Commun.Math.Phys.353,507–547(2017) Communicationsin DigitalObjectIdentifier(DOI)10.1007/s00220-017-2867-0 Mathematical Physics Arnold Diffusion in A Priori Chaotic Symplectic Maps VassiliGelfreich1,DmitryTuraev2,3 1 MathematicsInstitute,UniversityofWarwick,Coventry,UK.E-mail:[email protected] 2 ImperialCollege,London,UK 3 LobachevskyUniversityofNizhnyNovgorod,NizhnyNovgorod,Russia.E-mail:[email protected] Received:30March2015/Accepted:6January2017 Publishedonline:24April2017–©TheAuthor(s)2017.Thisarticleisanopenaccesspublication Abstract: We assume that a symplectic real-analytic map has an invariant normally hyperbolic cylinder and an associated transverse homoclinic cylinder. We prove that generically in the real-analytic category the boundaries of the invariant cylinder are connectedbytrajectoriesofthemap. 1. Introduction AHamiltoniandynamicalsystemisdefinedwiththehelpofaHamiltonfunction H : M →RonasymplecticmanifoldMofdimension2n.LetM beaconnectedcomponent c ofalevelset{H =c}.SinceHremainsconstantalongthetrajectoriesoftheHamiltonian system,theset M isinvariant.DependingontheHamiltonfunction H andtheenergy c c,therestrictionofthedynamicsontoM mayvaryfromuniformlyhyperbolic(e.g.,in c thecaseofageodesicflowonasurfaceofnegativecurvature)tocompletelyintegrable. SincePoincarésworks,ithasbeenacceptedthatatypicalHamiltoniansystemdoes not have any additional integral of motion independent of H (unless the system pos- sessessomesymmetriesandtheNoethertheoremapplies).Ontheotherhandageneric Hamiltoniansystemisnearlyintegrableinaneighbourhoodofatotallyellipticequilib- rium(agenericminimumormaximumof H)ortotallyellipticperiodicorbit.Thenthe Kolmogorov–Arnold–Moser(KAM)theoryimpliesthattheHamiltoniansystemisnot ergodic(withrespecttotheLiouvillemeasure)onsomeenergylevels[72].Indeed,the KAMtheoryestablishesthatanearlyintegrablesystempossessesasetofinvarianttori ofpositivemeasure. Each of the KAM tori has dimension n. For n > 2 a KAM torus does not divide M whichhasdimension(2n−1),moreover,thecomplementtotheunionofallKAM c tori is connected and dense in M . Thus the KAM theory does not contradict to the c existenceofadenseorbitinM .Itisunknownwhethersuchorbitsreallyexistinnearly c integrablesystems.ThequestiongoesbacktoFermi[39]whosuggestedthefollowing notion:aHamiltoniansystemiscalledquasi-ergodicifinevery M anytwoopensets c 508 V.Gelfreich,D.Turaev areconnectedbyatrajectory.Thispropertyisequivalenttotopologicaltransitivityofthe Hamiltonianflowon M .Thispropertycanalsoberestatedinslightlydifferentterms: c (a) in every M there is a dense orbit or (b) in every M dense orbits form a residual c c subset. Fermi conjectured [39] that quasi-ergodicity is a generic property of Hamiltonian systems, but proved a weaker statement only: if a Hamiltonian system with n > 2 degreesoffreedomhastheform H = H (I)+εH (I,ϕ,ε), (1) 0 1 whereH isintegrableand(I,ϕ)areaction-anglevariables,thengenericallyM doesnot 0 c containaninvariant(2n−2)-dimensionalhyper-surfacethatisanalyticinε.Obviously, suchsurfacewouldpreventthequasi-ergodicity.However,non-analyticinvarianthyper- surfaces cannot be excluded from consideration as it is not known whether they can exist generically or not. So Fermi’s quasi-ergodic hypothesis remains unproved. The recent papers [21,64,65,71,74] make an important step in the understanding of the underlying dynamics by showing that for the generic (in a certain smooth category) near-integrablecasewith21 ormoredegreesoffreedom,therearetrajectoriesthatvisit 2 anaprioriprescribedsequenceofballs.Thepaper[52]providesexamplesofsystems havingorbitswhoseclosurecontainsaLebesguepositivemeasuresetofKAM-tori. Thisproblemiscloselyrelatedtotheproblemofstabilityofatotallyellipticfixed pointofasymplecticdiffeomorphism,orstabilityofatotallyellipticperiodicorbitfora Hamiltonianflow.Itwasprovedin[35,36]thatstabilitycanbebrokenbyanarbitrarily smallsmoothperturbation.Itisbelievedthatatotallyellipticperiodicorbitisgenerically unstablebutthetimescalesforthisinstabilitytomanifestitselfareextremelylong,see e.g.[15,59]. Forε =0,theunperturbedsystem(1)isdescribedbytheHamiltonian H = H (I). 0 Then the actions I are constant along trajectories, so the equation I = I defines an 0 invarianttorus,andtheanglesϕarequasi-periodicfunctionsoftimewiththefrequency vectorω (I) = H(cid:3)(I).KAMtheoryimpliesthatthemajorityofinvarianttorisurvive 0 0 underperturbation.Toriwithrationallydependentfrequenciesarecalledresonantand aredestroyedbyatypicalperturbation[2].Thefrequencyofaresonanttorussatisfiesa conditionoftheformω (I)·k=0forsomek∈Zn\{0}.Theresonanttoriforma“res- 0 onantweb”,typically(e.g.ifω isalocaldiffeomorphism)adensesetofmeasurezero. 0 Arnold’sexample[1]showsthatatrajectoryoftheperturbedsystem(1)canslowly driftalongaresonance.Arnold’spaperinspiredalargenumberofstudiesinthelong- timestabilityofactions,theproblemwhichisknownas“Arnolddiffusion”.Ithasbeen attractingsignificantattentionrecentlyandwereferthereadertopapers[11,31,33,40– 43,54,57,60–62,68–70,76,82,84]foramoredetaileddiscussion. Itshouldbenotedthatthemotionalongtheresonantwebisveryslow:Nekhoroshev theory[14,78]providesalowerboundontheinstabilitytimesintheanalyticcase.Let {·,·}denotethePoissonbrackets.Then I˙={H,I}=ε{H ,I}isoftheorderofε.On 1 the other hand, if the system satisfies assumptions of the KAM theory, |I(t)− I(0)| remainssmallforalltimesandthemajorityofinitialconditions,i.e.,forthesetofinitial conditionsofasymptoticallyfullmeasure.If H satisfiesassumptionsoftheNekhoro- shev theory, there are some exponents a,b > 0 such that |I(t)− I(0)| < εa for all |t| < expε−b andforallinitialconditions.Thisestimateestablishesanexponentially largelowerboundforthetimesofArnoldDiffusioninanalyticsystems. ItisimportanttostressthattheupperboundonthespeedofArnolddiffusionstrongly dependsonthesmoothnessofthesystem.Indeed,thestabilitytimesareexponentially ArnoldDiffusion 509 large in ε−1 for analytic systems, but only polynomial bounds can be obtained in the Ckcategory.Inparticular,papers[21,64,74]studytheArnolddiffusionfornon-analytic HamiltoniansandthereforetheboundsestablishedbytheanalyticalNekhoroshevtheory are likely to be violated, see e.g. [13]. The problem of genericity of Arnold diffusion inanalyticcategoryremainsfullyopen.Webelievethemethodsproposedinourpaper willhelptoadvancethetheoryintheanalyticcase. Thenormalformtheorysuggeststhatforsmallpositiveε thesystem(1)hasanor- mallyhyperboliccylinderwithapendulum-likeseparatrixlocatedinaneighbourhood of a simple resonance. Indeed, Bernard proved the existence of normally-hyperbolic cylinders in a priori stable Hamiltonian systems [6], the size of such cylinder being boundedawayfromzeroforarbitrarilysmallsizeoftheperturbation. Amodelforthissituationisoftenobtainedbyassumingthattheintegrablepartof theHamiltonianalreadypossessesanormally-hyperboliccylinderandanassociatedho- moclinicloop(e.g.byconsideringH = P(p,q)+h (I)wherePisaHamiltonianofa 0 0 pendulum).Asystemofthistypeiscalledaprioriunstable.Thedriftoforbitsalongthe cylinder has been actively studied inthe lastdecade[3–5,7–9,12,18–20,22,27,28,31– 34,70,87,88], including the problem of genericity of this phenomenon and instability times.ItshouldbenotedthattheArnolddiffusioncanbemuchfasterinthiscase. Inthesestudies,adriftingtrajectorytypicallystaysmostofthetimenearthenormally- hyperboliccylinder,occasionallymakingatripnearahomoclinicloop.Theprocesscan bedescribedusingthenotionofascatteringmapintroducedbyDelshamsetal.[32].Ear- lierMoeckel[75]suggestedthatArnolddiffusioncanbemodelledbyrandomapplication oftwoarea-preservingmapsonacylinder(thisapproachwasrecentlycontinuedin[17, 46–49,53,66]).InthiswaythedeterministicHamiltoniandynamicsismodelledbyanit- eratedfunctionsystem,andtheobstaclestoadriftalongthecylinderappearintheformof essentialcurveswhichareinvariantwithrespecttobothmapssimultaneously[67,75,77]. ThisproblemiscloselyrelatedtotheMatherproblemontheexistenceoftrajecto- rieswithunboundedenergyinaperiodicallyforcedgeodesicflow[10,29].Thecriteria for the existence of trajectories of the energy that grows up to infinity are known for sufficientlylargeinitialenergies[10,24,29,30,44,45,80,81].Theresultsofthepresent papercanbeusedtoestablishthegenericexistenceoforbitsofunboundedenergyfor allpossiblevaluesofinitialenergy. In our paper we depart from the near-integrable setting and study the dynamics of an exact symplectic map in a homoclinic channel, a neighbourhood of a normally- hyperbolictwo-dimensionalcylinder Aalongwithasequenceofhomocliniccylinders BatatransverseintersectionofthestableandunstablemanifoldsofA.Weconductarig- orousreductionoftheproblemtothestudyofaniteratedfunctionsystemandshowthat theexistenceofadriftingtrajectory(i.e.theinstabilityoftheArnolddiffusiontype)is guaranteedwhentheexactsymplecticmapsofthecylinder Athatconstitutetheiterated functionsystemdonothaveacommoninvariantcurve.Thereductionschemeisinthe samespiritasin[50,77]whilethesettingandproofsaredifferent.Thecompletelynovel resultisthattheexistenceofdriftingorbitsisagenericphenomenon,i.e.itholdsforan open and dense subset of a neighbourhood, in the space of analytic symplectic maps, ofthegivenmapwithahomoclinicchannel,providedtherestrictionofthemaponthe cylinder Ahasatwistproperty.AlltheknownsimilargenericityresultsfortheArnold diffusionhavebeenprovensofarinthesmoothcategoryandusethenon-analiticityof theperturbationsinanessentialway. Inonerespect,thesituationweconsiderismoregeneralthaninthenear-integrable setting,aswedonotassumetheexistenceofalargesetofKAMcurvesontheinvariant 510 V.Gelfreich,D.Turaev cylinder A.Ontheotherside,asonecanextractfromtheexampleof[25],ourassump- tionofthestrongtransversalityofthehomoclinicintersections,whichweneedinorder todefinethescatteringmapsthatformtheiterationfunctionsystem,seemstofailfor a generic analytic near-integrable system in a neighbourhood of a resonance in the a prioristablecase.Therefore,ourresultsdonotadmitanimmediatetranslationtothea prioristablecase.Rather,theproblemweconsiderhereisrelatedtotheapriorichaotic case, e.g. we assume certain transversality of invariant manifolds associated with the normallyhyperboliccylinder. ThetechnicalassumptionsofourmaintheoremcanbefoundinSect.2.Asanexam- ple,wecanconsidera4-dimensionalsymplecticmapthatisadirectproductofatwist mapandastandardmap.Namely,Φ :(ϕ,I,x,y)(cid:5)→(ϕ¯,I¯,x¯,y¯)where 0 ϕ¯ =ϕ+ω(I), x¯ = x +y¯, I¯= I, y¯ = y+ksinx, (2) wherek >0isapositiveparameterandωisananalyticfunction.Weassumeϕandxto beangularvariables,sothemapisasymplecticdiffeomorphismof(T×R)2.Themap Φ hasanormallyhyperbolicinvariantcylinder Agivenbyx = y =0.Thecylinder A 0 isfilledwithinvariantcurvesasthemapΦ preservesthevalueofthe I variable.The 0 (x,y)componentofΦ coincideswiththestandardmap,whichhastransversalhomo- 0 clinicpointsforallk >0.ThusΦ verifiestheassumptionsofthemaintheorem.Then 0 agenericanalyticperturbationofΦ producesorbitswhichconnectsneighbourhoods 0 ofanytwoessentialcurvesin A. A more interesting example is obtained when the integrable twist map is replaced byanotherstandardmap,sothenewunperturbedmapisgivenbyΦ : (ϕ,I,x,y) (cid:5)→ 0 (ϕ¯,I¯,x¯,y¯)where ϕ¯ =ϕ+I¯, x¯ = x +y¯, I¯= I +k sinϕ, y¯ = y+k sinx. (3) 1 2 Thecylinder A = {x = y = 0}isstillinvariantbutitisnolongerfilledwithinvariant curves.InsteadthecylindercontainsaCantorsetofinvariantcurvesprovidedk isnot 1 toolarge.ThesetoripreventtrajectoriesofΦ fromtravelinginthedirectionoftheIaxis. 0 Thetheorypresentedinthispaperallowsustotreatbothcasesequallyandimplies that an arbitrarily small generic analytic perturbation creates trajectories which travel betweenregions I < I and I > I forany I < I [providedω(cid:3)(I)isseparatedfrom a b a b 0for(2),andk >C(4|k |+k2)for(3)].Indeed,inordertoapplyTheorem1tothese 2 1 1 examples,wenotefirst,thattheinvariantcylinder Aisnormallyhyperbolic.Thiscylin- derhasastableandunstableseparatrices Wu(A)and Ws(A)whichcoincidewiththe productof Aandthestable(reps.,unstable)separatrixofthestandardmapWu,s,sowe sm canwrite(slightlyabusingnotation)Ws(A)= A×Ws andWu(A)= A×Wu .This sm sm product also describes the structure of the foliation of Wu,s(A) into strong stable and strongunstablemanifoldsofpointsin A.Forapointv ∈ A,weletEuu(v)={v}×Wu sm andEss(v)={v}×Ws .Theassumptionk >C(4|k |+k2)for(3)ensuresthatthese sm 2 1 1 strongstableandstrongunstablefoliationsremainC1-smoothaftertheperturbation. It can be proved that the standard map has infinitely many transversal homoclinic orbits for any k > 0. Let p = (x ,y ) be one of these orbits. The cylinder B = h h h A×{p } ⊂ Wu(A)∩Ws(A) is homoclinic to A. Since the strong stable and strong h unstablefoliationsofapointv ∈ Acoincidewiththeproductofthebasepointandthe separatricesofthestandardmap,weseethat(v,p )∈ Ess(v)∩Euu(v),andthecylinder h Bsatisfiesthestrongtansversalityassumptiondescribedinthenextsectiongivingriseto ArnoldDiffusion 511 asimplehomoclinicintersection(definedinthenextsection).ThenTheorem2implies thatgenericperturbationofΦ hasorbitstravelinginthedirectionofthecylinder A. 0 Similar maps were considered in Easton et al. [37] (motivated by the “stochastic pumpmodel”ofTennysonetal.[89]).In[37]theexistenceofdriftorbitswasshown forallnon-integrableLagrangianperturbationsprovidedk islargeenough(i.e.inthe 2 “anti-integrable”limit).Ourmethodsallowustoobtainthedriftingorbitswithoutthe largek assumption,i.e.,withoutadetailedknowledgeofthedynamicsofthesystem. 2 2. Set-up,Assumptions,andResults Considerareal-analyticdiffeomorphismΦ :(cid:6) →R2d,d ≥2,definedonanopenset (cid:6) ⊆R2d.WeassumethatΦpreservesthestandardsymplecticformΩ,andthatΦisex- act(e.g.thelatterisalwaystrueif(cid:6)issimply-connected).LetΦhaveaninvariantsmooth two-dimensionalcylinder AdiffeomorphictoS1×[0,1]andψ : S1×[0,1] → (cid:6) be thecorres(cid:2)pondinge(cid:3)mbed(cid:2)ding.The(cid:3)ntheboundaryof Aconsistsoftwoinvariantcircles: ∂A=ψ S1×{0} ∪ψ S1×{1} .Letint(A)= A\∂Aand F =Φ| . 0 A Weassumethatthecylinder A isnormally-hyperbolic.Moreprecisely,weassume thatateachpointv ∈ Athetangentspaceisdecomposedintoadirectsumofthreenon- zerosubspaces:TvR2d =R2d = Nvc⊕Nvu⊕Nvs,whereNvcisthetwo-dimensionalplane tangenttoAatthepointv.ThesubspacesNs,udependcontinuouslyonvandareinvariant wcnhoiottehicrtehesaoptfeΦncot(cid:3)rNtmovctsh=iendNNerFcsi,0vu(av,c)titvaheseΦrAe(cid:3)ieosxfiinsthtveαarmi>aanp1t,wai.neidt.hΦλr(cid:3)e∈Nspvs(e0=c,t1tN)osFsΦu0(cv.h)WtahneadatΦsastu(cid:3)eNmvveuery=thpaNotifFuno0t(rvvs).o∈WmAee (cid:12)F(cid:3)(v)(cid:12)<α, (cid:12)(F(cid:3)(v))−1(cid:12)<α, (4) 0 0 (cid:12)Φ(cid:3)(v)|Nvs(cid:12)<λ, (cid:12)(Φ(cid:3)(v)|Nvu)−1(cid:12)<λ, (5) where α2λ<1. (6) Notethattheseassumptionsaremorerestrictiveincomparisonwiththestandarddefi- nitionofanormallyhyperbolicmanifold.Inparticular,thelargespectralgapcondition (6)impliestheC1-regularityofthestrongstableandstrongunstablefoliationswhilein thegeneralcasethesefoliationsareHöldercontinuousonly(seee.g.[83]). Wealsonotethatin(4)and(5)thesamepairofexponentsαandλboundbothΦ(cid:3)and (Φ(cid:3))−1,sowesaythat Aissymmetricallynormally-hyperbolic.Thesymmetricformof thespectralgapassumptionimpliesthattherestrictionofthesymplecticformon Ais non-degenerate(seeProposition4).Thus AisasymplecticsubmanifoldofR2d andthe map F =Φ| inheritsthe(exact)symplecticityofΦ. 0 A Wehavenodoubtsthatourresultscanbeextendedtocoverthecasewhenλandαof inequalities(4)and(5)dependonthepointv ∈ A.However,forthesakeofsimplicity, weconducttheproofsforthecaseofconstantλandαonly. Thepointsinasmallneighbourhoodofthenormally-hyperboliccylinder A,whose forwarditerationsdonotleavetheneighbourhoodandtendto Aexponentiallywiththe rateatleastλ,formasmooth(atleastC2inourcase)invariantmanifold,thelocalstable manifoldWs ⊃ A,whichistangentto Ns⊕Nc atthepointsof A(seee.g.[56]).The loc pointswhosebackwarditerationstendto A exponentiallywiththerateatleastλ(and withoutleavingtheneighbourhood)formaC2-smoothinvariantmanifoldWu ⊃ A(the loc localunstablemanifold),whichistangentto Nu⊕Nc atthepointsof A.Theinvariant 512 V.Gelfreich,D.Turaev cylinderAistheintersectionofWu andWs .Theglobalstableandunst(cid:4)ablemanifolds loc loc of A aredefinedbyiteratingthelocalinvariantmanifolds: Wu(A) := ΦmWu (cid:4) m≥0 loc andWs(A):= Φ−mWs . m≥0 loc IneachofthemanifoldsthereexistsauniquelydefinedC1-smoothinvariantfolia- tiontransverseto A,thestrong-stableinvariantfoliation Ess inWs(A)andthestrong- unstable invariant foliation Euu in Wu(A), such that for every point v ∈ A there is a uniqueleafofEvssandauniqueleafofEvuuwhichpassthroughthispointandaretangent to Nvs and,respectively, Nvu (see[86]).TheC1-regularityofafoliationmeansthatthe leaves of the foliation are smooth and, importantly, the field of tangents to the leaves isalsosmooth,whichimpliesthatforanytwosmoothcross-sectionstransversetothe foliationthecorrespondencedefinedbytheleavesofthefoliationbetweenthepointsin thecross-sectionsisalocaldiffeomorphism. Let us discuss the question of the persistence of A at small perturbations. It is a standard fact from the theory of normal hyperbolicity [56] that any strictly-invariant normally-hyperbolic compact smooth manifold with a boundary can be extended to a locally-invariant normally-hyperbolic manifold without a boundary. In our case this means that the smooth embedding ψ that defines the invariant cylinder A = ψ(S1 × [0,1])canbeextendedontoS1×I whereI isanopenintervalcontaining[0,1],andthe image A˜ =ψ(S1×I)⊃ Aisnormally-hyperbolicandlocally-invariantwithrespectto themapΦ.Here,bythelocalinvariancewemeanthatthereexistsaneighbourhood Z ˜ ˜ ˜ ofAsuchthattheiterationsofeachpointofAstayinAuntiltheyleaveZ.Animportant property of the locally-invariant normally-hyperbolic manifold without a boundary is thatitpersistsatC2-smallperturbations,i.e.forallmapsC2-closetoΦ thereexistsa locally-invariant normally-hyperbolic cylinder A˜ ⊂ Z. It is not defined uniquely, but it can be chosen in such a way that it will depend on the map continuously as a C2- manifold.1Thecontinuousdependenceonthemapimpliesthatthecylinder A˜ remains symplecticandsymmetricallynormally-hyperbolicforallmapsC2-closetoΦ. ˜ Notethatthenormal hyperbolicity impliesthat A contains alltheorbitsthatnever ˜ leave Z.Inparticular,anyinvariantcurvethatliesin Z mustliein A.Wecallasmooth invariantessential2 simplecurveγ ⊂ A˜ aKAM-curveifthemapΦ restrictedtoγ is smoothlyconjugatetotherigidrotationtoaDiophantineangleandthemap F0 =Φ|A˜ near γ satisfies the twist condition. As the Lyapunov exponent at every point of γ is ˜ zero,thegapwiththecontraction/expansioninthedirectionstransversetoAisinfinitely large.Therefore,thecylinder A˜ isofclassCr (forany given finiter)inasufficiently smallneighborhoodofγ (see[38,56]).ThisholdstrueforeverymapCr-closetoΦ,i.e. themapF staysCr-smoothandthetwistconditionalsoholds.Now,byapplyingKAM- 0 theorytothemapF ,weconcludethattheinvariantcurveγ persistsforeverysymplectic 0 mapwhichisatleastC4-closetoΦ.Namely,everysuchmaphasauniquelydefined,con- tinuouslydependingonthemap,invariantKAM-curvewiththesamerotationnumber. We further assume that the boundary of A is a pair of KAM-curves. These curves persistforallC4-smallsymplecticperturbationshencetheyliein A˜ andboundacom- pactinvariantsub-cylinder A ⊂ A˜.Everyorbitin Astaysin Z,sothesamecylinder A ˜ ˜ isasub-cylinderof Aforeverychoiceofthecylinder A.Thismeansthateventhough 1 Throughoutthispaperweassumethelargespectralgapassumption(6)inthenotionofnormalhyper- bolicity.ThisguaranteestheC2-smoothnessofthemanifold,andtheC1-smoothnessofthecorresponding strong-stableandstrong-unstableinvariantfoliationsforeverymapC2-closetoΦ. 2 I.e.non-contractibletoapoint. ArnoldDiffusion 513 ˜ thecylinder A isnotuniquelydefined,thecylinder A isdefineduniquelyforallsym- plectic maps C4-close to Φ, and it depends continuously on the map. The stable and unstablemanifoldsandthestrong-stableandstrong-unstablefoliationsofAalsodepend continuously,intheC1-topology,onthemap. Wenowassumethatthesymmetricallynormally-hyperboliccylinder Ahasahomo- clinic,i.e.,theintersectionofWu(A)andWs(A)hasapointx outside A.IfWu(A)and Ws(A)aretransverseatx,theimplicitfunctiontheoremimpliesthatxhasanopenneigh- bourhoodU inWu(A)∩Ws(A),whichisdiffeomorphictoatwo-dimensionaldisk. x For any x ∈ Wu(A)∩ Ws(A) there is a unique leaf of Euu and a unique leaf of x Ess which pass through this point. We call the homoclinic intersection at x strongly x transverseif T Ess ⊕T Euu ⊕T (Wu(A)∩Ws(A))=R2d. (7) x x x x x ThispropertyisequivalenttotheconditionthattheleafEuu istransversetoWs(A)and x theleaf Ess istransversetoWu(A)atthepointx. x The holonomy maps πs : U → A and πu : U → A are projections along the x x leavesofthefoliations Ess and Euu,respectively.Sincethefoliationsaresmooth,the strongtransversalityimpliesthatthefoliationEuuistransversetothediscU inWu(A) x and the foliation Ess is transverse to U in Ws(A) provided U is sufficiently small. x x Thenπu :U → Aandπs :U → Aarelocaldiffeomorphisms. x x Inthiscase,following[32],onecandefinethescatteringmaponπu(U ): x F =πs ◦(πu)−1. x It is a local diffeomorphism which does not always extends to the whole cylinder A. However,inthispaperweconsiderthecasewherethescatteringmapcanbeglobally definedonalargeportionof A. Let A¯ ⊂ int(A) be a compact invariant sub-cylinder in A, i.e. it is a closed region in int(A) bounded by two non-intersecting invariant essential simple curves γ+ and γ−.Letthesetofpointshomoclinicto Acontainasmoothtwo-dimensionalmanifold B ⊂ Wu(int(A))∩Ws(int(A))\A.Wecall B ahomocliniccylinder,simplerelativeto ¯ thecylinders Aand A,ifthefollowingassumptionshold: [S1] Thestrongtransversalitycondition(7)holdsforallx ∈ B. [S2] For every point x ∈ A¯, the corresponding leaf of the foliation Euu intersects the homoclinic cylinder B at exactly one point each, and no two points in B belongtothesameleafofthefoliation Ess.Inotherwords,thescatteringmap F =πs ◦(πu)−1 : A¯ →int(A)iswell-defined. B B B ¯ [S3] Theimageof Abythescatteringmap F containsanessentialcurve. B Under these conditions the scattering map is a diffeomorphism A¯ → F (A¯) ⊂ B int(A).Indeed,assumption[S1]impliesthattheprojectionsπs,u : B →int(A)arelo- B caldiffeomorphismsandassumption[S2]impliesthatthemapsπu :(πu)−1(A¯)→ A¯ B B and πs : B → πs(B) are bijective. Condition [S3] means that the scattering map is B B ¯ homotopictoidentityon A. We conclude that F (A¯) ⊂ A is a sub-cylinder bounded by two essential simple B curves F (γ+)and F (γ−).Obviously, F (γ+)∩F (γ−)=∅.Proposition7implies B B B B thatF isanexactsymplecticmap.Inparticular,thecylinderF (A¯)hasthesameareaas B B A¯,andF (A¯)∩A¯ (cid:16)=∅.Notealsothatthefulfillmentofcondition[S2]dependsonbothin- B variantcylinders,A¯andA,asthecylinderAmustbelargeenoughtoincorporateF (A¯). B 514 V.Gelfreich,D.Turaev Ifγ+andγ−areKAM-curves,thenthecylinder A¯ boundedbythesecurvespersists forallC4-smallsymplecticperturbations.Thetransversalitycondition[S1]impliesthat theC1-smoothhomocliniccylinderBalsopersistsandremainssimplerelativeto A¯and A. Let V be a set of real-analytic exact symplectic diffeomorphisms Φ : (cid:6) → R2d N suchthat: – each map Φ ∈ V has two invariant, bounded by KAM-curves, symmetrically N normally-hyperbolic, two-dimensional closed cylinders A and A¯ such that A¯ ⊂ int(A), – eachmapΦ ∈V hasNdifferent3homocliniccylindersB ,...,B simplerelative N 1 N ¯ to Aand A, – thecylinders A, A¯, B ,...,B dependcontinuously(asC2-smoothmanifolds)on 1 N themapΦ, – for each Φ ∈ V the map F = Φ| has a twist property in some symplectic N 0 A coordinates(y,ϕ).4 Wedefinethetopologyinthespaceofreal-analyticexactsymplecticdiffeomorphismsas follows.TakeanycompactK ⊂R2dandletananalyticitydomainQbeacompactcom- plex neighbourhood of K. We consider exact symplectomorphisms K → R2d which admitaholomorphicextensionontosomeopenneighbourhoodof Q.Twosuchmaps areconsideredtobecloseiftheyareuniformlycloseon Q.Foranygivenr,twoholo- morphicmapswhicharesufficientlycloseon Q areCr-closeon K.Asweexplained, theC4-closenessisenoughforthepersistenceofthecylinders A, A¯, B ,...,B [ifall 1 N oftheirorbitsbyΦ lieinint(K)],sothesetV isopen. N Theorem1.(Maintheorem)Let N ≥ 8.Then,thereisanopenanddensesubsetV˜ of V ,suchthatforeachmapΦ ∈ V˜ foreverytwoopenneighbourhoodsU− ofγ− and N U+ofγ+theimageofU−bysomeforwarditerationofthemapΦ intersectsU+. Remark1.ItisobviousthatgivenanytwoopensetsU+andU−thesetofmapswhose orbitsconnectU− andU+ isopen.Thetheoremmakesastrongerclaimthattheinter- sectionofallthesesets(overallpossiblechoicesoftheneighbourhoodsU−andU+of thegivencurvesγ−andγ+)isopenanddenseinV .Thetheoremimpliesthatforany N mapΦ ∈V thereisanopensetofarbitrarilysmallperturbationsofΦwithinV such N N thateachoftheseperturbationscreates,foreachpairofneighbourhoodsU−andU+of thecurvesγ±,anorbitthatconnectsU−andU+. Notethattheexistenceofatleast8differenthomocliniccylindersrequiredbyThe- orem1isnotarestrictivecondition.Namely,underanadditionalmildassumptionthe existenceofonehomocliniccylinderimpliestheexistenceofinfinitelymanydifferent homocliniccylinders(seeSect.3.3).Usingthis,wecaninferthefollowingresultfrom ourmaintheorem. ConsiderthesetV ofreal-analyticexactsymplecticdiffeomorphismsΦ :(cid:6) →R2d suchthat: – eachmapΦ ∈Vhasaninvariant,boundedbyKAM-curves,symmetricallynormally- hyperbolic,two-dimensionalclosedcylinder A, – inAthereexisttwoinvariantsub-cylindersA¯andAˆsuchthatA¯ ⊂int(Aˆ)⊂int(A), eachofthemisboundedbyKAM-curves, 3 I.e.noneintersectsanyimageofanotherbytheiterationsofthemapΦ. 4 Inthesecoordinates,Birkhofftheorem[55]impliesthattheboundarycurvesγ±oftheinvariantsub- cylinderA¯aregraphsofLipschitzfunctions,y=y±(ϕ). ArnoldDiffusion 515 – Φ hasahomocliniccylinder B simplerelativeto Aˆ and A, – thecylinder B issimplerelative A¯ and Aˆ;i.e. F (A¯)⊂intAˆ, B – themap F =Φ| hasatwistproperty. 0 A As all the invariant cylinders involved are bounded by KAM-curves, they persist at C4-small symplectic perturbations. Thus the set V is an open subset of the space of real-analyticsymplectomorphisms.Letγ−andγ+betheboundarycurvesof A¯. Theorem2.InV thereisanopenanddensesubsetV˜ suchthatforeachmapΦ˜ ∈ V˜ andforeverytwoopenneighbourhoodsU− ofγ− andU+ ofγ+ theimageofU− by someforwarditerationofΦ˜ intersectsU+. Remark2.StatementssimilartoTheorems1and2areknownfornon-analytic(smooth) case, see e.g. [19,20,77]. The main difference between the analytic and smooth case is that the class of perturbations small in the real-analytic sense is narrower than the ∞ class of perturbations that are small in the C -sense. In particular, for a typical real- analytic map the normally-hyperbolic invariant cylinder A is not analytic (it has only finite smoothness), so no real-analytic perturbations can vanish on A. Consequently, methodsof[19,20,77]arenotapplicableintheanalyticcategory(inthecrucialpartthat concernsremovingthebarrierstodiffusionbyasmallperturbation).Ontheotherhand, theproofsofthepresentpaperholdtrueforthecaseofCk mapsaswell. Remark3.ThesymplecticdiffeomorphismΦcanbeaPoincaremapofacertaincross- section(cid:6) foraHamiltonianflowinsidealevelofconstantenergy.Wedonotneedto assume that the Poincare map Φ is defined outside a small neighbourhood of the in- variant cylinder A in this case: the global stable and unstable manifolds of A, as well astheglobalstrong-stableandstrong-unstablefoliationsonthesemanifoldsaredefined by continuation of the corresponding local objects by the orbits of the Hamiltonian system.Asabove,onedefinesscatteringmapsbytheorbitshomoclinicto A.Onecan easilyadjusttheproof ofthetwomaintheorems inordertoshowthatifthePoincare mapΦandthescatteringmap(maps)forsomeHamiltoniansystemsatisfytheassump- tionsoftheorem1or2,thenagenericsmallperturbationoftheHamiltonianfunction H in the space of real-analytic Hamiltonians leads to creation of orbits that connect U−toU+. Thestrategyoftheproofofourtwomaintheoremsisasfollows.WeshowinPropo- sition2thattheexistenceofonehomocliniccylinder B whichissimplerelativetothe invariantcylinders Aˆ and A where Aˆ issuchthat A¯ ⊆ Aˆ and F (A¯) ⊆ Aˆ impliesthe B existenceofinfinitelymanydifferentsecondaryhomocliniccylinderswhicharesimple ¯ relative to A and A. Thus, Theorem 2 is immediately reduced to Theorem 1, and we willfurtherconsider N ≥ 8homocliniccylinders B ,...,B ,allofwhicharesimple 1 N ¯ relativetothesamepairofcompactinvariantcylinders Aand A,andallaredifferentin thesensethatΦm(B )∩ B =∅forallm andalli, j =1,...,N suchthati (cid:16)= j.Let i j F : A¯ →int(A)denotethescatteringmapdefinedbythehomocliniccylinder B .By n n condition[S1],F isalocaldiffeomorphism.Bycondition[S2]F isabijection,hence n n F isadiffeomorphismof A¯ ontotheset F (A¯).Obviously,condition[S1]impliesthat n n (cid:3) ¯ thescatteringmapsaredefinedinanopenneighbourhood A of Ain A. TakeanymapΦ ∈V.Let(v )m ⊂ Abeapartofanorbitoftheiteratedfunction s s=0 system{F ,...,F },i.e.foreachs = 0,...,m −1thereexistsn = 0,...,N such 0 N s that v = F (v ). In order to ensure that F (v ) is well-defined we assume that v ∈ As+(cid:3)1forn n(cid:16)=s 0s.InSect.4weshowthatfornasnyssuchorbitandanyε > 0,thereis s s apointx andapositiveinteger(cid:14)suchthat 0 516 V.Gelfreich,D.Turaev dist(x ,v )<ε, and dist(Φ˜(cid:14)(x ),v )<ε 0 0 0 m (seeLemma4).Notethatwedonotusehyperbolicityorindexargumentsinthislemma. We also do not use the symplecticity of the maps F ,...,F , nor the twist property 1 N of the map F . However, the fact that the large cylinder A is an invariant domain for 0 thearea-preservingmap F iscrucial,asweusethePoincareRecurrenceTheoremin 0 anessentialway(wefirstproveacertainweakshadowingresult,Lemma2,thatholds withoutthisassumptiononthemap F ,thenLemma4isdeducedfromitinthecaseof 0 area-preserving F ). 0 Accordingtothisshadowinglemma(Lemma4),inordertoshowthattwoopensets are connected by a forward orbit of the map Φ, it is sufficient to show that the inter- sections of these sets with A are connected by orbits of the iterated function system {F ,...,F }.Ageneralisation(Theorem3)ofaclassicalBirkhofftheoremstatesthat 0 N if F for n = 0,...,N are exact symplectomorphisms homotopic to identity, and F n 0 is a twist map, then for any two essential curves γ± ⊂ A(cid:3) there is a trajectory of the iterated function system with v ∈ γ− and v ∈ γ+ unless the functions F have a 0 m n commoninvariantessentialcurve. Thus,ifthemaps F ,...,F have nocommon invariantessentialcurves between 0 N γ− and γ+, every pair of neighbourhoods,U− of γ− andU+ of γ+, is connected by orbits of the map Φ. Theorem 3 also implies that the absence of a common invariant essentialcurveisanopenproperty. Theorem4,themostdifficultpartoftheargument,establishesthatthispropertyis also dense in V (provided N ≥ 8). Thus, for every map Φ from an open and dense subsetofV,thecorrespondingscatteringmapsF ,...,F (N ≥8)andF donothave 1 N 0 anycommonessentialinvariantcurve.Aswejustexplained,thisimpliesthateverytwo neighbourhoodsU± ofγ± areconnected byforwardorbitsofeach suchmap Φ,and Theorem1follows. Theorem4isthecrucialstepintheproofofTheorem1.AnanalogueofTheorem4 forgenericnon-analyticmapscanbederivedfrom[19,20,77].However,themethodsof destroyingcommoninvariantcurvesthatareusedinthosepaperscannotbeusedinthe analyticcase(asthereal-analyticperturbationscannot,ingeneral,vanishonthefinitely ∞ smoothnormally-hyperboliccylinder A;thesameconcernsC perturbations,forthat matter).Therefore,wedevelopacompletelydifferentperturbationtechniqueinorderto proveTheorem4fortheanalyticcase. 3. EstimatesinaNeighbourhoodofaSymmetricallyNormally-Hyperbolic InvariantCylinder Inthissectionwestudydynamicsinasmallneighbourhoodofanormally-hyperbolic cylinder.Thisanalysisdoesnotrequirethemaptobeeithersymplecticoranalytic. 3.1. Fenichelcoordinates,crossformofthemap,andestimatesforthelocaldynamics. Let Abeacompact,symmetricallynormally-hyperbolic,smooth,invariantcylinderof aCr-smoothmapΦ (r ≥2).Aswealreadymentioned, Acanbeextendedtoalarger, ˜ smoothnormally-hyperboliclocally-invariantcylinder A.Letusintroducecoordinates in a small neighbourhood of A such that this larger invariant cylinder is straightened. Moreover, the local stable and unstable manifolds Ws,u(A) are straightened as well, loc alongwiththestrong-stableandstrong-unstablefoliations Ess and Euu onthem.Note
Description: