ebook img

ARNOLD PIZER MATH Summer 2001 Homework Set 0 due 1/1/05 at 2:00 AM PDF

534 Pages·2012·5.24 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ARNOLD PIZER MATH Summer 2001 Homework Set 0 due 1/1/05 at 2:00 AM

ARNOLD PIZER MATHSummer 2001 Homework Set0due1/1/05at2:00AM This (cid:2)rst set(set0)isdesignedto acquaintyouwith usingWeBWorK. Yourscoreonthis setwill not becounted towardyour (cid:2)nalgrade Youmayneedto give4or5signi(cid:2)cant digitsfor some((cid:3)oatingpoint)numericalanswersin ordertohavethemacceptedbythe computer. First enter the function sin x. When enteringthe function, 1.(1pt)set0/prob1.pg you shouldenter sin(x), but WeBWorK will also accept sin x This problem demonstrateshow you enter numerical answers or even sinx. If you remember your trig identities, sin(x) = - intoWeBWorK. cos(x+pi/2)and WeBWorK will accept this or anyother func- Evaluatetheexpression3( 7)(10 1 2(7)): tionequaltosin(x),e.g.sin(x)+sin(x)**2+cos(x)**2-1 (cid:0) (cid:0) (cid:0) In the case aboveyouneed to enter a number, since we’re testing whetheryoucanmultiplyout thesenumbers. (Youcan Wesaidyoushouldentersin(x)eventhoughWeBWorKwill useacalculatorifyouwant.) alsoacceptsinxorevensinxbecauseyouarelesslikelytomake Formostproblems,youwill beabletogetWeBWorK to do amistake. Tryenteringsin(2x)withouttheparenthesesandyou someoftheworkforyou.Forexample may be surprisedat what youget. Use the Preview button to Calculate(-7)*(10): see what youget. WeBWorK will evaluatefunctions (such as Theasteriskiswhatmostcomputersusetodenotemultipli- sin)beforedoinganythingelse,sosin2xmeans(cid:2)rstapplysin cationandyoucanusethiswithWeBWorK.ButWeBWorKwill whichgivessin(2)andthenmutiplebyx.Tryit. alsoallowyoutouseaspacetodenotemultiplication. Youcan either 7 10or-70oreven 710. Allwillwork.Trythem. Nowenterthefunction2cost. Notethisisafunctionoftand (cid:0) (cid:3) (cid:0) Now try calculating the sine of 45 degrees ( that’s sine notx.Tryentering2cosxandseewhathappens. of pi over 4 in radians and numerically sin(pi/4) equals 0.707106781186547or,moreprecisely,1=p2). Youcanenter thisassin(pi/4),assin(3.1415926/4),as1/sqrt(2),as2**(-.5), 3.(1pt)set0/prob1b.pg etc. This isbecauseWeBWorK knowsaboutfunctionslikesin Thisproblemwillhelpyoulearntherulesofprecedence,i.e. the and sqrt (square root). (Note: exponents can be indicated by orderinwhichmathematicaloperationsareperformed.Youcan eithera(cid:148)caret(cid:148)or**). Tryit. useparentheses(andalsosquarebrackets[]and/orcurlybraces sin(p=4)= )ifyouwanttochangethenormalwayoperationswork. fg Here’s the listofthefunctions which WeBWorK under- So (cid:2)rst let us review the normal way operations are per- formed. stands. WeBWorK ALWAYS uses radian mode for trig func- Therules aresimple. Exponentiationisalwaysdonebefore tions. Youcanalsousejuxtapositiontodenotemultiplication. E.g. multiplicationanddivision andmultiplicationanddivision are enter2sin(3p=2). Youcanenterthisas2*sin(3*pi/2)ormore alwaysdonebefore additionandsubtraction. (Mathematically simplyas2sin(3pi/2).Tryit: wesayexponentiationtakesprecedenceovermultiplicationand division,etc.). Forexamplewhatis1+2*3? Sometimesyouneedtouse()’stomakeyourmeaningclear. andwhatis2 32? E.g. 1/2+3is3.5,but1/(2+3)is.2Why?Tryenteringbothand (cid:1) usethe(cid:147)Preview(cid:148)buttonbelowtoseethedifference.Inaddition Nowsometimeyouwanttoforcethingstobedoneinadifferent to()’s,youcanalsouse[]’sand ’s. fg way. This is whatparenthesesareusedfor. Theruleis: what- You can alwaystry to enter answers and let WeBWorK do everisenclosedinparenthesesisdonebeforeanythingelse(and thecalculating. WeBWorKwill tellyouiftheproblemrequires thingsintheinnermostparenthesesaredone(cid:2)rst). a strict numericalanswer. The way we use WeBWorK in this Forexamplehowdoyouenter class there is no penalty for getting an answer wrong. What 1+sin(3) counts is that you get the answer right eventually (before the ? 2+tan(4) due date). For complicatedanswers, youshouldusethe (cid:147)Pre- view(cid:148) button to checkfor syntaxerrors andalso to checkthat Hint: thisis agoodplaceto use[ ]’sandalsoto usethe(cid:147)Pre- theansweryouenterisreallywhatyouthinkitis. view(cid:148)button. 2.(1pt)set0/prob1a.pg Herearesomemoreexamples: Thisproblemdemonstrateshowyouenterfunctionanswersinto (1+3)9=36, (2*3)**2=6**2= 36, 3**(2*2)=3**4= 81, WeBWorK. (2+3)**2=5**2=25,3**(2+2)=3**4=81 1 (Here we have used ** to denoteexponentiation and you can 5. Thedistancefromxto-5ismorethan1 also use this instead of a (cid:147)caret(cid:148) if you want). Try entering A. 5<x some of these and use the (cid:148)Preview(cid:148) button to see the result. (cid:0) B. x+5 1 The (cid:148)correct(cid:148)result for this answer blank is 36, but by using j j(cid:20) C. x< 5 the(cid:147)Preview(cid:148)button,youcanenterwhateveryouwantanduse (cid:0) D. x+5 >1 WeBWorKasahandcalculator. j j E. x 5 (cid:21)(cid:0) ForthisproblemWeBWorKonlytellsyouthatallyouranswers Thereisoneotherthingtobecarefulof. Multiplicationand arecorrectorthatatleastoneis wrong. This makestheprob- division have the same precedenceand there are no universal lemharderandisusuallyusedonlyforT/Fandmatchingques- rulesasto whichshouldbedone(cid:2)rst. Forexample,whatdoes tions. The idea isto encourageyouto think ratherthanto just 2/3*4mean?(Notethat/isthe(cid:148)divisionsymbol(cid:148),whichisusu- tryguessing. allywrittenasalinewithtwodots,butunfortunately,this(cid:148)line If you are having trouble reading the mathematics on the with two dots(cid:148) symbol is not on computer keyboards. Don’t screen, this means that youare using (cid:148)text(cid:148)mode. If youare thinkof/asthehorizontallineinafraction. Askyourselfwhat usingNetscapeorMSIEthenyoucangetaneasiertoreadver- 1/2/2shouldmean.) WeBWorKandmostothercomputersread sionoftheequationsbyreturningtotheproblemlistpage(use things from left to right, i.e. 2/3*4 means (2/3)*4 or 8/3, IT thebuttonatthetopofthispage)andchoosing(cid:148)formatted-text(cid:148) DOES NOTMEAN2/12. Some computersmaydooperations or(cid:148)typeset(cid:148)insteadof(cid:148)text(cid:148). Sometimesthereisa 15-20sec- from righttoleft. Ifyouwant2/(3*4)=2/12,youhaveto use onddelayinviewingaproblemin(cid:148)typeset(cid:148)modethe(cid:2)rsttime. parentheses.Thesamethinghappenswithadditionandsubtrac- tion. 1-3+2=0but1-(3+2)=-4. This isonecasewhereusing 6.(1pt)set0/prob4/prob4.pg parenthesesevenif theyarenot neededmightbe a goodidea, This problem demonstrates a WeBWorK problem involving e.g. write (2/3)*4eventhoughyoucouldwrite 2/3*4. This is graphics. alsoacasewherepreviewingyouranswercansaveyoualota Thesimplestfunctionsarethelinear(oraf(cid:2)ne)functions(cid:151) griefsinceyouwillbeabletoseewhatyouentered. thefunctionswhosegraphsareastraightline. Theyareimpor- Enter2/3*4andusethePreviewbuttontoseewhatyouget. tantbecausemanyfunctions(theso-calleddifferentiablefunc- tions)(cid:147)locally(cid:148)looklikestraightlines. ((cid:147)locally(cid:148)meansthatif 4.(1pt)set0/prob2.pg wezoomin andlookatthefunctionatverypowerfulmagni(cid:2)- ThisproblemdemonstratesaWeBWorKTrue/Falsequestion. cationitwilllooklikeastraightline.) Enter a T or an F in each answer space below to indicate Enter the letter of the graph of the function which corre- whetherthecorrespondingstatementistrueorfalse. spondstoeachstatement. Youmustgetalloftheanswerscorrecttoreceivecredit. 1. Thegraphofthelineisincreasing 1. 5< 7 (cid:0) (cid:0) 2. Thegraphofthelineisdecreasing 2. 6 1 6 (cid:0) (cid:20) 3. Thegraphofthelineisconstant 3. p 3:1416 (cid:21) 4. Thegraphofthelineisnotthegraphofafunction 4. 8 8 (cid:0) (cid:20)(cid:0) Noticethatifoneofyouranswersiswrongthen,inthisprob- lem,WeBWorK will tell youwhichpartsarewrongandwhich parts areright. This isthebehaviorfor mostproblems,but for true/falseor multiple choicequestionsWeBWorK will usually onlytellyouwhetherornotalltheanswersarecorrect.Itwon’t A B C D tellyouwhichonesarewrong. Theideaistoencourageyouto thinkratherthantojusttryguessing. Thisisanotherproblemwhereyouaren’ttoldifsomeofyour Ineverycaseallof theanswersmust be correctbeforeyou answersareright.(Withmatchingquestionsandtruefalseques- getcreditfortheproblem. tions, thisisthestandardbehavior(cid:150)otherwiseit istoo easyto guessyourwaytotheanswerwithoutlearninganything.) 5.(1pt)set0/prob3.pg Ifyouarehavingahardtimeseeingthepictureclearly,click ThisproblemdemonstratesaWeBWorKMatchingquestion. onthepicture.Itwillexpandtoalargerpictureonitsownpage Matchthestatementsde(cid:2)nedbelowwiththeletterslabeling sothatyoucaninspectitmoreclosely. theirequivalentexpressions. Someproblemsdisplayalinktoawebpagewhereyoucan Youmustgetalloftheanswerscorrecttoreceivecredit. getadditionalinformationorahint:Hint 1. xisgreaterthan-5 2. xisgreaterthanorequalto-5 7.(1pt)set0/prob5.pg 3. xislessthan-5 This problemdemonstratesa WeBWorK questionthatrequires 4. Thedistancefromxto-5islessthanorequalto1 youtoenteranumberorafraction. 2 Evaluatetheexpression j107(cid:0)272j. Giveyouranswerindeci- as correct or incorrect, so you can go back and do problems 25 malnotationcorrecttothreedje(cid:0)cimj alplacesorgiveyouranswer youskippedorcouldn’tgetrightthe(cid:2)rsttime. Onceyouhave asafraction. donea problem correctly it is ALWAYS listed as correcteven ifyougobackanddoit incorrectlylater. This meansyoucan Now that you have (cid:2)nished you can use the (cid:148)Prob. List(cid:148) useWeBWorKtoreviewcoursematerialwithoutanydangerof buttonatthetop ofthepageto returntotheproblemlist page. changingyourgrade. You’ll see that theproblems youhave donehavebeenlabeled PreparedbytheWeBWorKgroup,Dept.ofMathematics,UniversityofRochester, cUR (cid:13) 3 ARNOLD PIZER rochester problib fromCVSJune25,2004 RochesterWeBWorK ProblemLibrary WeBWorKassignmentMAAtutorialdue1/1/05at2:00AM Completethesentence: world! Youcanviewthesource forthisproblem. 5.(1pt)setMAAtutorial/matchinglistexample.pg Youcanviewthesource forthisproblem. 2.(1pt)setMAAtutorial/standardexample.pg Matchinglistexample To see a different version of the problem changethe problem StandardExample seedandpressthe’SubmitAnswer’buttonbelow. Completethesentence: ProblemSeed:Changetheproblemseedtochangetheprob- world; lem:1440 Enterthesumofthesetwonumbers: 3+5= Placetheletterofthederivativenextto eachfunctionlisted Enterthederivativeof below: f(x)=x5 1. x20 2. 2x2 f (x)= 0 3. tan(x) 4. sin(x) Youcanviewthesource forthisproblem. A. 4x1 3.(1pt)setMAAtutorial/simplemultiplechoiceexample.pg B. sec2(x) C. 20x19 Multiplechoiceexample D. cos(x) To see a different version of the problem change the problem Let’s print the questionsagain, but insist that the (cid:2)rst two seedandpressthe’SubmitAnswer’buttonbelow. questions(aboutsinandcos)alwaysbeincluded.Hereisasec- ProblemSeed:Changetheproblemseedtochangetheprob- ondwaytoformatthisquestion,usingtables: lem:2762 Whatisthederivativeoftan(x)? 1. tan(x) A. cos(x) A. (cid:0)cot(x) 23.. scions((xx)) CB.. s(cid:0)ecsi2n((xx)) B. sec2(x) C. tan(x) Andbelow is yet anotherway to enter a table of questions D. cosh(x) andanswers: E. sin(x) Enterthelettercorrespondingtothecorrectanswer: A. cos(x) B. sin(x) Youcanviewthesource forthisproblem. 1. tan(x) C. s(cid:0)ec2(x) 2. sin(x) D. Thederivativeis 4.(1pt)setMAAtutorial/multiplechoiceexample.pg 3. cos(x) notprovided Multiplechoiceexample Youcanviewthesource forthisproblem. To see a different version of the problem change the problem seedandpressthe’SubmitAnswer’buttonbelow. 6.(1pt)setMAAtutorial/truefalseexample.pg ProblemSeed:Changetheproblemseedtochangetheprob- lem:3734 TrueFalseExample To see a different version of the problem changethe problem Whatisthederivativeoftan(x)? seedandpressthe’SubmitAnswer’buttonbelow. A.sin(x) ProblemSeed:Changetheproblemseedtochangetheprob- (cid:15) B.cosh(x) lem:4322 (cid:15) C. cot(x) (cid:15) D.(cid:0)sech(x) Enter T or F dependingonwhetherthe statement istrue or (cid:15) E.tan(x) false.(YoumustenterTorF(cid:150)TrueandFalsewillnotwork.) (cid:15) F.cos3(x) 1. Allclosedsetsarecompact (cid:15) G.sec2(x) 2. Allcompactsetsareclosed (cid:15) 1 3. All differentiable strictly increasing functions have Identify the graphs A (blue), B( red) and C (green) as the non-negativederivativesateverypoint graphsof a function and its derivatives (click on the graph to 4. Allfunctionswithpositivederivativesareincreasing. seeanenlargedimage): isthegraphofthefunction Youcanviewthesource forthisproblem. isthegraphofthefunction’s(cid:2)rstderivative isthegraphofthefunction’ssecondderivative 7.(1pt)setMAAtutorial/popuplistexample.pg Youcanviewthesource forthisproblem. TrueFalsePop-up Example To see a different version of the problem change the problem 9.(1pt)setMAAtutorial/onthe(cid:3)ygraphicsexample2.pg seedandpressthe’SubmitAnswer’buttonbelow. ProblemSeed:Changetheproblemseedtochangetheprob- On-the-(cid:3)yGraphicsExample2 lem:1620 To see a different version of the problem changethe problem seedandpressthe’SubmitAnswer’buttonbelow. Indicatewhethereachstatementistrueorfalse. ProblemSeed:Changetheproblemseedtochangetheprob- lem:451 ? 1. All differentiable strictly increasing functions have WARNING:UseSHIFTreloadwhenrefreshingtomakesure non-negativederivativesateverypoint thattheimageisrefreshed!!!!! ? 2. Allcompactsetsareclosed ? 3. Allclosedsetsarecompact ? 4. Allcontinuousfunctionsaredifferentiable. Youcanviewthesource forthisproblem. 8.(1pt)setMAAtutorial/onthe(cid:3)ygraphicsexample1.pg On-the-(cid:3)yGraphicsExample1 To see a different version of the problem change the problem seedandpressthe’SubmitAnswer’buttonbelow. ProblemSeed:Changetheproblemseedtochangetheprob- lem:1458 WARNING:UseSHIFTreloadwhenrefreshingtomakesure thattheimageisrefreshed!!!!! Identify the graphs A (blue), B( red) and C (green) as the graphsof a function and its derivatives (click on the graph to seeanenlargedimage): isthegraphofthefunction isthegraphofthefunction’s(cid:2)rstderivative isthegraphofthefunction’ssecondderivative Youcanviewthesource forthisproblem. 10.(1pt)setMAAtutorial/staticgraphicsexample/staticgraphicsexample.pg StaticgraphicsExample 2 Toseeadifferentversionoftheproblemchangetheproblemseedandpressthe’SubmitAnswer’buttonbelow. ProblemSeed:Changetheproblemseedtochangetheproblem:2428 ThisisagraphofthefunctionF(x):(Clickonimageforalargerview) Entertheletterofthegraphbelowwhichcorrespondstothetransformationofthefunction. 1. F(x=3) 2. F(x+3) 3. F( x) (cid:0) (cid:0) 4. F(x 3) (cid:0) A B C D Youcanviewthesource forthisproblem. 11.(1pt)setMAAtutorial/hermitegraphexample.pg Hermitepolynomialgraphexample Toseeadifferentversionoftheproblemchangetheproblemseedandpressthe’SubmitAnswer’buttonbelow. ProblemSeed:Changetheproblemseedtochangetheproblem:1823 Wearedevelopingotherwaystospecifygraphswhicharetobecreated’onthe(cid:3)y’. Allofthesenewmethodsconsistofadding macropackagestoWeBWorK.SincetheydonotrequirethecoreofWeBWorKtobechanged,theseenhancementscanbeaddedby anyoneusingWeBWorK. Thesetwopiecewiselineargraphswerecreatedbyspecifyingthepointsatthenodes. Clickonthegraphtoviewalargerimage. 3 Iftheblackfunctioniswrittenas f(x),thentheorangefunctionwouldbewrittenas f( ). Thisgraphwascreatedusingahermitesplinebyspecifyingpointsat x -4 -3 -2 -1 0 1 2 3 4 y 0 1 2 0 2 0.5 1 1 2 yp 0.1 1 0 -2 0 1 2 -3 1 Listtheinternallocalminimumpointsinincreasingorder: Youcanviewthesource forthisproblem. 12.(1pt)setMAAtutorial/htmllinksexample/htmllinksexample.pg Andthetablebelowhasthreemoregraphswhicharestored HTMLlinksexample inthedirectorycontainingthecurrentproblem. This exampleshowshowtolinkto resourcesoutsidetheprob- lemitself. Linkingtootherwebpagesovertheinternetiseasy. Forex- ample, youcan get more information aboutthe buffonneedle problem and how it is used by ants to (cid:2)nd new nest sites by linkingtoIvarsPeterson’scolumnontheMAAsite. Youcanviewthesource forthisproblem. All of the (cid:2)les in the html directory of your WeBWorK 13.(1pt)setMAAtutorial/javascriptexample1.pg coursesite canbe readbyanyonewith awebbrowserandthe URL (the addressofthe(cid:2)le). This isagoodplaceto put(cid:2)les JavaScriptExample1 thatarereferencedbymorethanoneprobleminyourWeBWorK To see a different version of the problem changethe problem course. seedandpressthe’SubmitAnswer’buttonbelow. Here is thelink to thetothecalculatorpage storedin the ProblemSeed:Changetheproblemseedtochangetheprob- toplevelofthehtmldirectoryofthetutorialCourse. lem:3266 Finallythereare(cid:2)les, suchaspicture(cid:2)les,whicharestored withtheproblemitselfinthesamedirectory. 4 13.(1pt)setMAAtutorial/javascriptexample1.pg Find the derivative of the function f(x). The windows below 14.(1pt)setMAAtutorial/javascriptexample2.pg willtellyouthevalueoffforanyinputx.(Icallthisan(cid:148)oracle Find the derivative of the function f(x). The windows below function(cid:148),sinceifyouask,itwilltell.) willtellyouthevalueoffforanyinputx.(Icallthisan(cid:148)oracle f0( 2)= function(cid:148),sinceifyouask,itwilltell.) (cid:0) You may want to use a calculator to (cid:2)nd the result. You f ( 1)= 0 (cid:0) can also enter numerical expressions and have WeBWorK do You may want to use a calculator to (cid:2)nd the result. You thecalculationsforyou. can also enter numerical expressions and have WeBWorK do ThejavaScriptcalculatorwasdisplayedhere thecalculationsforyou. ThejavaScriptcalculatorwasdisplayedhere Youcanviewthesource forthisproblem. Youcanviewthesource forthisproblem. 14.(1pt)setMAAtutorial/javascriptexample2.pg 15.(1pt)setMAAtutorial/vector(cid:2)eldexample.pg JavaScriptExample2 To see a different version of the problem changethe problem To see a different version of the problem change the problem seedandpressthe’SubmitAnswer’buttonbelow. seedandpressthe’SubmitAnswer’buttonbelow. ProblemSeed:Changetheproblemseedtochangetheprob- ProblemSeed:Changetheproblemseedtochangetheprob- lem:3710 lem:2414 Matchthefollowingequationswiththeirdirection(cid:2)eld. Clickingoneachpicturewillgiveyouanenlargedview. Whileyoucan probablysolvethisproblembyguessing,itisusefultotrytopredictcharacteristicsofthedirection(cid:2)eldandthenmatchthemtothe picture. Herearesomehandycharacteristicstostartwith(cid:150)youwilldevelopmoreasyoupractice. A. Setyequaltozeroandlookathowthederivativebehavesalongthexaxis. B. Dothesamefortheyaxisbysettingxequalto0 C. Considerthecurveintheplanede(cid:2)nedbysettingy’=0(cid:150)thisshouldcorrespondtothepointsinthepicturewheretheslope iszero. D. Settingy’ equalto aconstantother thanzerogivesthecurveofpointswheretheslopeis thatconstant. Thesearecalled isoclines,andcanbeusedtoconstructthedirection(cid:2)eldpicturebyhand. 1. y =2y+x2e2x 0 2. y =2sin(x)+1+y 0 3. y = 2+x y 0 (cid:0) (cid:0) 4. y =y+2 0 A B 5 C D WeBWorK can use existing javaScript and Java code to Youcanviewthesource forthisproblem. augmentitscapabilities. 16.(1pt)setMAAtutorial/conditionalquestionexample.pg Thejavaappletwasdisplayedhere Thegraphaboverepresentsthefunction Conditionalquestionsexample If f(x)=23x+11,(cid:2)nd f ( 6). f(x)=x2+ax+b 0 (cid:0) whereaandbareparameters. 17.(1pt)setMAAtutorial/javaappletexample.pg Foreachvalueofa(cid:2)ndthevalueofbwhichmakesthegraph justtouchthex-axis. Javaappletexample ifa=1.5then To see a different version of the problem change the problem ifa=-2.5then seedandpressthe’SubmitAnswer’buttonbelow. ifa=1then ProblemSeed:Changetheproblemseedtochangetheprob- Doesthisrelationshipbetweenaandbspecifybasafunction lem:2927 ofa? (YesorNo) WARNING:UseSHIFTreloadwhenrefreshingtomakesure Doesthisrelationshipbetweenaandbspecifyaasafunction thattheimageisrefreshed!!!!! ofb? (YesorNo) Writeaformulaforcalculatingthisvalueofbfroma. ThisproblemillustrateshowyoucanembedJavaappletcode b= inaWeBWorKexampletocreateaninteractivehomeworkprob- lemthatcouldneverbeprovidedbyatextbook. Youcanviewthesource forthisproblem. PreparedbytheWeBWorKgroup,Dept.ofMathematics,UniversityofRochester, cUR (cid:13) 6 ARNOLD PIZER rochester problib fromCVSJune25,2004 RochesterWeBWorK ProblemLibrary WeBWorKassignmentSampleAnswersdue1/2/05at2:00AM 1.(1pt)setSampleAnswers/sample numans.pg Nextenterthestring(cid:147)AcDdB(cid:148).Allspacesareignoredso This problem demonstratesvarious WeBWorK proceduresfor (cid:147)AcDdB(cid:148)and(cid:147)AcDdB(cid:148)arevalidanswers. dealingwithnumericalanswers. Inparticular,byenteringsyn- Thisusesordered cs str cmp tacticallyincorrectanswers,youcanseetheerrormessagesgen- eratedbyWeBWorK. Note thatexponentiationcanbe denoted Enterthestring(cid:147)AcDdB(cid:148)again.Thistimespacesandcase by**or(cid:136).SeeAnswerEvaluators fordocumentationonthese areignoredso(cid:147)acddb(cid:148)and(cid:147)ACDDB(cid:148)arevalidanswers. procedures. Thisusesordered str cmp Enterthenumber52.1.Youareonlyallowedtoenteranum- ber(e.g.52.1,5.21E1,521E-1,etc.) Enterthestring(cid:147)AcDdB(cid:148)oncemore. Nowtheorderand Thisusesstrict num cmp spacesareignoredso(cid:147)ABcDd(cid:148)and(cid:147) BdDcA(cid:148)arevalidan- swers. Enterthenumber52.1again.Thistimeyoucanenteranum- Thisusesunorderedcs str cmp berorfraction(e.g. 52.1,521/105.21/.1etc.) Thisusesfrac num cmp Finallyenterthestring(cid:147)AcDdB(cid:148)onelasttime. Thistime theorder,spaces,andcaseareignoredso(cid:147)abcdd(cid:148)and(cid:147)BDd Enterthenumber52.1athirdtime. This timeyoucanenter CA(cid:148)arevalidanswers. anyarithmeticexpressionequaling52.1(e.g. 52.1,100/2+3-.9, Thisusesunorderedstr cmp (5*10**2+21)/10,etc.) Thisusesarith num cmp Youcanviewthesource forthisproblem. Finallyenterthenumber52.1afourthtime.Nowyoucanen- 3.(1pt)setSampleAnswers/sample funans.pg teranyexpressioninvolvingelementaryfunctionswhichequals This problem demonstratesvarious WeBWorK proceduresfor 52.1(e.g.52.1,50.1+ln(e**2),tan(pi/4)+ln(exp(2))+cosh(0)- dealingwith answersinvolvingfunctions. Inparticular,byen- 1.9+arcsin(0)+5*sqrt(10**2),etc.). SeeAvailableFunctions tering syntactically incorrect answers, you can see the error for details on enteringexpressionsinvolving elementary func- messagesgeneratedbyWeBWorK.Notethatexponentiationcan tions. bedenotedby**or(cid:136).SeeAnswerEvaluators fordocumenta- Thisusesstd num cmp tionontheseprocedures. SeeAvailableFunctions fordetails onenteringexpressionsinvolvingelementaryfunctions. Youcanviewthesource forthisproblem. Enter the derivative of sin(x) (e.g. cos(x), sin(x+pi/2), 2.(1pt)setSampleAnswers/sample strans.pg cos(x)**2+cos(x)+sin(x)**2-1,etc.) This problem demonstratesvarious WeBWorK proceduresfor Thisusesfunction cmp dealingwith stringanswers. SeeAnswerEvaluators fordoc- umentationontheseprocedures. Next enter the derivative of sin(t) on the interval Enter the string (cid:147)Hi there.(cid:148) without the quotes but don’t ( p=2;p=2). Note that now the variable is t and that (cid:0) forgettheperiod.Spacesbeforethe(cid:147)H(cid:148)andafterthe(cid:147).(cid:148)areig- sqrt(cos(t)**2)isavalidanswer. nored,butotherwiseyoumustenterthestringexactlyasgiven Thisusesfunction cmpwithparametersspecifyingthevariable with2spacesbetweenthewords.Actually,viewingthisinhtml, andinterval youwillnotseethetwospaces,buttheyarereallythere. Thisusesstrict str cmp Finallyentertheantiderivativeofx +sin(x)(e.g. .5*(x**2) - cos(x), (1/2)*(x**2) - cos(x) + 3, sin(x)**2 + cos(x)**2 + Nowenterthestring(cid:147)Hi there.(cid:148) again. Thistimeallmulti- sec(pi/4)-cos(x)+(x/sqrt(2))**2+ln(e**x)-x,etc.) plespacesaretreatedasa singlespace. E.g. youcanenteras Thisusesfunction cmp up to constant manyspcesasyouwantbetweenthe(cid:147)Hi(cid:148)andthe(cid:147)there.(cid:148) and youranswerwillstillbeacceptedascorrect. Youcanviewthesource forthisproblem. Thisusesstd cs str cmp 4.(1pt)setSampleAnswers/sample unitsans.pg Finally enterthestring (cid:147)Hi there.(cid:148) athird time. This time This problemdemonstrateshowWeBWorK handlesnumerical case is ignored and all multiple spacesare treated as a single answersinvolvingunits. WeBWorKcanhandleallunitsthatare space. E.g. (cid:147)hithere.(cid:148)and(cid:147)hI THerE. (cid:148)arevalidanswers. used in elementary physics courses. See answerswithunits Thisusesstd str cmp formoredetails. 1

Description:
This first set (set 0) is designed to acquaint you with using WeBWorK. Your score if you want to change the normal way operations work. So first let
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.