ebook img

Arnold Diffusion in A Priori Chaotic Symplectic Maps PDF

41 Pages·2017·0.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Arnold Diffusion in A Priori Chaotic Symplectic Maps

Commun.Math.Phys.353,507–547(2017) Communicationsin DigitalObjectIdentifier(DOI)10.1007/s00220-017-2867-0 Mathematical Physics Arnold Diffusion in A Priori Chaotic Symplectic Maps VassiliGelfreich1,DmitryTuraev2,3 1 MathematicsInstitute,UniversityofWarwick,Coventry,UK.E-mail:[email protected] 2 ImperialCollege,London,UK 3 LobachevskyUniversityofNizhnyNovgorod,NizhnyNovgorod,Russia.E-mail:[email protected] Received:30March2015/Accepted:6January2017 Publishedonline:24April2017–©TheAuthor(s)2017.Thisarticleisanopenaccesspublication Abstract: We assume that a symplectic real-analytic map has an invariant normally hyperbolic cylinder and an associated transverse homoclinic cylinder. We prove that generically in the real-analytic category the boundaries of the invariant cylinder are connectedbytrajectoriesofthemap. 1. Introduction AHamiltoniandynamicalsystemisdefinedwiththehelpofaHamiltonfunction H : M →RonasymplecticmanifoldMofdimension2n.LetM beaconnectedcomponent c ofalevelset{H =c}.SinceHremainsconstantalongthetrajectoriesoftheHamiltonian system,theset M isinvariant.DependingontheHamiltonfunction H andtheenergy c c,therestrictionofthedynamicsontoM mayvaryfromuniformlyhyperbolic(e.g.,in c thecaseofageodesicflowonasurfaceofnegativecurvature)tocompletelyintegrable. SincePoincarésworks,ithasbeenacceptedthatatypicalHamiltoniansystemdoes not have any additional integral of motion independent of H (unless the system pos- sessessomesymmetriesandtheNoethertheoremapplies).Ontheotherhandageneric Hamiltoniansystemisnearlyintegrableinaneighbourhoodofatotallyellipticequilib- rium(agenericminimumormaximumof H)ortotallyellipticperiodicorbit.Thenthe Kolmogorov–Arnold–Moser(KAM)theoryimpliesthattheHamiltoniansystemisnot ergodic(withrespecttotheLiouvillemeasure)onsomeenergylevels[72].Indeed,the KAMtheoryestablishesthatanearlyintegrablesystempossessesasetofinvarianttori ofpositivemeasure. Each of the KAM tori has dimension n. For n > 2 a KAM torus does not divide M whichhasdimension(2n−1),moreover,thecomplementtotheunionofallKAM c tori is connected and dense in M . Thus the KAM theory does not contradict to the c existenceofadenseorbitinM .Itisunknownwhethersuchorbitsreallyexistinnearly c integrablesystems.ThequestiongoesbacktoFermi[39]whosuggestedthefollowing notion:aHamiltoniansystemiscalledquasi-ergodicifinevery M anytwoopensets c 508 V.Gelfreich,D.Turaev areconnectedbyatrajectory.Thispropertyisequivalenttotopologicaltransitivityofthe Hamiltonianflowon M .Thispropertycanalsoberestatedinslightlydifferentterms: c (a) in every M there is a dense orbit or (b) in every M dense orbits form a residual c c subset. Fermi conjectured [39] that quasi-ergodicity is a generic property of Hamiltonian systems, but proved a weaker statement only: if a Hamiltonian system with n > 2 degreesoffreedomhastheform H = H (I)+εH (I,ϕ,ε), (1) 0 1 whereH isintegrableand(I,ϕ)areaction-anglevariables,thengenericallyM doesnot 0 c containaninvariant(2n−2)-dimensionalhyper-surfacethatisanalyticinε.Obviously, suchsurfacewouldpreventthequasi-ergodicity.However,non-analyticinvarianthyper- surfaces cannot be excluded from consideration as it is not known whether they can exist generically or not. So Fermi’s quasi-ergodic hypothesis remains unproved. The recent papers [21,64,65,71,74] make an important step in the understanding of the underlying dynamics by showing that for the generic (in a certain smooth category) near-integrablecasewith21 ormoredegreesoffreedom,therearetrajectoriesthatvisit 2 anaprioriprescribedsequenceofballs.Thepaper[52]providesexamplesofsystems havingorbitswhoseclosurecontainsaLebesguepositivemeasuresetofKAM-tori. Thisproblemiscloselyrelatedtotheproblemofstabilityofatotallyellipticfixed pointofasymplecticdiffeomorphism,orstabilityofatotallyellipticperiodicorbitfora Hamiltonianflow.Itwasprovedin[35,36]thatstabilitycanbebrokenbyanarbitrarily smallsmoothperturbation.Itisbelievedthatatotallyellipticperiodicorbitisgenerically unstablebutthetimescalesforthisinstabilitytomanifestitselfareextremelylong,see e.g.[15,59]. Forε =0,theunperturbedsystem(1)isdescribedbytheHamiltonian H = H (I). 0 Then the actions I are constant along trajectories, so the equation I = I defines an 0 invarianttorus,andtheanglesϕarequasi-periodicfunctionsoftimewiththefrequency vectorω (I) = H(cid:3)(I).KAMtheoryimpliesthatthemajorityofinvarianttorisurvive 0 0 underperturbation.Toriwithrationallydependentfrequenciesarecalledresonantand aredestroyedbyatypicalperturbation[2].Thefrequencyofaresonanttorussatisfiesa conditionoftheformω (I)·k=0forsomek∈Zn\{0}.Theresonanttoriforma“res- 0 onantweb”,typically(e.g.ifω isalocaldiffeomorphism)adensesetofmeasurezero. 0 Arnold’sexample[1]showsthatatrajectoryoftheperturbedsystem(1)canslowly driftalongaresonance.Arnold’spaperinspiredalargenumberofstudiesinthelong- timestabilityofactions,theproblemwhichisknownas“Arnolddiffusion”.Ithasbeen attractingsignificantattentionrecentlyandwereferthereadertopapers[11,31,33,40– 43,54,57,60–62,68–70,76,82,84]foramoredetaileddiscussion. Itshouldbenotedthatthemotionalongtheresonantwebisveryslow:Nekhoroshev theory[14,78]providesalowerboundontheinstabilitytimesintheanalyticcase.Let {·,·}denotethePoissonbrackets.Then I˙={H,I}=ε{H ,I}isoftheorderofε.On 1 the other hand, if the system satisfies assumptions of the KAM theory, |I(t)− I(0)| remainssmallforalltimesandthemajorityofinitialconditions,i.e.,forthesetofinitial conditionsofasymptoticallyfullmeasure.If H satisfiesassumptionsoftheNekhoro- shev theory, there are some exponents a,b > 0 such that |I(t)− I(0)| < εa for all |t| < expε−b andforallinitialconditions.Thisestimateestablishesanexponentially largelowerboundforthetimesofArnoldDiffusioninanalyticsystems. ItisimportanttostressthattheupperboundonthespeedofArnolddiffusionstrongly dependsonthesmoothnessofthesystem.Indeed,thestabilitytimesareexponentially ArnoldDiffusion 509 large in ε−1 for analytic systems, but only polynomial bounds can be obtained in the Ckcategory.Inparticular,papers[21,64,74]studytheArnolddiffusionfornon-analytic HamiltoniansandthereforetheboundsestablishedbytheanalyticalNekhoroshevtheory are likely to be violated, see e.g. [13]. The problem of genericity of Arnold diffusion inanalyticcategoryremainsfullyopen.Webelievethemethodsproposedinourpaper willhelptoadvancethetheoryintheanalyticcase. Thenormalformtheorysuggeststhatforsmallpositiveε thesystem(1)hasanor- mallyhyperboliccylinderwithapendulum-likeseparatrixlocatedinaneighbourhood of a simple resonance. Indeed, Bernard proved the existence of normally-hyperbolic cylinders in a priori stable Hamiltonian systems [6], the size of such cylinder being boundedawayfromzeroforarbitrarilysmallsizeoftheperturbation. Amodelforthissituationisoftenobtainedbyassumingthattheintegrablepartof theHamiltonianalreadypossessesanormally-hyperboliccylinderandanassociatedho- moclinicloop(e.g.byconsideringH = P(p,q)+h (I)wherePisaHamiltonianofa 0 0 pendulum).Asystemofthistypeiscalledaprioriunstable.Thedriftoforbitsalongthe cylinder has been actively studied inthe lastdecade[3–5,7–9,12,18–20,22,27,28,31– 34,70,87,88], including the problem of genericity of this phenomenon and instability times.ItshouldbenotedthattheArnolddiffusioncanbemuchfasterinthiscase. Inthesestudies,adriftingtrajectorytypicallystaysmostofthetimenearthenormally- hyperboliccylinder,occasionallymakingatripnearahomoclinicloop.Theprocesscan bedescribedusingthenotionofascatteringmapintroducedbyDelshamsetal.[32].Ear- lierMoeckel[75]suggestedthatArnolddiffusioncanbemodelledbyrandomapplication oftwoarea-preservingmapsonacylinder(thisapproachwasrecentlycontinuedin[17, 46–49,53,66]).InthiswaythedeterministicHamiltoniandynamicsismodelledbyanit- eratedfunctionsystem,andtheobstaclestoadriftalongthecylinderappearintheformof essentialcurveswhichareinvariantwithrespecttobothmapssimultaneously[67,75,77]. ThisproblemiscloselyrelatedtotheMatherproblemontheexistenceoftrajecto- rieswithunboundedenergyinaperiodicallyforcedgeodesicflow[10,29].Thecriteria for the existence of trajectories of the energy that grows up to infinity are known for sufficientlylargeinitialenergies[10,24,29,30,44,45,80,81].Theresultsofthepresent papercanbeusedtoestablishthegenericexistenceoforbitsofunboundedenergyfor allpossiblevaluesofinitialenergy. In our paper we depart from the near-integrable setting and study the dynamics of an exact symplectic map in a homoclinic channel, a neighbourhood of a normally- hyperbolictwo-dimensionalcylinder Aalongwithasequenceofhomocliniccylinders BatatransverseintersectionofthestableandunstablemanifoldsofA.Weconductarig- orousreductionoftheproblemtothestudyofaniteratedfunctionsystemandshowthat theexistenceofadriftingtrajectory(i.e.theinstabilityoftheArnolddiffusiontype)is guaranteedwhentheexactsymplecticmapsofthecylinder Athatconstitutetheiterated functionsystemdonothaveacommoninvariantcurve.Thereductionschemeisinthe samespiritasin[50,77]whilethesettingandproofsaredifferent.Thecompletelynovel resultisthattheexistenceofdriftingorbitsisagenericphenomenon,i.e.itholdsforan open and dense subset of a neighbourhood, in the space of analytic symplectic maps, ofthegivenmapwithahomoclinicchannel,providedtherestrictionofthemaponthe cylinder Ahasatwistproperty.AlltheknownsimilargenericityresultsfortheArnold diffusionhavebeenprovensofarinthesmoothcategoryandusethenon-analiticityof theperturbationsinanessentialway. Inonerespect,thesituationweconsiderismoregeneralthaninthenear-integrable setting,aswedonotassumetheexistenceofalargesetofKAMcurvesontheinvariant 510 V.Gelfreich,D.Turaev cylinder A.Ontheotherside,asonecanextractfromtheexampleof[25],ourassump- tionofthestrongtransversalityofthehomoclinicintersections,whichweneedinorder todefinethescatteringmapsthatformtheiterationfunctionsystem,seemstofailfor a generic analytic near-integrable system in a neighbourhood of a resonance in the a prioristablecase.Therefore,ourresultsdonotadmitanimmediatetranslationtothea prioristablecase.Rather,theproblemweconsiderhereisrelatedtotheapriorichaotic case, e.g. we assume certain transversality of invariant manifolds associated with the normallyhyperboliccylinder. ThetechnicalassumptionsofourmaintheoremcanbefoundinSect.2.Asanexam- ple,wecanconsidera4-dimensionalsymplecticmapthatisadirectproductofatwist mapandastandardmap.Namely,Φ :(ϕ,I,x,y)(cid:5)→(ϕ¯,I¯,x¯,y¯)where 0 ϕ¯ =ϕ+ω(I), x¯ = x +y¯, I¯= I, y¯ = y+ksinx, (2) wherek >0isapositiveparameterandωisananalyticfunction.Weassumeϕandxto beangularvariables,sothemapisasymplecticdiffeomorphismof(T×R)2.Themap Φ hasanormallyhyperbolicinvariantcylinder Agivenbyx = y =0.Thecylinder A 0 isfilledwithinvariantcurvesasthemapΦ preservesthevalueofthe I variable.The 0 (x,y)componentofΦ coincideswiththestandardmap,whichhastransversalhomo- 0 clinicpointsforallk >0.ThusΦ verifiestheassumptionsofthemaintheorem.Then 0 agenericanalyticperturbationofΦ producesorbitswhichconnectsneighbourhoods 0 ofanytwoessentialcurvesin A. A more interesting example is obtained when the integrable twist map is replaced byanotherstandardmap,sothenewunperturbedmapisgivenbyΦ : (ϕ,I,x,y) (cid:5)→ 0 (ϕ¯,I¯,x¯,y¯)where ϕ¯ =ϕ+I¯, x¯ = x +y¯, I¯= I +k sinϕ, y¯ = y+k sinx. (3) 1 2 Thecylinder A = {x = y = 0}isstillinvariantbutitisnolongerfilledwithinvariant curves.InsteadthecylindercontainsaCantorsetofinvariantcurvesprovidedk isnot 1 toolarge.ThesetoripreventtrajectoriesofΦ fromtravelinginthedirectionoftheIaxis. 0 Thetheorypresentedinthispaperallowsustotreatbothcasesequallyandimplies that an arbitrarily small generic analytic perturbation creates trajectories which travel betweenregions I < I and I > I forany I < I [providedω(cid:3)(I)isseparatedfrom a b a b 0for(2),andk >C(4|k |+k2)for(3)].Indeed,inordertoapplyTheorem1tothese 2 1 1 examples,wenotefirst,thattheinvariantcylinder Aisnormallyhyperbolic.Thiscylin- derhasastableandunstableseparatrices Wu(A)and Ws(A)whichcoincidewiththe productof Aandthestable(reps.,unstable)separatrixofthestandardmapWu,s,sowe sm canwrite(slightlyabusingnotation)Ws(A)= A×Ws andWu(A)= A×Wu .This sm sm product also describes the structure of the foliation of Wu,s(A) into strong stable and strongunstablemanifoldsofpointsin A.Forapointv ∈ A,weletEuu(v)={v}×Wu sm andEss(v)={v}×Ws .Theassumptionk >C(4|k |+k2)for(3)ensuresthatthese sm 2 1 1 strongstableandstrongunstablefoliationsremainC1-smoothaftertheperturbation. It can be proved that the standard map has infinitely many transversal homoclinic orbits for any k > 0. Let p = (x ,y ) be one of these orbits. The cylinder B = h h h A×{p } ⊂ Wu(A)∩Ws(A) is homoclinic to A. Since the strong stable and strong h unstablefoliationsofapointv ∈ Acoincidewiththeproductofthebasepointandthe separatricesofthestandardmap,weseethat(v,p )∈ Ess(v)∩Euu(v),andthecylinder h Bsatisfiesthestrongtansversalityassumptiondescribedinthenextsectiongivingriseto ArnoldDiffusion 511 asimplehomoclinicintersection(definedinthenextsection).ThenTheorem2implies thatgenericperturbationofΦ hasorbitstravelinginthedirectionofthecylinder A. 0 Similar maps were considered in Easton et al. [37] (motivated by the “stochastic pumpmodel”ofTennysonetal.[89]).In[37]theexistenceofdriftorbitswasshown forallnon-integrableLagrangianperturbationsprovidedk islargeenough(i.e.inthe 2 “anti-integrable”limit).Ourmethodsallowustoobtainthedriftingorbitswithoutthe largek assumption,i.e.,withoutadetailedknowledgeofthedynamicsofthesystem. 2 2. Set-up,Assumptions,andResults Considerareal-analyticdiffeomorphismΦ :(cid:6) →R2d,d ≥2,definedonanopenset (cid:6) ⊆R2d.WeassumethatΦpreservesthestandardsymplecticformΩ,andthatΦisex- act(e.g.thelatterisalwaystrueif(cid:6)issimply-connected).LetΦhaveaninvariantsmooth two-dimensionalcylinder AdiffeomorphictoS1×[0,1]andψ : S1×[0,1] → (cid:6) be thecorres(cid:2)pondinge(cid:3)mbed(cid:2)ding.The(cid:3)ntheboundaryof Aconsistsoftwoinvariantcircles: ∂A=ψ S1×{0} ∪ψ S1×{1} .Letint(A)= A\∂Aand F =Φ| . 0 A Weassumethatthecylinder A isnormally-hyperbolic.Moreprecisely,weassume thatateachpointv ∈ Athetangentspaceisdecomposedintoadirectsumofthreenon- zerosubspaces:TvR2d =R2d = Nvc⊕Nvu⊕Nvs,whereNvcisthetwo-dimensionalplane tangenttoAatthepointv.ThesubspacesNs,udependcontinuouslyonvandareinvariant wcnhoiottehicrtehesaoptfeΦncot(cid:3)rNtmovctsh=iendNNerFcsi,0vu(av,c)titvaheseΦrAe(cid:3)ieosxfiinsthtveαarmi>aanp1t,wai.neidt.hΦλr(cid:3)e∈Nspvs(e0=c,t1tN)osFsΦu0(cv.h)WtahneadatΦsastu(cid:3)eNmvveuery=thpaNotifFuno0t(rvvs).o∈WmAee (cid:12)F(cid:3)(v)(cid:12)<α, (cid:12)(F(cid:3)(v))−1(cid:12)<α, (4) 0 0 (cid:12)Φ(cid:3)(v)|Nvs(cid:12)<λ, (cid:12)(Φ(cid:3)(v)|Nvu)−1(cid:12)<λ, (5) where α2λ<1. (6) Notethattheseassumptionsaremorerestrictiveincomparisonwiththestandarddefi- nitionofanormallyhyperbolicmanifold.Inparticular,thelargespectralgapcondition (6)impliestheC1-regularityofthestrongstableandstrongunstablefoliationswhilein thegeneralcasethesefoliationsareHöldercontinuousonly(seee.g.[83]). Wealsonotethatin(4)and(5)thesamepairofexponentsαandλboundbothΦ(cid:3)and (Φ(cid:3))−1,sowesaythat Aissymmetricallynormally-hyperbolic.Thesymmetricformof thespectralgapassumptionimpliesthattherestrictionofthesymplecticformon Ais non-degenerate(seeProposition4).Thus AisasymplecticsubmanifoldofR2d andthe map F =Φ| inheritsthe(exact)symplecticityofΦ. 0 A Wehavenodoubtsthatourresultscanbeextendedtocoverthecasewhenλandαof inequalities(4)and(5)dependonthepointv ∈ A.However,forthesakeofsimplicity, weconducttheproofsforthecaseofconstantλandαonly. Thepointsinasmallneighbourhoodofthenormally-hyperboliccylinder A,whose forwarditerationsdonotleavetheneighbourhoodandtendto Aexponentiallywiththe rateatleastλ,formasmooth(atleastC2inourcase)invariantmanifold,thelocalstable manifoldWs ⊃ A,whichistangentto Ns⊕Nc atthepointsof A(seee.g.[56]).The loc pointswhosebackwarditerationstendto A exponentiallywiththerateatleastλ(and withoutleavingtheneighbourhood)formaC2-smoothinvariantmanifoldWu ⊃ A(the loc localunstablemanifold),whichistangentto Nu⊕Nc atthepointsof A.Theinvariant 512 V.Gelfreich,D.Turaev cylinderAistheintersectionofWu andWs .Theglobalstableandunst(cid:4)ablemanifolds loc loc of A aredefinedbyiteratingthelocalinvariantmanifolds: Wu(A) := ΦmWu (cid:4) m≥0 loc andWs(A):= Φ−mWs . m≥0 loc IneachofthemanifoldsthereexistsauniquelydefinedC1-smoothinvariantfolia- tiontransverseto A,thestrong-stableinvariantfoliation Ess inWs(A)andthestrong- unstable invariant foliation Euu in Wu(A), such that for every point v ∈ A there is a uniqueleafofEvssandauniqueleafofEvuuwhichpassthroughthispointandaretangent to Nvs and,respectively, Nvu (see[86]).TheC1-regularityofafoliationmeansthatthe leaves of the foliation are smooth and, importantly, the field of tangents to the leaves isalsosmooth,whichimpliesthatforanytwosmoothcross-sectionstransversetothe foliationthecorrespondencedefinedbytheleavesofthefoliationbetweenthepointsin thecross-sectionsisalocaldiffeomorphism. Let us discuss the question of the persistence of A at small perturbations. It is a standard fact from the theory of normal hyperbolicity [56] that any strictly-invariant normally-hyperbolic compact smooth manifold with a boundary can be extended to a locally-invariant normally-hyperbolic manifold without a boundary. In our case this means that the smooth embedding ψ that defines the invariant cylinder A = ψ(S1 × [0,1])canbeextendedontoS1×I whereI isanopenintervalcontaining[0,1],andthe image A˜ =ψ(S1×I)⊃ Aisnormally-hyperbolicandlocally-invariantwithrespectto themapΦ.Here,bythelocalinvariancewemeanthatthereexistsaneighbourhood Z ˜ ˜ ˜ ofAsuchthattheiterationsofeachpointofAstayinAuntiltheyleaveZ.Animportant property of the locally-invariant normally-hyperbolic manifold without a boundary is thatitpersistsatC2-smallperturbations,i.e.forallmapsC2-closetoΦ thereexistsa locally-invariant normally-hyperbolic cylinder A˜ ⊂ Z. It is not defined uniquely, but it can be chosen in such a way that it will depend on the map continuously as a C2- manifold.1Thecontinuousdependenceonthemapimpliesthatthecylinder A˜ remains symplecticandsymmetricallynormally-hyperbolicforallmapsC2-closetoΦ. ˜ Notethatthenormal hyperbolicity impliesthat A contains alltheorbitsthatnever ˜ leave Z.Inparticular,anyinvariantcurvethatliesin Z mustliein A.Wecallasmooth invariantessential2 simplecurveγ ⊂ A˜ aKAM-curveifthemapΦ restrictedtoγ is smoothlyconjugatetotherigidrotationtoaDiophantineangleandthemap F0 =Φ|A˜ near γ satisfies the twist condition. As the Lyapunov exponent at every point of γ is ˜ zero,thegapwiththecontraction/expansioninthedirectionstransversetoAisinfinitely large.Therefore,thecylinder A˜ isofclassCr (forany given finiter)inasufficiently smallneighborhoodofγ (see[38,56]).ThisholdstrueforeverymapCr-closetoΦ,i.e. themapF staysCr-smoothandthetwistconditionalsoholds.Now,byapplyingKAM- 0 theorytothemapF ,weconcludethattheinvariantcurveγ persistsforeverysymplectic 0 mapwhichisatleastC4-closetoΦ.Namely,everysuchmaphasauniquelydefined,con- tinuouslydependingonthemap,invariantKAM-curvewiththesamerotationnumber. We further assume that the boundary of A is a pair of KAM-curves. These curves persistforallC4-smallsymplecticperturbationshencetheyliein A˜ andboundacom- pactinvariantsub-cylinder A ⊂ A˜.Everyorbitin Astaysin Z,sothesamecylinder A ˜ ˜ isasub-cylinderof Aforeverychoiceofthecylinder A.Thismeansthateventhough 1 Throughoutthispaperweassumethelargespectralgapassumption(6)inthenotionofnormalhyper- bolicity.ThisguaranteestheC2-smoothnessofthemanifold,andtheC1-smoothnessofthecorresponding strong-stableandstrong-unstableinvariantfoliationsforeverymapC2-closetoΦ. 2 I.e.non-contractibletoapoint. ArnoldDiffusion 513 ˜ thecylinder A isnotuniquelydefined,thecylinder A isdefineduniquelyforallsym- plectic maps C4-close to Φ, and it depends continuously on the map. The stable and unstablemanifoldsandthestrong-stableandstrong-unstablefoliationsofAalsodepend continuously,intheC1-topology,onthemap. Wenowassumethatthesymmetricallynormally-hyperboliccylinder Ahasahomo- clinic,i.e.,theintersectionofWu(A)andWs(A)hasapointx outside A.IfWu(A)and Ws(A)aretransverseatx,theimplicitfunctiontheoremimpliesthatxhasanopenneigh- bourhoodU inWu(A)∩Ws(A),whichisdiffeomorphictoatwo-dimensionaldisk. x For any x ∈ Wu(A)∩ Ws(A) there is a unique leaf of Euu and a unique leaf of x Ess which pass through this point. We call the homoclinic intersection at x strongly x transverseif T Ess ⊕T Euu ⊕T (Wu(A)∩Ws(A))=R2d. (7) x x x x x ThispropertyisequivalenttotheconditionthattheleafEuu istransversetoWs(A)and x theleaf Ess istransversetoWu(A)atthepointx. x The holonomy maps πs : U → A and πu : U → A are projections along the x x leavesofthefoliations Ess and Euu,respectively.Sincethefoliationsaresmooth,the strongtransversalityimpliesthatthefoliationEuuistransversetothediscU inWu(A) x and the foliation Ess is transverse to U in Ws(A) provided U is sufficiently small. x x Thenπu :U → Aandπs :U → Aarelocaldiffeomorphisms. x x Inthiscase,following[32],onecandefinethescatteringmaponπu(U ): x F =πs ◦(πu)−1. x It is a local diffeomorphism which does not always extends to the whole cylinder A. However,inthispaperweconsiderthecasewherethescatteringmapcanbeglobally definedonalargeportionof A. Let A¯ ⊂ int(A) be a compact invariant sub-cylinder in A, i.e. it is a closed region in int(A) bounded by two non-intersecting invariant essential simple curves γ+ and γ−.Letthesetofpointshomoclinicto Acontainasmoothtwo-dimensionalmanifold B ⊂ Wu(int(A))∩Ws(int(A))\A.Wecall B ahomocliniccylinder,simplerelativeto ¯ thecylinders Aand A,ifthefollowingassumptionshold: [S1] Thestrongtransversalitycondition(7)holdsforallx ∈ B. [S2] For every point x ∈ A¯, the corresponding leaf of the foliation Euu intersects the homoclinic cylinder B at exactly one point each, and no two points in B belongtothesameleafofthefoliation Ess.Inotherwords,thescatteringmap F =πs ◦(πu)−1 : A¯ →int(A)iswell-defined. B B B ¯ [S3] Theimageof Abythescatteringmap F containsanessentialcurve. B Under these conditions the scattering map is a diffeomorphism A¯ → F (A¯) ⊂ B int(A).Indeed,assumption[S1]impliesthattheprojectionsπs,u : B →int(A)arelo- B caldiffeomorphismsandassumption[S2]impliesthatthemapsπu :(πu)−1(A¯)→ A¯ B B and πs : B → πs(B) are bijective. Condition [S3] means that the scattering map is B B ¯ homotopictoidentityon A. We conclude that F (A¯) ⊂ A is a sub-cylinder bounded by two essential simple B curves F (γ+)and F (γ−).Obviously, F (γ+)∩F (γ−)=∅.Proposition7implies B B B B thatF isanexactsymplecticmap.Inparticular,thecylinderF (A¯)hasthesameareaas B B A¯,andF (A¯)∩A¯ (cid:16)=∅.Notealsothatthefulfillmentofcondition[S2]dependsonbothin- B variantcylinders,A¯andA,asthecylinderAmustbelargeenoughtoincorporateF (A¯). B 514 V.Gelfreich,D.Turaev Ifγ+andγ−areKAM-curves,thenthecylinder A¯ boundedbythesecurvespersists forallC4-smallsymplecticperturbations.Thetransversalitycondition[S1]impliesthat theC1-smoothhomocliniccylinderBalsopersistsandremainssimplerelativeto A¯and A. Let V be a set of real-analytic exact symplectic diffeomorphisms Φ : (cid:6) → R2d N suchthat: – each map Φ ∈ V has two invariant, bounded by KAM-curves, symmetrically N normally-hyperbolic, two-dimensional closed cylinders A and A¯ such that A¯ ⊂ int(A), – eachmapΦ ∈V hasNdifferent3homocliniccylindersB ,...,B simplerelative N 1 N ¯ to Aand A, – thecylinders A, A¯, B ,...,B dependcontinuously(asC2-smoothmanifolds)on 1 N themapΦ, – for each Φ ∈ V the map F = Φ| has a twist property in some symplectic N 0 A coordinates(y,ϕ).4 Wedefinethetopologyinthespaceofreal-analyticexactsymplecticdiffeomorphismsas follows.TakeanycompactK ⊂R2dandletananalyticitydomainQbeacompactcom- plex neighbourhood of K. We consider exact symplectomorphisms K → R2d which admitaholomorphicextensionontosomeopenneighbourhoodof Q.Twosuchmaps areconsideredtobecloseiftheyareuniformlycloseon Q.Foranygivenr,twoholo- morphicmapswhicharesufficientlycloseon Q areCr-closeon K.Asweexplained, theC4-closenessisenoughforthepersistenceofthecylinders A, A¯, B ,...,B [ifall 1 N oftheirorbitsbyΦ lieinint(K)],sothesetV isopen. N Theorem1.(Maintheorem)Let N ≥ 8.Then,thereisanopenanddensesubsetV˜ of V ,suchthatforeachmapΦ ∈ V˜ foreverytwoopenneighbourhoodsU− ofγ− and N U+ofγ+theimageofU−bysomeforwarditerationofthemapΦ intersectsU+. Remark1.ItisobviousthatgivenanytwoopensetsU+andU−thesetofmapswhose orbitsconnectU− andU+ isopen.Thetheoremmakesastrongerclaimthattheinter- sectionofallthesesets(overallpossiblechoicesoftheneighbourhoodsU−andU+of thegivencurvesγ−andγ+)isopenanddenseinV .Thetheoremimpliesthatforany N mapΦ ∈V thereisanopensetofarbitrarilysmallperturbationsofΦwithinV such N N thateachoftheseperturbationscreates,foreachpairofneighbourhoodsU−andU+of thecurvesγ±,anorbitthatconnectsU−andU+. Notethattheexistenceofatleast8differenthomocliniccylindersrequiredbyThe- orem1isnotarestrictivecondition.Namely,underanadditionalmildassumptionthe existenceofonehomocliniccylinderimpliestheexistenceofinfinitelymanydifferent homocliniccylinders(seeSect.3.3).Usingthis,wecaninferthefollowingresultfrom ourmaintheorem. ConsiderthesetV ofreal-analyticexactsymplecticdiffeomorphismsΦ :(cid:6) →R2d suchthat: – eachmapΦ ∈Vhasaninvariant,boundedbyKAM-curves,symmetricallynormally- hyperbolic,two-dimensionalclosedcylinder A, – inAthereexisttwoinvariantsub-cylindersA¯andAˆsuchthatA¯ ⊂int(Aˆ)⊂int(A), eachofthemisboundedbyKAM-curves, 3 I.e.noneintersectsanyimageofanotherbytheiterationsofthemapΦ. 4 Inthesecoordinates,Birkhofftheorem[55]impliesthattheboundarycurvesγ±oftheinvariantsub- cylinderA¯aregraphsofLipschitzfunctions,y=y±(ϕ). ArnoldDiffusion 515 – Φ hasahomocliniccylinder B simplerelativeto Aˆ and A, – thecylinder B issimplerelative A¯ and Aˆ;i.e. F (A¯)⊂intAˆ, B – themap F =Φ| hasatwistproperty. 0 A As all the invariant cylinders involved are bounded by KAM-curves, they persist at C4-small symplectic perturbations. Thus the set V is an open subset of the space of real-analyticsymplectomorphisms.Letγ−andγ+betheboundarycurvesof A¯. Theorem2.InV thereisanopenanddensesubsetV˜ suchthatforeachmapΦ˜ ∈ V˜ andforeverytwoopenneighbourhoodsU− ofγ− andU+ ofγ+ theimageofU− by someforwarditerationofΦ˜ intersectsU+. Remark2.StatementssimilartoTheorems1and2areknownfornon-analytic(smooth) case, see e.g. [19,20,77]. The main difference between the analytic and smooth case is that the class of perturbations small in the real-analytic sense is narrower than the ∞ class of perturbations that are small in the C -sense. In particular, for a typical real- analytic map the normally-hyperbolic invariant cylinder A is not analytic (it has only finite smoothness), so no real-analytic perturbations can vanish on A. Consequently, methodsof[19,20,77]arenotapplicableintheanalyticcategory(inthecrucialpartthat concernsremovingthebarrierstodiffusionbyasmallperturbation).Ontheotherhand, theproofsofthepresentpaperholdtrueforthecaseofCk mapsaswell. Remark3.ThesymplecticdiffeomorphismΦcanbeaPoincaremapofacertaincross- section(cid:6) foraHamiltonianflowinsidealevelofconstantenergy.Wedonotneedto assume that the Poincare map Φ is defined outside a small neighbourhood of the in- variant cylinder A in this case: the global stable and unstable manifolds of A, as well astheglobalstrong-stableandstrong-unstablefoliationsonthesemanifoldsaredefined by continuation of the corresponding local objects by the orbits of the Hamiltonian system.Asabove,onedefinesscatteringmapsbytheorbitshomoclinicto A.Onecan easilyadjusttheproof ofthetwomaintheorems inordertoshowthatifthePoincare mapΦandthescatteringmap(maps)forsomeHamiltoniansystemsatisfytheassump- tionsoftheorem1or2,thenagenericsmallperturbationoftheHamiltonianfunction H in the space of real-analytic Hamiltonians leads to creation of orbits that connect U−toU+. Thestrategyoftheproofofourtwomaintheoremsisasfollows.WeshowinPropo- sition2thattheexistenceofonehomocliniccylinder B whichissimplerelativetothe invariantcylinders Aˆ and A where Aˆ issuchthat A¯ ⊆ Aˆ and F (A¯) ⊆ Aˆ impliesthe B existenceofinfinitelymanydifferentsecondaryhomocliniccylinderswhicharesimple ¯ relative to A and A. Thus, Theorem 2 is immediately reduced to Theorem 1, and we willfurtherconsider N ≥ 8homocliniccylinders B ,...,B ,allofwhicharesimple 1 N ¯ relativetothesamepairofcompactinvariantcylinders Aand A,andallaredifferentin thesensethatΦm(B )∩ B =∅forallm andalli, j =1,...,N suchthati (cid:16)= j.Let i j F : A¯ →int(A)denotethescatteringmapdefinedbythehomocliniccylinder B .By n n condition[S1],F isalocaldiffeomorphism.Bycondition[S2]F isabijection,hence n n F isadiffeomorphismof A¯ ontotheset F (A¯).Obviously,condition[S1]impliesthat n n (cid:3) ¯ thescatteringmapsaredefinedinanopenneighbourhood A of Ain A. TakeanymapΦ ∈V.Let(v )m ⊂ Abeapartofanorbitoftheiteratedfunction s s=0 system{F ,...,F },i.e.foreachs = 0,...,m −1thereexistsn = 0,...,N such 0 N s that v = F (v ). In order to ensure that F (v ) is well-defined we assume that v ∈ As+(cid:3)1forn n(cid:16)=s 0s.InSect.4weshowthatfornasnyssuchorbitandanyε > 0,thereis s s apointx andapositiveinteger(cid:14)suchthat 0 516 V.Gelfreich,D.Turaev dist(x ,v )<ε, and dist(Φ˜(cid:14)(x ),v )<ε 0 0 0 m (seeLemma4).Notethatwedonotusehyperbolicityorindexargumentsinthislemma. We also do not use the symplecticity of the maps F ,...,F , nor the twist property 1 N of the map F . However, the fact that the large cylinder A is an invariant domain for 0 thearea-preservingmap F iscrucial,asweusethePoincareRecurrenceTheoremin 0 anessentialway(wefirstproveacertainweakshadowingresult,Lemma2,thatholds withoutthisassumptiononthemap F ,thenLemma4isdeducedfromitinthecaseof 0 area-preserving F ). 0 Accordingtothisshadowinglemma(Lemma4),inordertoshowthattwoopensets are connected by a forward orbit of the map Φ, it is sufficient to show that the inter- sections of these sets with A are connected by orbits of the iterated function system {F ,...,F }.Ageneralisation(Theorem3)ofaclassicalBirkhofftheoremstatesthat 0 N if F for n = 0,...,N are exact symplectomorphisms homotopic to identity, and F n 0 is a twist map, then for any two essential curves γ± ⊂ A(cid:3) there is a trajectory of the iterated function system with v ∈ γ− and v ∈ γ+ unless the functions F have a 0 m n commoninvariantessentialcurve. Thus,ifthemaps F ,...,F have nocommon invariantessentialcurves between 0 N γ− and γ+, every pair of neighbourhoods,U− of γ− andU+ of γ+, is connected by orbits of the map Φ. Theorem 3 also implies that the absence of a common invariant essentialcurveisanopenproperty. Theorem4,themostdifficultpartoftheargument,establishesthatthispropertyis also dense in V (provided N ≥ 8). Thus, for every map Φ from an open and dense subsetofV,thecorrespondingscatteringmapsF ,...,F (N ≥8)andF donothave 1 N 0 anycommonessentialinvariantcurve.Aswejustexplained,thisimpliesthateverytwo neighbourhoodsU± ofγ± areconnected byforwardorbitsofeach suchmap Φ,and Theorem1follows. Theorem4isthecrucialstepintheproofofTheorem1.AnanalogueofTheorem4 forgenericnon-analyticmapscanbederivedfrom[19,20,77].However,themethodsof destroyingcommoninvariantcurvesthatareusedinthosepaperscannotbeusedinthe analyticcase(asthereal-analyticperturbationscannot,ingeneral,vanishonthefinitely ∞ smoothnormally-hyperboliccylinder A;thesameconcernsC perturbations,forthat matter).Therefore,wedevelopacompletelydifferentperturbationtechniqueinorderto proveTheorem4fortheanalyticcase. 3. EstimatesinaNeighbourhoodofaSymmetricallyNormally-Hyperbolic InvariantCylinder Inthissectionwestudydynamicsinasmallneighbourhoodofanormally-hyperbolic cylinder.Thisanalysisdoesnotrequirethemaptobeeithersymplecticoranalytic. 3.1. Fenichelcoordinates,crossformofthemap,andestimatesforthelocaldynamics. Let Abeacompact,symmetricallynormally-hyperbolic,smooth,invariantcylinderof aCr-smoothmapΦ (r ≥2).Aswealreadymentioned, Acanbeextendedtoalarger, ˜ smoothnormally-hyperboliclocally-invariantcylinder A.Letusintroducecoordinates in a small neighbourhood of A such that this larger invariant cylinder is straightened. Moreover, the local stable and unstable manifolds Ws,u(A) are straightened as well, loc alongwiththestrong-stableandstrong-unstablefoliations Ess and Euu onthem.Note

Description:
time stability of actions, the problem which is known as “Arnold diffusion”. vanishes. Thus, as Y is a subset of an interval, it follows that mes(M) = 0.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.