seedandpressthe’SubmitAnswer’buttonbelow. Here is thelink to thetothecalculatorpage storedin the ProblemSeed:Changetheproblemseedtochangetheprob- toplevelofthehtmldirectoryofthetutorialCourse. lem:3266 Finallythereare(cid:2)les, suchaspicture(cid:2)les,whicharestored withtheproblemitselfinthesamedirectory. 4 13.(1pt)setMAAtutorial/javascriptexample1.pg Find the derivative of the function f(x). The windows below 14.(1pt)setMAAtutorial/javascriptexample2.pg willtellyouthevalueoffforanyinputx.(Icallthisan(cid:148)oracle Find the derivative of the function f(x). The windows below function(cid:148),sinceifyouask,itwilltell.) willtellyouthevalueoffforanyinputx.(Icallthisan(cid:148)oracle f0( 2)= function(cid:148),sinceifyouask,itwilltell.) (cid:0) You may want to use a calculator to (cid:2)nd the result. You f ( 1)= 0 (cid:0) can also enter numerical expressions and have WeBWorK do You may want to use a calculator to (cid:2)nd the result. You thecalculationsforyou. can also enter numerical expressions and have WeBWorK do ThejavaScriptcalculatorwasdisplayedhere thecalculationsforyou. ThejavaScriptcalculatorwasdisplayedhere Youcanviewthesource forthisproblem. Youcanviewthesource forthisproblem. 14.(1pt)setMAAtutorial/javascriptexample2.pg 15.(1pt)setMAAtutorial/vector(cid:2)eldexample.pg JavaScriptExample2 To see a different version of the problem changethe problem To see a different version of the problem change the problem seedandpressthe’SubmitAnswer’buttonbelow. seedandpressthe’SubmitAnswer’buttonbelow. ProblemSeed:Changetheproblemseedtochangetheprob- ProblemSeed:Changetheproblemseedtochangetheprob- lem:3710 lem:2414 Matchthefollowingequationswiththeirdirection(cid:2)eld. Clickingoneachpicturewillgiveyouanenlargedview. Whileyoucan probablysolvethisproblembyguessing,itisusefultotrytopredictcharacteristicsofthedirection(cid:2)eldandthenmatchthemtothe picture. Herearesomehandycharacteristicstostartwith(cid:150)youwilldevelopmoreasyoupractice. A. Setyequaltozeroandlookathowthederivativebehavesalongthexaxis. B. Dothesamefortheyaxisbysettingxequalto0 C. Considerthecurveintheplanede(cid:2)nedbysettingy’=0(cid:150)thisshouldcorrespondtothepointsinthepicturewheretheslope iszero. D. Settingy’ equalto aconstantother thanzerogivesthecurveofpointswheretheslopeis thatconstant. Thesearecalled isoclines,andcanbeusedtoconstructthedirection(cid:2)eldpicturebyhand. 1. y =2y+x2e2x 0 2. y =2sin(x)+1+y 0 3. y = 2+x y 0 (cid:0) (cid:0) 4. y =y+2 0 A B 5 C D WeBWorK can use existing javaScript and Java code to Youcanviewthesource forthisproblem. augmentitscapabilities. 16.(1pt)setMAAtutorial/conditionalquestionexample.pg Thejavaappletwasdisplayedhere Thegraphaboverepresentsthefunction Conditionalquestionsexample If f(x)=23x+11,(cid:2)nd f ( 6). f(x)=x2+ax+b 0 (cid:0) whereaandbareparameters. 17.(1pt)setMAAtutorial/javaappletexample.pg Foreachvalueofa(cid:2)ndthevalueofbwhichmakesthegraph justtouchthex-axis. Javaappletexample ifa=1.5then To see a different version of the problem change the problem ifa=-2.5then seedandpressthe’SubmitAnswer’buttonbelow. ifa=1then ProblemSeed:Changetheproblemseedtochangetheprob- Doesthisrelationshipbetweenaandbspecifybasafunction lem:2927 ofa? (YesorNo) WARNING:UseSHIFTreloadwhenrefreshingtomakesure Doesthisrelationshipbetweenaandbspecifyaasafunction thattheimageisrefreshed!!!!! ofb? (YesorNo) Writeaformulaforcalculatingthisvalueofbfroma. ThisproblemillustrateshowyoucanembedJavaappletcode b= inaWeBWorKexampletocreateaninteractivehomeworkprob- lemthatcouldneverbeprovidedbyatextbook. Youcanviewthesource forthisproblem. PreparedbytheWeBWorKgroup,Dept.ofMathematics,UniversityofRochester, cUR (cid:13) 6 ARNOLD PIZER rochester problib fromCVSJune25,2004 RochesterWeBWorK ProblemLibrary WeBWorKassignmentSampleAnswersdue1/2/05at2:00AM 1.(1pt)setSampleAnswers/sample numans.pg Nextenterthestring(cid:147)AcDdB(cid:148).Allspacesareignoredso This problem demonstratesvarious WeBWorK proceduresfor (cid:147)AcDdB(cid:148)and(cid:147)AcDdB(cid:148)arevalidanswers. dealingwithnumericalanswers. Inparticular,byenteringsyn- Thisusesordered cs str cmp tacticallyincorrectanswers,youcanseetheerrormessagesgen- eratedbyWeBWorK. Note thatexponentiationcanbe denoted Enterthestring(cid:147)AcDdB(cid:148)again.Thistimespacesandcase by**or(cid:136).SeeAnswerEvaluators fordocumentationonthese areignoredso(cid:147)acddb(cid:148)and(cid:147)ACDDB(cid:148)arevalidanswers. procedures. Thisusesordered str cmp Enterthenumber52.1.Youareonlyallowedtoenteranum- ber(e.g.52.1,5.21E1,521E-1,etc.) Enterthestring(cid:147)AcDdB(cid:148)oncemore. Nowtheorderand Thisusesstrict num cmp spacesareignoredso(cid:147)ABcDd(cid:148)and(cid:147) BdDcA(cid:148)arevalidan- swers. Enterthenumber52.1again.Thistimeyoucanenteranum- Thisusesunorderedcs str cmp berorfraction(e.g. 52.1,521/105.21/.1etc.) Thisusesfrac num cmp Finallyenterthestring(cid:147)AcDdB(cid:148)onelasttime. Thistime theorder,spaces,andcaseareignoredso(cid:147)abcdd(cid:148)and(cid:147)BDd Enterthenumber52.1athirdtime. This timeyoucanenter CA(cid:148)arevalidanswers. anyarithmeticexpressionequaling52.1(e.g. 52.1,100/2+3-.9, Thisusesunorderedstr cmp (5*10**2+21)/10,etc.) Thisusesarith num cmp Youcanviewthesource forthisproblem. Finallyenterthenumber52.1afourthtime.Nowyoucanen- 3.(1pt)setSampleAnswers/sample funans.pg teranyexpressioninvolvingelementaryfunctionswhichequals This problem demonstratesvarious WeBWorK proceduresfor 52.1(e.g.52.1,50.1+ln(e**2),tan(pi/4)+ln(exp(2))+cosh(0)- dealingwith answersinvolvingfunctions. Inparticular,byen- 1.9+arcsin(0)+5*sqrt(10**2),etc.). SeeAvailableFunctions tering syntactically incorrect answers, you can see the error for details on enteringexpressionsinvolving elementary func- messagesgeneratedbyWeBWorK.Notethatexponentiationcan tions. bedenotedby**or(cid:136).SeeAnswerEvaluators fordocumenta- Thisusesstd num cmp tionontheseprocedures. SeeAvailableFunctions fordetails onenteringexpressionsinvolvingelementaryfunctions. Youcanviewthesource forthisproblem. Enter the derivative of sin(x) (e.g. cos(x), sin(x+pi/2), 2.(1pt)setSampleAnswers/sample strans.pg cos(x)**2+cos(x)+sin(x)**2-1,etc.) This problem demonstratesvarious WeBWorK proceduresfor Thisusesfunction cmp dealingwith stringanswers. SeeAnswerEvaluators fordoc- umentationontheseprocedures. Next enter the derivative of sin(t) on the interval Enter the string (cid:147)Hi there.(cid:148) without the quotes but don’t ( p=2;p=2). Note that now the variable is t and that (cid:0) forgettheperiod.Spacesbeforethe(cid:147)H(cid:148)andafterthe(cid:147).(cid:148)areig- sqrt(cos(t)**2)isavalidanswer. nored,butotherwiseyoumustenterthestringexactlyasgiven Thisusesfunction cmpwithparametersspecifyingthevariable with2spacesbetweenthewords.Actually,viewingthisinhtml, andinterval youwillnotseethetwospaces,buttheyarereallythere. Thisusesstrict str cmp Finallyentertheantiderivativeofx +sin(x)(e.g. .5*(x**2) - cos(x), (1/2)*(x**2) - cos(x) + 3, sin(x)**2 + cos(x)**2 + Nowenterthestring(cid:147)Hi there.(cid:148) again. Thistimeallmulti- sec(pi/4)-cos(x)+(x/sqrt(2))**2+ln(e**x)-x,etc.) plespacesaretreatedasa singlespace. E.g. youcanenteras Thisusesfunction cmp up to constant manyspcesasyouwantbetweenthe(cid:147)Hi(cid:148)andthe(cid:147)there.(cid:148) and youranswerwillstillbeacceptedascorrect. Youcanviewthesource forthisproblem. Thisusesstd cs str cmp 4.(1pt)setSampleAnswers/sample unitsans.pg Finally enterthestring (cid:147)Hi there.(cid:148) athird time. This time This problemdemonstrateshowWeBWorK handlesnumerical case is ignored and all multiple spacesare treated as a single answersinvolvingunits. WeBWorKcanhandleallunitsthatare space. E.g. (cid:147)hithere.(cid:148)and(cid:147)hI THerE. (cid:148)arevalidanswers. used in elementary physics courses. See answerswithunits Thisusesstd str cmp formoredetails. 1
Description: